SOME PROPERTIES AND APPLICATIONS OF F-FINITE F-MODULES

MORDECHAI KATZMAN

1. Introduction

The purpose of this paper is to describe several applications of finiteness properties of F finite F-modules recently discovered by M. Hochster in [H] to the study of Frobenius maps on injective hulls, Frobenius near-splittings and to the nature of morphisms of F-finite F-modules.

Throughout this paper (R, m) shall denote a complete regular local ring of prime characteristic p. At the heart of everything in this paper is the Frobenius map $f: R \rightarrow R$ given by $f(r)=r^{p}$ for $r \in R$. We can use this Frobenius map to define a new R-module structure on R given by $r \cdot s=r^{p} s$; we denote this R-module $F_{*} R$. We can then use this to define the Frobenius functor from the category of R-modules to itself: given an R-module M we define $F(M)$ to be $F_{*} R \otimes_{R} M$ with R-module structure given by $r(s \otimes m)=r s \otimes m$ for $r, s \in R$ and $m \in M .$.

Let $R[\Theta ; f]$ be the skew polynomial ring which is a free R-module $\oplus_{i=0}^{\infty} R \Theta^{i}$ with multiplication $\Theta r=r^{p} \Theta$ for all $r \in R$. As in [K1, \mathcal{C} shall denote the category $R[\Theta ; f]$-modules which are Artinian as R-modules. For any two such modules M, N, we denote the morphisms between them in \mathcal{C} with $\operatorname{Hom}_{R[\Theta ; f]}(M, N)$; thus an element $g \in \operatorname{Hom}_{R[\Theta ; f]}(M, N)$ is an R-linear map such that $g(\Theta a)=\Theta g(a)$ for all $a \in M$. The first main result of this paper (Theorem 3.3) shows that under some conditions on $N, \operatorname{Hom}_{R[\Theta ; f]}(M, N)$ is a finite set.

An F-module (cf. the seminal paper L for an introduction to F-modules and their properties) over the ring R is an R-module \mathcal{M} together with an R-module isomorphism $\theta_{\mathcal{M}}: \mathcal{M} \rightarrow F(\mathcal{M})$. This isomorphism $\theta_{\mathcal{M}}$ is the structure morphism of \mathcal{M}.

A morphism of F-modules $\mathcal{M} \rightarrow \mathcal{N}$ is an R-linear map g which makes the following diagram commute

where $\theta_{\mathcal{M}}$ and $\theta_{\mathcal{N}}$ are the structure isomorphisms of \mathcal{M} and \mathcal{N}, respectively. We denote $\operatorname{Hom}_{\mathcal{F}}(\mathcal{M}, \mathcal{N})$ the R-module of all morphism of F-modules $\mathcal{M} \rightarrow \mathcal{N}$

[^0]Given any finitely generated R-module M and R-linear map $\beta: M \rightarrow F(M)$ one can obtain an R-module

$$
\mathcal{M}=\underset{\longrightarrow}{\lim }\left(M \xrightarrow{\beta} F(M) \xrightarrow{F(\beta)} F^{2}(M) \xrightarrow{F^{2}(\beta)} \ldots\right) .
$$

Since

$$
F(\mathcal{M})=\underset{\longrightarrow}{\lim }\left(F(M) \xrightarrow{F(\beta)} F^{2}(M) \xrightarrow{F^{2}(\beta)} F^{3}(M) \xrightarrow{F^{3}(\beta)} \ldots\right)=\mathcal{M}
$$

we obtain an isomorphism $\mathcal{M} \cong F(\mathcal{M})$, and hence \mathcal{M} is an F-module. Any F-module which can be constructed as a direct limit as \mathcal{M} above is called an F-finite F-module with generating morphism β.

