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SOME IMPROVEMENTS ON THE CONSTANTS FOR THE REAL

BOHNENBLUST-HILLE INEQUALITY

DANIEL PELLEGRINO AND JUAN B. SEOANE-SEPÚLVEDA*

Abstract. A classical inequality due to Bohnenblust and Hille states that for every N ∈ N

and every m-linear mapping U : ℓN
∞

× · · · × ℓN
∞

→ C we have





N
∑

i1,...,im=1

∣

∣

∣
U(ei1 , ..., eim )

∣

∣

∣

2m
m+1





m+1
2m

≤ Cm ‖U‖ ,

where Cm = 2
m−1

2 . The result is also true for real Banach spaces. In this note we show
that an adequate use of a recent new proof of Bohnenblust-Hille inequality, due to De-
fant, Popa and Schwarting, combined with the optimal constants of Khinchine’s inequality
(due to Haagerup) provides quite better estimates for the constants involved in the real
Bohnenblust-Hille inequality. For instance, for 2 ≤ m ≤ 14, we show that the constants

Cm = 2
m−1

2 can be replaced by 2
m2+6m−8

8m if m is even and by 2
m2+6m−7

8m if m is odd,
which substantially improve the known values of Cm. We also show that the new constants
present a better asymptotic behavior.

1. Preliminaries and background

In 1931, Bohnenblust and Hille ([2], or the more recent [6, 7]) asserted that for every positive
integer N and every m-linear mapping U : ℓN∞ × · · · × ℓN∞ → C we have





N
∑

i1,...,im=1

∣

∣U(ei1 , ..., eim)
∣

∣

2m
m+1





m+1
2m

≤ Cm ‖U‖ ,

where Cm = 2
m−1

2 (actually this result also holds for real Banach spaces). The case m = 2
is a famous result known as Littlewood’s 4/3-inequality. It seems that the Bohnenblust-Hille
inequality was overlooked and was only re-discovered several decades later by Davie [4] and

Kaijser [11]. While the exponent 2m
m+1 is optimal, the constant Cm = 2

m−1
2 is not. Very

recently, A. Defant and P. Sevilla-Peris [6, Section 4] indicated that by using Sawa’s estimate
for the constant of the complex Khinchine’s inequatily in Steinhaus variables (see [14]) it is

possible to prove that Cm ≤
(

2√
π

)m−1

in the complex case (this is a strong improvement of

the previous constants and it seems that these are the best known estimates for the complex
case).

The (complex and real) Bohnenblust-Hille inequality can be re-written in the context of
multiple summing multilinear operators, as we will see below.

Multiple summing multilinear mappings between Banach spaces is a recent, very important
and useful nonlinear generalization of the concept of absolutely summing linear operators.
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This class was introduced, independently, by Matos [13] (under the terminology fully summing
multilinear mappings) and Bombal, Pérez-Garćıa and Villanueva [3].

Throughout this paper X1, . . . , Xm and Y will stand for Banach spaces over K = R or C,
and X ′ stands for the dual of X . By L(X1, . . . , Xm;Y ) we denote the Banach space of all
continuous m-linear mappings from X1 × · · · ×Xm to Y with the usual sup norm.

For x1, ..., xn in X , let

‖(xj)
n
j=1‖w,1 := sup{‖(ϕ(xj))

n
j=1‖1 : ϕ ∈ X ′, ‖ϕ‖ ≤ 1}.

