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MATCHINGS, COVERINGS, AND

CASTELNUOVO-MUMFORD REGULARITY

RUSS WOODROOFE

Abstract. We show how co-chordal covers of the edges of a graph
give upper bounds on the Castelnuovo-Mumford regularity of its
edge ideal. The proof is by an easy application of a deep result of
Kalai and Meshulam. We also give a topological proof of the best
lower bound and slight improvements to it. Using results from the
graph theory literature, we will be able to calculate and/or bound
the Castelnuovo-Mumford regularity for edge ideals of several new
classes of graphs.

1. Introduction and background

Let ∆ be any simplicial complex, and for any subset S of its vertex
set V (∆) let ∆[S] be the induced subcomplex on S. If k is any field,
we define the regularity of ∆ over k to be

regk ∆ = max{i : H̃i−1(∆[S]; k) 6= 0 for some S ⊆ V (∆)}.

Our results will mostly be independent of the choice of k, and in such
cases we will drop k from our notation.
Since reg∆ ≥ reg∆[S] for any S ⊆ V (∆), regularity is a reasonable

measure of the topological complexity of ∆. For example, reg∆ = 0
if and only if ∆ is a simplex. Complexes ∆ with reg∆ ≤ d have also
been called d-Leray, and been used to prove Helly-type results [16].
In addition to its role as a measure of topological complexity, we are

interested in reg∆ via a connection with commutative algebra. The
Stanley-Reisner ring over k of a simplicial complex ∆ with vertex set
{x1, . . . , xn} is the commutative ring

k[∆] = k[x1, . . . , xn]/(x
E : E not a face of ∆).

Then regk ∆ is the Castelnuovo-Mumford regularity of k[∆], and in
this form has been the object of some recent interest [11, 14, 20, 21, 22,
24]. We notice that if R is a polynomial ring, then regR = 0. Since
0 → I → R → R/I → 0 is an exact sequence for any ideal I, it
follows from a standard long exact sequence argument in homological
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algebra that reg I = regR/I+1. In particular, studying the regularity
of the Stanley-Reisner ring and of the associated ideal are equivalent
problems, and both forms appear in the literature.
The independence complex of a graph G, denoted I(G), is the family

of independent sets of G, that is, of subsets of V (G) containing no edge.
Simplicial complexes that can be realized as the independence complex
of a graph are called flag complexes. The ideal in the Stanley-Reisner
ring is called the edge ideal in this case, and is generated by square-free
monomials of degree 2 corresponding to the edges of the graph. More
generally, any simplicial complex can be realized as the independence
complex of a more general object called a clutter or Sperner system,
but we restrict ourselves to the graph case in this paper.
A graph G is chordal if every induced cycle in G has length 3, and

G is co-chordal if the complement graph G is chordal. We notice that
regk ∆ = 1 (over any k) if and only if ∆ is the independence complex
of a co-chordal graph with at least one edge: this can be viewed as
equivalent to a similar result on linear resolutions of edge ideals [12],
or a direct proof is straightforward.
We present several classes of co-chordal graphs, which we will use in

Section 3.

Example 1. Any graph G such that V (G) can be partitioned into a
complete subgraph union an (induced) independent set is both chordal
and co-chordal. Such graphs are referred to as split graphs.

Example 2. A threshold graph is recursively defined to be either the
single vertex graph, or else a graph obtained from a threshold graph by
either adding either a new disjoint vertex, or a new dominating vertex.
Threshold graphs are a subclass of split graphs, hence are co-chordal,
and are examined at length in [19].

Example 3. Since the complement of a complete ℓ-partite graphKn1,...,nℓ

is the disjoint union of cliques, Kn1,...,nℓ
is co-chordal.

Example 4. Co-chordal graphs that are also bipartite are called chain
graphs or difference graphs, and are exactly the bipartite graphs with
no induced 2K2 subgraph.

Example 5. An interval graph is a graph with vertices corresponding
to some set of intervals in R, and edges between two intervals with
non-empty intersection; a co-interval graph is the complement of an
interval graph. Interval graphs are exactly the chordal graphs which can
be represented as the incomparability graph of a poset. Equivalently,
interval graphs are the incomparability graphs of the 2+2-free posets,
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that is those posets with no subposet consisting of 2 disjoint nontrivial
chains [3].