There is a close connection between $R[\Theta ; f]$-modules and F-finite F-modules given by Lyubeznik's Functor from \mathcal{C} to the category of F-finite F-modules which is defined as follows (see section 4 in L for the details of the construction.) Given an $R[\Theta ; f]$-module M one defines the R-linear map $\alpha: F(M) \rightarrow M$ by $\alpha(r \Theta \otimes m)=r \Theta m$; an application of Matlis duality then yields an R-linear map $\alpha^{\vee}: M^{\vee} \rightarrow F(M)^{\vee} \cong F\left(M^{\vee}\right)$ and one defines

$$
\mathcal{H}(M)=\underset{\longrightarrow}{\lim }\left(M^{\vee} \xrightarrow{\alpha^{\vee}} F\left(M^{\vee}\right) \xrightarrow{F\left(\alpha^{\vee}\right)} F^{2}\left(M^{\vee}\right) \xrightarrow{F^{2}\left(\alpha^{\vee}\right)} \ldots\right) .
$$

Since M is an Artinian R-module, M^{\vee} is finitely generated and $\mathcal{H}(M)$ is an F-finite F module with generating morphism $M^{\vee} \xrightarrow{\alpha^{\vee}} F\left(M^{\vee}\right)$. This construction is functorial and results in an exact covariant functor from \mathcal{C} to the category of F-finite F-modules.

The main result in $[\mathrm{H}$ is the surprising fact that for F-finite F-modules \mathcal{N} and \mathcal{N}, $\operatorname{Hom}_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$ is a finite set. In section 3 of this paper we exploit this fact to prove the second main result in this paper (Theorem 3.4) to show the following. Let $\gamma: M \rightarrow F(M)$ and $\beta: N \rightarrow F(N)$ be generating morphisms for \mathcal{N} and \mathcal{M}. Given an R-linear map g which makes the following diagram commute,

one can extend that diagram to

and obtain a map between the direct limits of the horizontal sequences, i.e., an element in $\operatorname{Hom}_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$. We prove that all elements in $\operatorname{Hom}_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$ arise in this way (cf. Theorem (3.4), thus morphisms of F-finite F-modules have a particularly simple form. This answers a question implicit in [L, Remark 1.10(b)].

Finally, in section4 we consider the module $\operatorname{Hom}_{R}\left(F_{*} R^{n}, R^{n}\right)$ of near-splittings of $F_{*} R^{n}$. We establish a correspondence between these near-splittings and Frobenius actions on E^{n} which enables us to prove the third main result in this paper (Theorem 4.5) which asserts that given a near-splitting ϕ corresponding to a injective Frobenius actions, there are finitely many $F_{*} R$-submodules $V \subseteq F_{*} R^{n}$ such that $\phi(V) \subseteq V$. This generalizes a similar result in BB to the case where R is not F-finite.

Our study of Frobenius near-splittings is based on the study of its dual notion, i.e., Frobenius maps on the injective hull $E=E_{R}(R / m)$ of the residue field of R. This injective hull is given explicitly as the module of inverse polynomials $\mathbb{K} \llbracket x_{1}^{-}, \ldots, x_{d}^{-} \rrbracket$ where x_{1}, \ldots, x_{d} are minimal generators of the maximal ideal of R (cf. [BS, §12.4].) Thus E has a natural $R[T ; f]$-module structure extending $T \lambda x_{1}^{-\alpha_{1}} \ldots x_{1}^{-\alpha_{d}}=\lambda^{p} x_{1}^{-p \alpha_{1}} \ldots x_{1}^{-p \alpha_{d}}$ for $\lambda \in \mathbb{K}$ and $\alpha_{1}, \ldots, \alpha_{d}>0$. We can further extend this to a natural $R[T ; f]$-module structure on E^{n} given by

$$
T\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
T a_{1} \\
\vdots \\
T a_{n}
\end{array}\right)
$$

The results of section 4 will follow from the fact that there is a dual correspondence between Frobenius near-splittings and sets of $R[\Theta ; f]$-module structures on E^{n}.

2. Frobenius maps of Artinian modules and their stable submodules

Given an Artinian R-module M we can embed M in E^{α} for some $\alpha \geq 0$ and extend this inclusion to an exact sequence

$$
0 \rightarrow M \rightarrow E^{\alpha} \xrightarrow{A^{t}} E^{\beta} \rightarrow \ldots
$$

where $A^{t} \in \operatorname{Hom}_{R}\left(E_{R}^{\alpha}, E_{R}^{\beta}\right) \cong \operatorname{Hom}_{R}\left(R^{\alpha}, R^{\beta}\right)$ is a $\beta \times \alpha$ matrix with entries in R. Henceforth in this section we will describe certain properties of Artinian R-modules in terms of their representations as kernels of matrices with entries in R. We shall denote $\mathbf{M}_{\alpha, \beta}$ the set of $\alpha \times \beta$ matrices with entries in R.