If 1 ≤ p < ∞, anm-linear mapping U ∈ L(X1, . . . , Xm;Y ) is multiple (p; 1)-summing (denoted
Π(p;1)(X1, . . . , Xm;Y )) if there is a constant Lm ≥ 0 such that

(1.1)





N
∑

j1,...,jm=1

∥

∥

∥U(x
(1)
j1

, . . . , x
(m)
jm

)
∥

∥

∥

p





1
p

≤ Lm

m
∏

k=1

∥

∥

∥(x
(k)
j )Nj=1

∥

∥

∥

w,1

for every N ∈ N and any x
(k)
jk

∈ Xk, jk = 1, . . . , N , k = 1, . . . ,m. The infimum of the

constants satisfying (1.1) is denoted by ‖U‖π(p;1). For m = 1 we have the classical concept of

absolutely (p; 1)-summing operators (see, e.g. [5, 8]).
A simple reformulation of Bohnenblust-Hille inequality asserts that every continuous m-

linear form T : X1 × · · · ×Xm → K is multiple ( 2m
m+1 ; 1)-summing with Lm = Cm = 2

m−1
2 (or

Lm =
(

2√
π

)m−1

for the complex case, using the estimates of Defant and Sevilla-Peris, [6]).

However, in the real case the best constants known seem to be Cm = 2
m−1

2 .
The main goal of this note is to obtain better constants for the Bohnenblust-Hille inequality

in the real case. For this task we will use a recent proof of a general vector-valued version of
Bohnenblust-Hille inequality ([7, Theorem 5.1]). The inequality of Bohnenblust-Hille is stated
in [7, Corollary 2] as a consequence of [7, Theorem 5.1]. The procedure of the proof of [7,

Corollary 2] allows us to obtain quite better values than Cm = 2
m−1

2 . However, in this note
we explore the ideas of [7] in a different way, in order to obtain even better estimates for the
constants that can be derived from [7, Corollary 2]. The constants we obtain can be derived
from [7, Theorem 5.1] through an adequate choice of variables.

Let us recall some results that we will need in this note. The first result is a well-known
inequality due to Khinchine (see [8]):

Theorem 1.1 (Khinchine’s inequality). For all 0 < p < ∞, there are constants Ap and Bp

such that

(1.2) Ap

(

N
∑

n=1

|an|2
)

1
2

≤
(

∫ 1

0

∣

∣

∣

∣

∣

N
∑

n=1

anrn (t)

∣

∣

∣

∣

∣

p

dt

)

1
p

≤ Bp

(

N
∑

n=1

|an|2
)

1
2

for all positive integer N and scalars a1, ..., an (here, rn denotes the n-Rademacher function).

Above, it is clear that B2 = 1. From (1.2) it follows that

(1.3)

(

∫ 1

0

∣

∣

∣

∣

∣

N
∑

n=1

anrn (t)

∣

∣

∣

∣

∣

p

dt

)

1
p

≤ BpA
−1
r

(

∫ 1

0

∣

∣

∣

∣

∣

N
∑

n=1

anrn (t)

∣

∣

∣

∣

∣

r

dt

)

1
r

and the product of the constants BpA
−1
r will appear later on Theorem 1.3.

The notation of Ap and Bp will be kept along the paper. Now, let us recall a variation of
an inequality due to Blei (see [7, Lemma 3.1]).
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Theorem 1.2 (Blei, Defant et al.). Let A and B be two finite non-void index sets, and
(aij)(i,j)∈A×B a scalar matrix with positive entries, and denote its columns by αj = (aij)i∈A

and its rows by βi = (aij)j∈B . Then, for q, s1, s2 ≥ 1 with q > max(s1, s2) we have





∑

(i,j)∈A×B

a
w(s1,s2)
ij





1
w(s1,s2)

≤
(

∑

i∈A

‖βi‖s1q

)

f(s1,s2)
s1





∑

j∈B

‖αj‖s2q





f(s2,s1)

s2

,

with

w : [1, q)2 → [0,∞), w(x, y) :=
q2(x+ y)− 2qxy

q2 − xy
,

f : [1, q)2 → [0,∞), f(x, y) :=
q2x− qxy

q2(x+ y)− 2qxy
.