The remainder of the paper is organized as follows. In Section 2, we
give lower bounds on regularity of independence complexes. We prove
the induced matching lower bound by a geometric technique, and give
generalizations. In Section 3, we use a theorem of Kalai and Meshulam
[16] to bound regularity from above by the co-chordal cover number.
Using results from the graph theory literature, we bound and/or exactly
calculate the regularity for several new classes of graphs.

For undefined graph theory terms we refer to [3, 19], and for geomet-
ric combinatorics terms to [2]. We consider all graphs and simplicial
complexes in this paper to be finite.
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2. Lower bounds

Lower bounds for regularity are straightforward to construct: we find
a subcomplex with non-vanishing homology in a high dimension.
An induced matching in a graph G is a matching which forms an

induced subgraph of G, that is, a set of edges of which no two share
a vertex or are connected by a third edge. Induced matchings have
a considerable literature, see e.g. [1, 5, 6, 10, 13]. We let im(G) be
the number of edges in the largest induced matching. The following
theorem is essentially due to Katzman:

Theorem 6. (Katzman [17, Lemma 2.2]) For any graph G, we have
reg I(G) ≥ im(G).

We give a short geometric proof: Notice that if G is the disjoint union
of subgraphs G1 and G2, then I(G) is the join I(G1) ∗ I(G2). Thus,
the independence complex of the disjoint union of j edges is the j-fold
join of 0-spheres, hence a (j − 1)-sphere. (It is the boundary complex
of the (j − 1)-dimensional cross-polytope.) The result follows. �

A more general result follows immediately from the Künneth formula
in algebraic topology [2, 9.12]:
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Lemma 7. Let k be any field. For any simplicial complexes ∆1 and
∆2, we have regk (∆1 ∗∆2) = regk ∆1 + regk ∆2.

In the context of independence complexes, if G1 and G2 are any two
graphs then regk I(G1 ∪̇G2) = regk I(G1) + regk I(G2).
The inequality of Theorem 6 can be strict. For example, Kozlov

calculated the homotopy type of paths and cycles [18, Propositions 4.6
and 5.2], from which the following proposition follows:

Proposition 8. reg I(Cn) = reg I(Pn) =
⌊

n−2

3

⌋

+ 1 for n ≥ 3.

It is easy to see that the regularity is equal to the lower bound of
Theorem 6 in the Pn case, and in the Cn case when n 6≡ 2 (mod 3), but
that reg I(C3i+2) = i + 1 = im(C3i+2) + 1. Combining with Lemma 7,
we get:

Corollary 9. If a graph G has an induced subgraph H which is the
disjoint union of edges and cycles

H ∼=
˙⋃m

i=1
e ∪̇

˙⋃n

j=1
C3ij+2

then regG ≥ m+ n+
∑n

j=1
ij.

3. Upper bounds

The principle tool that we will use to find upper bounds for regu-
larity is the following deep result proved by Kalai and Meshulam [16],
answering a conjecture of Terai [22].

Theorem 10. (Kalai-Meshulam [16, Theorem 1.2])
If ∆1, . . . ,∆s are simplicial complexes on the same vertex set and k is
any field, then

regk

s
⋂

i=1

∆i ≤
s

∑

i=1

regk ∆i.

In the context of independence complexes, if G1, . . . , Gs are graphs on
the same vertex set, then regk I(

⋃s

i=1
Gi) ≤

∑s

i=1
regk I(Gi).

Let G be a graph, and F be a family of graphs. The F-cover number
of G is the minimum number of subgraphs H1, . . . , Hs of G such that
every Hi is in F and

⋃

E(Hi) = E(G).
Let cochord(G) denote the co-chordal cover number of G. Then the

following is an immediate consequence of Theorem 10 and the fact that
reg I(G) ≤ 1 for a co-chordal graph G.

Theorem 11. For any graph G, we have reg I(G) ≤ cochord(G).
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Although the proof of Theorem 11 is easy, it connects the study of
regularity with other problems studied in the graph theory and com-
puter science literature. We use this connection to give new proofs
of upper bounds on regularity, improving some of the best previously
known.
In particular, the F -cover number of G for any family F from Exam-

ples 1-5 is an upper bound on regG. We examine these in turn, giving
references to the literature and drawing consequences for regularity.

Remark 12. The inequality of Theorem 11 can be strict. For example,
since the graph formed by two disjoint edges is not co-chordal, we get
that co-chordal subgraphs of Cn (n ≥ 5) are paths with at most 3
edges. Thus cochord(C3k+1) = k + 1, but by Proposition 8 we have
that reg I(C3k+1) = k.