In this section and the next we will need the following constructions. Following K1] we shall denote the category of Artinian $R[\Theta ; f]$-modules \mathcal{C}. We denote \mathcal{D} the category of R-linear maps $M \rightarrow F_{R}(M)$ where M is a finitely generated R-module, $F_{R}(-)$ denotes the Frobenius functor, and where a morphism between $M \xrightarrow{a} F_{R}(M)$ and $N \xrightarrow{b} F_{R}(N)$ is a commutative diagram of R-linear maps

Section 3 of K1] constructs a pair of functors $\Delta: \mathcal{C} \rightarrow \mathcal{D}$ and $\Psi: \mathcal{D} \rightarrow \mathcal{C}$ with the property that for all $A \in \mathcal{C}$, the $R[\Theta ; f]$-module $\Psi \circ \Delta(A)$ is canonically isomorphic to A and for all $D=\left(B \xrightarrow{u} F_{R}(B)\right) \in \mathcal{D}, \Delta \circ \Psi(D)$ is canonically isomorphic to D. The functor Δ amounts
to the "first step" in the construction of Lyubeznik's functor \mathcal{H} : for $A \in \mathcal{C}$ we define the R-linear map $\alpha: F(A) \rightarrow A$ to be the one given by $\alpha(r \Theta \otimes a)=r \Theta a$ and we let $\Delta(A)$ to be the map $\alpha^{\vee}: A^{\vee} \rightarrow F(A)^{\vee} \cong F\left(A^{\vee}\right)$ (cf. section 3 in [K1] for the details of the construction.)

Proposition 2.1. Let $M=\operatorname{ker} A^{t} \subseteq E^{\alpha}$ be an Artinian R-module where $A \in \mathbf{M}_{\alpha, \beta}$. Let $\mathbf{B}=\left\{B \in \mathbf{M}_{\alpha, \alpha} \mid \operatorname{Im} B A \subseteq \operatorname{Im} A^{[p]}\right\}$. For any $R[\Theta ; f]$-module structure on $M, \Delta(M)$ can be identified with an element in $\operatorname{Hom}_{R}\left(\operatorname{Coker} A\right.$, Coker $\left.A^{[p]}\right)$ and thus represented by multiplication by some $B \in \mathbf{B}$. Conversely, any such B defines an $R[\Theta ; f]$-module structure on M which is given by the restriction to M of the Frobenius map $\phi: E^{\alpha} \rightarrow E^{\alpha}$ defined by $\phi(v)=B^{t} T(v)$ where T is the natural Frobenius map on E^{α}.

Proof. Matlis duality gives an exact sequence $R^{\beta} \xrightarrow{A} R^{\alpha} \rightarrow M^{\vee} \rightarrow 0$ hence

$$
\Delta(M) \in \operatorname{Hom}_{R}\left(M^{\vee}, F_{R}\left(M^{\vee}\right)\right) \cong \operatorname{Hom}_{R}\left(\text { Coker } A, \operatorname{Coker} A^{[p]}\right)
$$

Let $\Delta(M)$ be the map $\phi:$ Coker $A \rightarrow$ Coker $A^{[p]}$.
In view of Theorem 3.1 in K1] we only need to show that any such R-linear map is given by multiplication by an $B \in \mathbf{B}$, and that any such B defines an element in $\Delta(M)$.

We can find a map ϕ^{\prime} which makes the following diagram

commute, where q_{1} and q_{2} are quotient maps. The map ϕ^{\prime} is given by multiplication by some $\alpha \times \alpha$ matrix $B \in \mathbf{B}$. Conversely, any such matrix B defines a map ϕ making the diagram above commute, and $\Psi(\phi)$ gives a $R[\Theta ; f]$-module structure on M as described in the last part of the theorem.