The following theorem is a particular case of [7, Lemma 2.2], for Y = K, using that the
cotype 2 constant of K is 1, i.e., C2(K) = 1 (following the notation from [7]):

Theorem 1.3 (Defant et al). Let 1 ≤ r ≤ 2, and let (yi1,...,im)Ni1,...,im=1 be a matrix in K.
Then





N
∑

i1,...,im=1

|yi1...im |2




1/2

≤ (A2,r)
m





∫

[0,1]m

∣

∣

∣

∣

∣

∣

N
∑

i1,...,im=1

ri1 (t1)...rim (tm)yi1...im

∣

∣

∣

∣

∣

∣

r

dt1...dtm





1/r

,

where

A2,r ≤ A−1
r B2 = A−1

r (because B2 = 1).

The meaning of A2,r, w and f from the above theorems will also be kept in the next section.
Moreover, KG will denote the complex Grothendieck constant.

2. Improved constants for the Bohnenblust-Hille theorem

The main results from [7], Theorem 5.1 and Corollary 5.2, are very interesting vector-
valued generalizations of Bohnenblust-Hille inequality. In this note we explore the proof of
[7, Theorem 5.1] in such a way that the constants obtained are better than those that can
be derived from [7, Corollary 5.2]. We present here the proof of [7, Corollary 5.2] for the
particular case of the Bohnenblust-Hille inequality, with some changes (inspired in [7, Theorem
5.1]) which improve the constants (this task makes the proof clearer and avoids technicalities
from the arguments from [7, Theorem 5.1] in our particular case, with our particular choice
of the variables selected).

Following the proof of [7, Corollary 5.2], and using the optimal values for the constants of
Khinchine inequality (due to Haagerup) and KG for CC,2 (see [1]), the following estimates can
be calculated for Cm:

CC,2 = KG ≤ 1, 40491 <
√
2,

CC,m = 2
m−1
2m

(

CC,m−1

A 2m−2
m

)1− 1
m

for m ≥ 3,
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and

CR,2 =
√
2,(2.1)

CR,m = 2
m−1
2m

(

CR,m−1

A 2m−2
m

)1− 1
m

for m ≥ 3.(2.2)

In particular, if 2 ≤ m ≤ 13,

CC,m ≤ 2
m2+m−6

4m K
2/m
G(2.3)

CR,m ≤ 2
m2+m−2

4m .

Remark 2.1. It worths to mention that the above constants are not explicitly calculated in
[7]. Since our procedure (below) will provide better constants for the real case we will not detail
the above estimates.

For the complex case the estimates (2.2) are much better than CC,m = 2
m−1

2 but worst

than the constants CC,m =
(

2√
π

)m−1

obtained by Defant and Sevilla-Peris [6]. However, a

more appropriate use of some ideas from [7] can give better estimates for the real case, as we
see in the following result.

Theorem 2.2. For every positive integer m and every real Banach spaces X1, ..., Xm,

Π( 2m
m+1 ;1)

(X1, ..., Xm;R) = L(X1, ..., Xm;R) and ‖.‖π( 2m
m+1 ;1)

≤ CR,m ‖.‖

with

CR,2 = 2
1
2 and CR,3 = 2

5
6 ,

CR,m ≤ 2
1
2





CR,m−2

A2
2m−4
m−1





m−2
m

for m > 3.

In particular, if 2 ≤ m ≤ 14,

CR,m ≤ 2
m2+6m−8

8m if m is even

CR,m ≤ 2
m2+6m−7

8m if m is odd.

Proof. The case m = 2 is Littlewood’s 4/3 inequality. For m = 3 we have C3 = 2
5
6 from (2.3)

The proof is done by induction, but the case m is obtained as a combination of the cases 2
with m− 2 instead of 1 and m− 1 as in [7, Corollary 5.2].

Suppose that the result is true for m− 2 and let us prove for m. Let U ∈ L(X1, ..., Xm;R)

and N be a positive integer. For each 1 ≤ k ≤ m consider x
(k)
1 , ..., x

(k)
N ∈ Xk so that

∥

∥

∥(x
(k)
j )Nj=1

∥

∥

∥

w,1
≤ 1, k = 1, ..,m.

Consider, in the notation of Theorem 1.2,

q = 2, s1 =
4

3
, and s2 =

2(m− 2)

(m− 2) + 1
=

2m− 4

m− 1
.