Proposition 13. If G is a graph such that V (G) is covered by an
independent set J0 together with s complete subgraphs J1, . . . , Js, then
reg I(G) ≤ s.

Proof. Let J ′

i be the subgraph consisting of all edges incident to at
least one vertex in V (Ji). Since J ′

i can be decomposed as the com-
plete subgraph Ji union an independent set, J ′

i is a split graph. Then
J ′

1, J
′

2, . . . , J
′

s is a split graph covering (hence a co-chordal covering) of
G, and the result follows by Theorem 11. �

Remark 14. If in the situation of Proposition 13 we have J0 = ∅, then
J1, . . . , Js is exactly an s-coloring of G. In this case, however, the
bound is trivial, since χ(G) ≥ α(G) = dim I(G)+1, and H̃i(∆) always
vanishes above dim∆.

Remark 15. Hà and Van Tuyl [14, Theorem 6.7] showed that regk I(G)
is at most the matching number of G, that is, the maximum size of a
matching. Proposition 13 is a strong generalization of their result, since
any maximal (not necessarily maximum) matching gives the required
covering.

Proposition 13 also allows us to recover a result of Hà and Van Tuyl
on chordal graphs:

Corollary 16. (Hà-Van Tuyl [14, Corollary 1.7]) If G is a chordal
graph, then reg I(G) = im(G).

Proof. Cameron [5] observed that the edges of a chordal graph G can
be covered by im(G) cliques. �

Definition 17. The split graph cover number of G (as in the proof of
Proposition 13) has also been referred to as the split dimension of G
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[7]. Although it gives weaker results for our purposes, the threshold
graph cover number (or threshold dimension) has been more studied:
see [19] and its references.

The technique to calculate reg I(G) by proving im(G) = cochord(G)
is more broadly useful. A graph is weakly chordal if every induced cycle
in both G and G has length ≤ 4. A weakly chordal graph that is also
bipartite is called chordal bipartite.

Proposition 18. If G is a weakly chordal graph, then reg I(G) =
im(G).

Proof. Busch, Dragan, and Sritharan show [4] that im(G) = cochord(G)
for any weakly chordal graph G. (Abueida, Busch, and Sritharan ear-
lier showed the same result for a chordal bipartite graph [1, Corollary
1].) �

Definition 19. The biclique cover number of G is the smallest num-
ber of complete bipartite graphs Kn1,n2

required to cover the edge of
G. The biclique number has also been referred to as the bipartite di-
mension. Unfortunately (for our purposes), there seem to be stronger
results about lower bounds than for upper bounds on the biclique cover
number, e.g. [8, 15]. I’m not aware of any study of the analogous cover
problem for complete k-partite graphs, although this might give inter-
esting bounds on regularity.

Definition 20. The boxicity of G, denoted boxG, is the co-interval
cover number of G, that is, the minimum number of co-interval sub-
graphs required to cover the edges of G. (The original formulation of
boxicity was somewhat different, and the connection with covering is
made in [9].) Theorem 11 gives that reg I(G) ≤ box(G).

If G is a planar graph, then by Proposition 8 we see that reg I(G)
may be unbounded. On the other hand, since a planar graphG contains
no K5 subgraph, we have that reg I(G) ≤ dim I(G) + 1 = α(G) ≤ 4
(as in Remark 14). The literature on boxicity yields a stronger result:

Proposition 21. If G is a planar graph, then reg I(G) ≤ 3.

Proof. Thomassen [23] proves that box(G) ≤ 3. �

The complement of 3K2 is the 1-skeleton of the octohedron, which
is well-known to be planar. Hence Corollary 21 gives the best possible
regularity bound on complements of planar graphs.

Remark 22. The F -cover number for any interesting subfamily F of
the co-chordal graphs seems to be difficult to compute. Yannakakis
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shows [25] that determining whether cochord(G) ≤ k is NP-complete,
even when we restrict to bipartite graphs and the chain graph cover
problem. Moreover he shows that for a bipartite graph G we have
cochord(G) = box(G), hence determining whether boxicity of a graph is
≤ k is also NP-complete. The corresponding problem for the split graph
cover number was shown to be NP-complete in [7]. An easily-accessible
account of these complexity results can be found in [19, Chapter 7].

We close with a question. Nevo [21] shows that if G is a (2K2,
claw)-free graph then reg I(G) ≤ 2.

Question 23. If G is (2K2, claw)-free, then is cochord(G) ≤ 2?
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