Notation 2.2. We shall henceforth describe Artinian R-modules with a given $R[\Theta ; f]$ module structure in terms of the two matrices in the statement of Proposition 2.1 and talk about Artinian R-modules $M=\operatorname{Ker} A^{t} \subseteq E^{\alpha}$ where $A \in \mathbf{M}_{\alpha \beta}$ with $R[\Theta ; f]$-module structure given by $B \in \mathbf{M}_{\alpha \alpha}$.

3. Morphisms in \mathcal{C}

In this section we raise two questions. The first of these asks when for given $R[\Theta ; f]$ modules M, N, the set $\operatorname{Hom}_{R[\Theta ; f]}(M, N)$ is finite; later in this section we prove that this holds when N has no Θ-torsion. The following two examples illustrate why this set is not finite in general, and why it is finite in a special simple case.

Example 3.1. Let \mathbb{K} be an infinite field of prime characteristic p and let $R=\mathbb{K} \llbracket x \rrbracket$. Let $M=\operatorname{ann}_{E} x R$ and fix an $R[\Theta ; f]$-module structure on M given by $\Theta a=x^{p} T a$ where T is the standard Frobenius action on E. Note that $\Theta M=0$ and that for all $\lambda \in \mathbb{K}$ the map
$\mu_{\lambda}: M \rightarrow M$ given by multiplication by λ is in $\operatorname{Hom}_{R[\Theta ; f]}(M, M)$, and hence this set is infinite.

Example 3.2. Let $I, J \subseteq R$ be ideals, and fix $u \in\left(I^{[p]}: I\right)$ and $v \in\left(J^{[p]}: J\right)$. Endow $\operatorname{ann}_{E} I$ and $\operatorname{ann}_{E} J$ with $R[\Theta ; f]$-module structures given by $\Theta a=u T a$ and $\Theta b=v T b$ for $a \in \operatorname{ann}_{E} I$ and $b \in \operatorname{ann}_{E} J$ where T is the standard Frobenius map on E.

If $g: \operatorname{ann}_{E} I \rightarrow \operatorname{ann}_{E} J$ is R-linear, an application of Matlis duality yields $g^{\vee}: R / J \rightarrow$ R / I and we deduce that g is given by multiplication by an element in $w \in(I: J)$. If in addition $g \in \operatorname{Hom}_{R[\Theta ; f]}\left(\operatorname{ann}_{E} I, \operatorname{ann}_{E} J\right)$, we must have $w u T a=g(\Theta a)=\Theta g(a)=v T w a=$ $v w^{p} T a$, for all $a \in \operatorname{ann}_{E} I$, hence $\left(v w^{p}-u w\right) T \operatorname{ann}_{E} I=0$ and $v w^{p}-u w \in I^{[p]}$. The finiteness of $\operatorname{Hom}_{R[\Theta ; f]}\left(\operatorname{ann}_{E} I, \operatorname{ann}_{E} J\right)$ translates in this setting to the finiteness of the set of solutions for the variable w of the equation above, and it is not clear why this set should be finite. However, if we simplify to the case where $I=0$, the set of solutions of $v w^{p}-u w=0$ over the the fraction field of R has at most p elements, and in this case we can deduce that $\operatorname{Hom}_{R[\Theta ; f]}\left(E, \operatorname{ann}_{E} J\right)$ has at most p elements.

As in L , for any $R[\Theta ; f]$-module M we define the submodule of nilpotent elements to be $\operatorname{Nil}(M)=\left\{a \in M \mid \Theta^{e} a=0\right.$ for some $\left.e \geq 0\right\}$. We recall that when M is an Artinian R-module there exists an $\eta \geq 0$ such that $\Theta^{\eta} M=0$ (cf. HS, Proposition 1.11] and [L, Proposition 4.4].) We also define $M_{\mathrm{red}}=M / \operatorname{Nil}(M)$ and $M^{*}=\cap_{e \geq 0} R \Theta^{e} M$ where $R \Theta^{e} M$ denotes the R-module generated by $\left\{\Theta^{e} a \mid a \in M\right\}$. We also note that when M is an $R[\Theta ; f]-$ module which is Artinian as an R-module, there exists an $e \geq 0$ such that $M^{*}=R \Theta^{e} M$ and also $\left(M_{\mathrm{red}}\right)^{*}=\left(M^{*}\right)_{\text {red }}(\mathrm{cf}$. section 4 in K2].)