Thus,

w(s1, s2) =
2m

m+ 1
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and, from Theorem 1.2, we have




N
∑

i1,...,im=1

∣

∣

∣U(x
(1)
i1

, ..., x
(m)
im

)
∣

∣

∣

2m
m+1





(m+1)/2m

≤

≤





N
∑

i1,...,im−2=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

im−1,im=1

∥

∥

∥

∥

2(m−2)
(m−2)+1

2





f(s2,
4
3 )/

2(m−2)
(m−2)+1

≤





N
∑

im−1,im=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

i1....,im−2=1

∥

∥

∥

∥

4
3

2





f( 4
3 ,s2)

.

Now we need to estimate the two factors above. For simplicity, we write below dt :=
dt1...dtm−2.

For each im−1, im fixed, we have (from Theorem 1.3),

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

i1....,im−2=1

∥

∥

∥

∥

4
3

2

≤

≤
(

Am−2
2, 43

)4/3
∫

[0,1]m−2

∣

∣

∣

∣

∣

∣

N
∑

i1,...,im−2=1

ri1 (t1)...rim−2 (tm−2)U(x
(1)
i1

, ..., x
(m)
im

)

∣

∣

∣

∣

∣

∣

4
3

dt

=
(

Am−2
2, 43

)4/3
∫

[0,1]m−2

∣

∣

∣

∣

∣

∣

U





N
∑

i1=1

ri1 (t1)x
(1)
i1

, ...,

N
∑

im−2=1

rim−2(tm−2)x
(m−2)
im−2

, x
(m−1)
im−1

, x
(m)
im





∣

∣

∣

∣

∣

∣

4
3

dt.

Summing over all im−1,im = 1, ..., N we obtain

N
∑

im−1,im=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

i1....,im−2=1

∥

∥

∥

∥

4
3

2

≤

(

Am−2
2, 43

)4/3
∫

[0,1]m−2

N
∑

im−1,im=1

∣

∣

∣

∣

∣

∣

U





N
∑

i1=1

ri1(t1)x
(1)
i1

, ...

N
∑

im−2=1

rim−2 (tm−2)x
(m−2)
im−1

, x
(m−1)
im

, x
(m)
im





∣

∣

∣

∣

∣

∣

4
3

dt.

Using the case m = 2 we thus have

N
∑

im−1,im=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

i1....,im−2=1

∥

∥

∥

∥

4
3

2

≤

≤
(

Am−2
2, 43

)
4
3 ∫

[0,1]m−2

∥

∥

∥

∥

∥

∥

U





N
∑

i1=1

ri1(t1)x
(1)
i1

, ...

N
∑

im−2=1

rim−1 (tm−2)x
(m−2)
im−2

, ., .





∥

∥

∥

∥

∥

∥

4
3

π( 4
3 ;1)

dt

≤
(

Am−2
2, 43

)
4
3 ∫

[0,1]m−2

(

‖U‖
√
2
)

4
3

dt

=
(

Am−2
2, 43

)
4
3
(

‖U‖
√
2
)

4
3

.
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Hence




N
∑

im−1,im=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

i1....,im−2=1

∥

∥

∥

∥

4
3

2





3
4

≤ Am−2
2, 43

‖U‖
√
2.

Next we obtain the other estimate. For each i1, ..., im−2 fixed, and dt := dtm−1dtm, we
have (from Theorem 1.3):

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

im−1,im=1

∥

∥

∥

∥

2

≤

≤ A2
2,s2





∫

[0,1]2

∣

∣

∣

∣

∣

∣

N
∑

im−1,im=1

rim−1 (tm−1)rim(tm)U(x
(1)
i1

, ..., x
(m)
im

)

∣

∣

∣

∣

∣

∣

s2

dt





1/s2

= A2
2,s2





∫

[0,1]2

∣

∣

∣

∣

∣

∣

U



x
(1)
i1

, ..., x
(m−2)
im−2

,

N
∑

im−1=1

rim−1(tm−1)x
(m−1)
im−1

,

N
∑

im=1

rim(tm)x
(m)
im





∣

∣

∣

∣

∣

∣

s2

dt





1/s2

.