Theorem 3.3. Let M, N be $R[\Theta ; f]$-modules and let $\phi \in \operatorname{Hom}_{R[\Theta ; f]}(M, N)$. We have $\mathcal{H}(\operatorname{Im} \phi)=0$ if and only if $\phi(M) \subseteq \operatorname{Nil}(N)$ and, consequently, if $\operatorname{Nil}(N)=0$, the map $\mathcal{H}: \operatorname{Hom}_{R[\Theta ; f]}(M, N) \rightarrow \operatorname{Hom}_{\mathcal{F}_{R}}(\mathcal{H}(N), \mathcal{H}(M))$ is an injection and $\operatorname{Hom}_{R[\Theta ; f]}(M, N)$ is a finite set.

Proof. We apply \mathcal{H} to the commutative diagram

to obtain the commutative diagram

Now $\mathcal{H}(\phi)=0$ if and only if $\mathcal{H}(\operatorname{Im} \phi)=0$, and by [L, Theorem 4.2] this is equivalent to $(\operatorname{Im} \phi)_{\text {red }}^{*}=0$.

Choose $\eta \geq 0$ such that $\Theta^{\eta} \operatorname{Nil}(N)=0$ and choose $e \geq 0$ such that $(\operatorname{Im} \phi)^{*}=R \Theta^{e} \operatorname{Im} \phi$.

Now

$$
\begin{aligned}
(\operatorname{Im} \phi)_{\text {red }}^{*}=0 & \Leftrightarrow R \Theta^{\eta} R \Theta^{e} \phi(M)=0 \\
& \Leftrightarrow R \Theta^{\eta+e} \phi(M)=0 \\
& \Leftrightarrow \operatorname{Im} \phi \subseteq \operatorname{Nil}(N)
\end{aligned}
$$

The second statement now follows immediately.
The second main result in this section, Theorem 3.4 shows that all morphisms of F-finite F-modules arise as images of maps of $R[\Theta ; f]$-modules under Lyubeznik's functor \mathcal{H}.

Theorem 3.4. Let \mathcal{M} and \mathcal{N} be F-finite F-modules. For every $\phi \in \operatorname{Hom}_{\mathcal{F}_{R}}(\mathcal{N}, \mathcal{M})$ there exist generating morphisms $\gamma: M \rightarrow F(M) \in \mathcal{D}$ and $\beta: N \rightarrow F(N) \in \mathcal{D}$ for \mathcal{M} and \mathcal{N}, respectively, and a morphism (in the category \mathcal{D})

such that $\phi=\mathcal{H}(\Psi(g))$.
Proof. Choose any generating morphisms

$$
\mathcal{N}=\underset{\longrightarrow}{\lim }\left(N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^{2}(N) \xrightarrow{F^{2}(\beta)} \ldots\right)
$$

and

$$
\mathcal{M}=\underset{\longrightarrow}{\lim }\left(M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^{2}(M) \xrightarrow{F^{2}(\gamma)} \ldots\right)
$$

and fix any $\phi \in \operatorname{Hom}_{\mathcal{F}_{R}}(\mathcal{N}, \mathcal{M})$.
For all $j \geq 0$ let ϕ_{j} be the restriction of ϕ to the image of $F^{j}(N)$ in \mathcal{N}.
The fact that ϕ is a morphism of F-modules implies that for every $j \geq 0$ we have a commutative diagram

where $\theta_{\mathcal{M}}$ and $\theta_{\mathcal{N}}$ are the structure isomorphims of \mathcal{M} and \mathcal{N}, respectively, and where the compositions of the vertical maps are ϕ_{j} and $F\left(\phi_{j}\right)$. Repeated applications of the Frobenius
functor yields a commutative diagram

and we can now extend this commutative diagram to the left to obtain

This commutative diagram defines a R-linear map $\psi_{j}: \mathcal{N} \rightarrow \mathcal{M}$. Furthermore, we show next that this ψ_{j} is a map of \mathcal{F}-modules, i.e., that for all $j \geq 0, F\left(\psi_{j}\right) \circ \theta_{\mathcal{N}}=\theta_{\mathcal{M}} \circ \psi_{j}$. Fix $j \geq 0$ and abbreviate $\psi=\psi_{j}$.

Pick any $a \in \mathcal{N}$ represented as an element of $F^{e}(N)$. If $e<j$ then the fact that ϕ is a morphism of F-modules. implies that

$$
\theta_{\mathcal{M}} \circ \psi(a)=\theta_{\mathcal{M}} \circ \phi(a)=F(\phi) \circ \theta_{\mathcal{N}}(a)=F(\psi) \circ \theta_{\mathcal{N}}(a) .
$$

Assume now that $e \geq j$; we have

$$
\begin{aligned}
\theta_{\mathcal{M}} \circ \psi(a) & =\theta_{\mathcal{M}} \circ \theta_{\mathcal{M}}^{-1} \circ F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\phi_{j}\right)(a) \\
& =F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\phi_{j}\right)(a)
\end{aligned}
$$

and

$$
\begin{aligned}
F(\psi) \circ \theta_{\mathcal{N}}(a) & =F\left(\theta_{\mathcal{M}}^{-1} \circ F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\phi_{j}\right)\right)\left(F^{e}(\beta)(a)\right) \\
& =F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e+1-j}\left(\phi_{j}\right)\left(F^{e}(\beta)(a)\right) \\
& =F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\theta_{\mathcal{M}}\right) \circ F^{e-j}\left(\phi_{j}\right)(a) \\
& =F\left(\theta_{\mathcal{M}}^{-1}\right) \circ \cdots \circ F^{e-1-j}\left(\theta_{\mathcal{M}}^{-1}\right) \circ F^{e-j}\left(\phi_{j}\right)(a)
\end{aligned}
$$

where the penultimate inequality follows from the fact that ϕ is a morphism of F-modules.
Consider now the set $\left\{\psi_{i}\right\}_{i \geq 0}$; it is a finite set according to Theorem 5.1 in [H], hence we can find a sequence $0 \leq i_{1}<i_{2}<\ldots$ such that $\psi_{i_{1}}=\psi_{i_{2}}=\ldots$ By replacing \mathcal{N} and \mathcal{M} with $F^{i_{1}}(\mathcal{N})$ and $F^{i_{1}}(\mathcal{M})$ we may assume that $i_{1}=0$.

Pick $j \geq 0$ so that $\phi(N) \subseteq F^{j}(M)$. Since $\mathcal{M} \cong F^{j}(\mathcal{M})$ we may replace \mathcal{M} with $F^{j}(\mathcal{M})$ and assume that $\phi(N) \subseteq M$ and hence also that for all $e \geq 0, F^{e}(\phi)\left(F^{e}(N)\right) \subseteq F^{e}(M)$.

Fix now any $e \geq 0$ and pick any $i_{k}>e$; the fact that $\psi_{0}=\psi_{i_{k}}$ implies that for all $a \in F^{e}(N), F^{e}\left(\phi_{0}\right)(a)=\psi_{0}(a)=\psi_{i_{k}}(a)=\phi(a)$ and since this holds for all $e \geq 0$ we deduce that ϕ is induced from the commutative diagram

An application of the functor Ψ to the leftmost square in the commutative diagram above yields a morphism of $R[\Theta ; f]$-modules $g: M \rightarrow N$ and $\phi=\mathcal{H}(g)$.

4. Applications to Frobenius splittings

For any R-module M let $F_{*} M$ denote the additive Abelian group M with R-module structure given by $r \cdot a=r^{p} a$ for all $r \in R$ and $a \in M$. In this section we study the module $\operatorname{Hom}_{R}\left(F_{*} R^{n}, R^{n}\right)$ of near-splittings of $F_{*} R^{n}$. Given such an element $\phi \in \operatorname{Hom}_{R}\left(F_{*} R^{n}, R^{n}\right)$ we will describe the submodules $V \subseteq F_{*} R^{n}$ for which $\phi(V) \subseteq V$. These submodules in the case $n=1$, known as ϕ-compatible ideals, are of significant importance in algebraic geometry (cf. BK] for a study of applications of Frobenius splittings and their compatible submodules in algebraic geometry.) We will prove that under some circumstances these form a finite set and thus generalize a result in $\overline{\mathrm{BB}}$ obtained in the F-finite case.