Summing over all i1, ...., im−2 = 1, ..., N we get:

N
∑

i1,...,im−2=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

im=1

∥

∥

∥

∥

s2

2

≤

≤ A2s2
2,s2

∫

[0,1]2

N
∑

i1,...,im−2=1

∣

∣

∣

∣

∣

∣

U



x
(1)
i1

, ..., x
(m−2)
im−2

,

N
∑

im−1=1

rim−1(tm−1)x
(m−1)
im−1

,

N
∑

im=1

rim(tm)x
(m)
im





∣

∣

∣

∣

∣

∣

s2

dt.

We thus have, by the induction step,

N
∑

i1,...,im−2=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

im=1

∥

∥

∥

∥

s2

2

≤

≤
(

A2
2,s2

)s2 ≤
∫

[0,1]

∥

∥

∥

∥

∥

U

(

., ...,

N
∑

im−1=1

rim−1(tm−1)x
(m−1)
im−1

,

N
∑

im=1

rim (tm)x
(m)
im

)∥

∥

∥

∥

∥

s2

π(s2;1)

dt

≤
(

A2
2,s2

)s2 ∫

[0,1]

Cs2
R,m−2 ‖U‖s2 dt =

(

A2
2,s2

)s2
Cs2

R,m−2 ‖U‖s2

and so





N
∑

i1,...,im−2=1

∥

∥

∥

∥

(

U(x
(1)
i1

, ..., x
(m)
im

)
)N

im=1

∥

∥

∥

∥

s2

2





1/s2

≤
(

A2
2,s2

)

CR,m−2 ‖U‖ .

Hence, combining both estimates, we obtain





N
∑

i1,...,im=1

∣

∣

∣U(x
(1)
i1

, ..., x
(m)
im

)
∣

∣

∣

2m
m+1





(m+1)/2m

≤
[

Am−2
2, 43

√
2 ‖U‖

]f( 4
3 ,s2) [(

A2
2,s2

)

CR,m−2 ‖U‖
]f(s2,

4
3 ) .
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Although,

f(
4

3
, s2) =

4 4
3 − 2 4

3

(

2m−4
m−1

)

4
(

4
3 + 2m−4

m−1

)

− 4 4
3

(

2m−4
m−1

) =
2

m
,

f(s2,
4

3
) =

4
(

2m−2
m

)

− 2
(

2m−2
m

)

4
(

1 + 2m−2
m

)

− 4
(

2m−2
m

) = 1− 2

m
,

and, therefore




N
∑

i1,...,im=1

∣

∣

∣U(x
(1)
i1

, ..., x
(m)
im

)
∣

∣

∣

2m
m+1





(m+1)/2m

≤
[

Am−2
2, 43

√
2 ‖U‖

]
2
m
[(

A2
2, 2m−4

m−1

)

CR,m−2 ‖U‖
]1− 2

m

=
[

Am−2
2, 43

√
2
]

2
m
(

A2
2, 2m−4

m−1

)1− 2
m

C
1− 2

m

R,m−2 ‖U‖

=
[

Am−2
2, 43

√
2
]

2
m
(

A2
2, 2m−4

m−1

CR,m−2

)1− 2
m ‖U‖

= 2
1
m

(

A2, 43
A2, 2m−4

m−1

)
2m−4

m

(CR,m−2)
m−2
m ‖U‖ .

Now let us estimate the constants CR,m. We know that B2 = 1 and, from [9], we also know

that Ap = 2
1
2−

1
pwhenever p ≤ 1.847. So, for 2 ≤ m ≤ 14 we have

A 2m−4
m−1

= 2
1
2−

m−1
2m−4 .