We first exhibit the following easy implication of Matlis duality necessary for the results of this section.

Lemma 4.1. For any (not necessarily finitely generated) R-module M, $\operatorname{Hom}_{R}(M, R) \cong$ $\operatorname{Hom}_{R}\left(R^{\vee}, M^{\vee}\right)$.

Proof. For all $a \in E$ let $h_{a} \in \operatorname{Hom}_{R}(R, E)$ denote the map sending 1 to a.
For any $\phi \in \operatorname{Hom}_{R}(M, R), \phi^{\vee} \in \operatorname{Hom}_{R}\left(R^{\vee}, M^{\vee}\right)$ is defined as $\left(\phi^{\vee}\left(h_{a}\right)\right)(m)=\phi(m) a$ for any $m \in M$ and $a \in E$. For any $\psi \in \operatorname{Hom}_{R}\left(R^{\vee}, M^{\vee}\right)$ we define $\widetilde{\psi} \in \operatorname{Hom}_{R}(M, R) \cong$ $\operatorname{Hom}_{R}\left(M, E^{\vee}\right)$ as $(\widetilde{\psi}(m))(a)=\left(\psi\left(h_{a}\right)\right)(m)$ for all $a \in E$ and $m \in M$. Note that the function $\psi \mapsto \widetilde{\psi}$ is R-linear.

It is now enough to show that for all $\phi \in \operatorname{Hom}_{R}(M, R), \widetilde{\phi^{\vee}}=\phi$, and indeed for all $a \in E$ and $m \in M$

$$
\left(\widetilde{\phi^{\vee}}(m)\right)(a)=\left(\phi^{\vee}\left(h_{a}\right)\right)(m)=\phi(m) a
$$

i.e., $\left(\widetilde{\phi^{\vee}}(m)\right) \in \operatorname{Hom}_{R}(E, E)$ is given by multiplication by $\phi(m)$ and so under the identification of $\operatorname{Hom}_{R}(E, E)$ with $R, \widetilde{\phi^{\vee}}$ is identified with ϕ.

We can now prove a generalization Lemma 1.6 in $[\mathrm{F}]$ in the form of the next two theorems.
Theorem 4.2. (a) The $F_{*} R$-module $\operatorname{Hom}_{R}\left(F_{*} R, E\right)$ is injective of the form $\oplus_{\gamma \in \Gamma} F_{*} E \oplus$ H where Γ is non-empty, $H=\bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)$, Λ is a (possibly empty) set, P_{λ}
is a non-maximal prime ideal of R for all $\lambda \in \Lambda$ and $E\left(R / P_{\lambda}\right)$ denotes the injective hull of R / P_{λ}.
(b) Write $\mathcal{B}=\operatorname{Hom}_{F_{*} R}\left(E, \oplus_{\gamma \in \Gamma} F_{*} E\right) \subseteq \prod_{\gamma \in \Gamma} \operatorname{Hom}_{F_{*} R}\left(E, F_{*} E\right)$. We have

$$
\operatorname{Hom}_{R}\left(F_{*} R, R\right) \cong \mathcal{B} \subseteq \prod_{\gamma \in \Gamma} \operatorname{Hom}_{F_{*} R}\left(E, F_{*} E\right) \cong \prod_{\gamma \in \Gamma} F_{*} R T
$$

where T is the standard Frobenius map on E.
(c) The set Γ is finite if and only if $F_{*} \mathbb{K}$ is a finite extension of \mathbb{K}, in which case $\# \Gamma=1$.