Hence, from (1.3) and using the best constants of Khinchine’s inequality from [9], we have

A2, 43
≤ A−1

4
3

= 2
3
4−

1
2 ,

A2, 2m−4
m−1

≤ A−1
2m−4
m−1

= 2
m−1
2m−4−

1
2 ,

and

CR,m ≤ 2
1
m

((

2
3
4−

1
2

)(

2
m−1
2m−4−

1
2

))
2m−4

m

(CR,m−2)
1− 2

m = 2
m+2
2m (CR,m−2)

1− 2
m

and we obtain, if 2 ≤ m ≤ 14,

CR,m ≤ 2
m2+6m−8

8m if m is even,

CR,m ≤ 2
m2+6m−7

8m if m is odd.

In general we easily get

CR,m ≤ 2
1
2





CR,m−2

A2
2m−4
m−1





m−2
m

.

The numerical values of CR,m, for m > 14, can be easily calculated by using the exact
values of A 2m−4

m−1
, when m > 14 (see [9]):

A 2m−4
m−1

=
√
2









Γ

(

2m−4
m−1 +1

2

)

√
π









(m−1)/(2m−4)

.
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In the below table we compare the first constants Cm = 2
m−1

2 and the constants that can
be derived from [7, Cor. 5.2] with the new constants CR,m:

New Constants Constants from [7, Cor. 5.2]) Cm = 2
m−1

2

m = 3 220/24 ≈ 1.782 25/6 ≈ 1.782 22/2 = 2

m = 4 232/32 = 2 2
18
16 ≈ 2.18 23/2 ≈ 2.828

m = 5 2
48
40 ≈ 2.298 2

36
20 ≈ 2.639 22 = 4

m = 6 2
64
48 ≈ 2.520 2

40
24 ≈ 3.17 25/2 ≈ 5.656

m = 7 2
84
56 ≈ 2.828 2

54
28 ≈ 3.807 26/2 = 8

m = 8 2
104
64 ≈ 3.084 2

70
32 ≈ 4.555 27/2 ≈ 11.313

m = 9 2
128
72 ≈ 3.429 2

88
36 ≈ 5.443 28/2 = 16

m = 10 2
152
80 ≈ 3.732 2

108
40 ≈ 6.498 29/2 ≈ 22.627

m = 11 2
180
88 ≈ 4.128 2

130
44 ≈ 7.752 210/2 = 32

m = 12 2
208
96 ≈ 4.490 2

154
48 ≈ 9.243 211/2 ≈ 45.254

m = 13 2
240
104 ≈ 4.951 2

180
52 ≈ 11.016 212/2 = 64

m = 14 2
272
112 ≈ 5.383 2

13
28

(

2
180
52

A2
26
14

)1− 1
14

≈ 13.457 213/2 ≈ 90.509

In the last line of the above table we have used that A 26
14

=
√
2





Γ

(

26
14

+1

2

)

√
π





14/26

≈ 0.9736.

3. Comparing the asymptotic behavior of the different constants

In this final section we show that the new constants obtained present a better asymptotic
behavior than the previous (including the constants derived from [7, Cor. 5.2]).

We have seen that

CR,m ≤ 2
1
2





CR,m−2

A2
2m−4
m−1





m−2
m

.

As m → ∞ we know that A2, 2m−4
m−1

increases to 1. So,

lim sup
CR,m

(CR,m−2)
m−2
m

≤ 2
1
2 .

For the original constants Cm = 2
m−1

2 we have

Cm

(Cm−2)
m−2
m

= 2
2m−3

m

and thus

lim
Cm

(Cm−2)
m−2
m

= 4.

and for the constants from [7, Cor. 5.2] a similar calculation shows us that 2
1
2 is replaced by

2 in (3).
In resume, the new constants, besides smaller than the others, are those which have the

best asymptotic behavior.
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58.051-900 - João Pessoa, Brazil.

E-mail address: dmpellegrino@gmail.com


	1. Preliminaries and background
	2. Improved constants for the Bohnenblust-Hille theorem
	3. Comparing the asymptotic behavior of the different constants
	References