Proof. The functors $\operatorname{Hom}_{R}(-, E)=\operatorname{Hom}_{R}\left(-\otimes_{F_{*} R} F_{*} R, E\right)$ and $\operatorname{Hom}_{F_{*} R}\left(-, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)$ from the category of $F_{*} R$-modules to itself are isomorphic by the adjointness of Hom and \otimes, and since $\operatorname{Hom}_{R}(-, E)$ is an exact functor, so is $\operatorname{Hom}_{F_{*} R}\left(-, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)$, thus $\operatorname{Hom}_{R}\left(F_{*} R, E\right)$ is an injective $F_{*} R$-module and hence of the form $G \oplus H$ where G is a direct sum of copies of $F_{*} E$ and H is as in the statement of the Theorem. Write $G=\oplus_{\gamma \in \Gamma} F_{*} E$. To finish establishing (a) we need only verify that $\Gamma \neq \emptyset$ and we do this below.

Pick any $h \in \operatorname{Hom}_{R}\left(E, \bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)\right)$. For any $a \in E, h(a)$ can be written as a finite $\operatorname{sum} b_{\lambda_{1}}+\cdots+b_{\lambda_{s}}$ where $\lambda_{1}, \ldots, \lambda_{s} \in \Lambda$ and $b_{\lambda_{1}} \in F_{*} E\left(R / P_{\lambda_{1}}\right), \ldots, b_{\lambda_{s}} \in F_{*} E\left(R / P_{\lambda_{s}}\right)$. Use prime avoidance to pick a $z \in m \backslash \cup_{i=1}^{s} P_{\lambda_{i}}$; now z and its powers act invertibly on each of $F_{*} E\left(R / P_{\lambda_{1}}\right), \ldots, F_{*} E\left(R / P_{\lambda_{s}}\right)$ while a power of z kills a, and so we must have $h(a)=0$. We deduce that $\operatorname{Hom}_{R}\left(E, \bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)\right)=0$ and

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(E, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right) & \cong \operatorname{Hom}_{R}\left(E, G \oplus \bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)\right) \\
& \cong \operatorname{Hom}_{R}(E, G) \oplus \operatorname{Hom}_{R}\left(E, \bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)\right) \\
& \cong \operatorname{Hom}_{R}(E, G) \\
& \cong \operatorname{Hom}_{R}\left(E, \oplus \gamma \in \Gamma F_{*} E\right) \\
& =\mathcal{B} .
\end{aligned}
$$

Now $\operatorname{Hom}_{R}\left(E, F_{*} E\right)$ is the R-module of Frobenius maps on E which is isomorphic as an $F_{*} R$ module to $F_{*} R T$ and we conclude that $\operatorname{Hom}_{R}\left(E, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right) \subseteq \prod_{\gamma \in \Gamma} F_{*} R T$.

An application of the Matlis dual and Lemma 4.1 now gives

$$
\operatorname{Hom}_{R}\left(F_{*} R, R\right) \cong \operatorname{Hom}_{R}\left(E, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)
$$

and (b) follows.
Write $\mathbb{K}=R / m$ and note that $F_{*} \mathbb{K}$ is the field extension of \mathbb{K} obtained by adding all p th roots of elements in \mathbb{K}. We next compute the cardinality of Γ as the $F_{*} \mathbb{K}$-dimension of $\operatorname{Hom}_{F_{*} \mathbb{K}}\left(F_{*} \mathbb{K}, G\right)$. A similar argument to the one above shows that

$$
\operatorname{Hom}_{F_{*} \mathbb{K}}\left(F_{*} \mathbb{K}, \bigoplus_{\lambda \in \Lambda} F_{*} E\left(R / P_{\lambda}\right)\right)=0
$$

hence $\operatorname{Hom}_{F_{*} \mathbb{K}}\left(F_{*} \mathbb{K}, G\right)=\operatorname{Hom}_{F_{*} \mathbb{K}}\left(F_{*} \mathbb{K}, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)$.
We may identify $\operatorname{Hom}_{F_{*} \mathbb{K}}\left(F_{*} \mathbb{K}, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)$ and $\operatorname{Hom}_{F_{*} R}\left(F_{*} \mathbb{K}, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right)$. Another application of the adjointness of Hom and \otimes gives

$$
\operatorname{Hom}_{F_{*} R}\left(F_{*} \mathbb{K}, \operatorname{Hom}_{R}\left(F_{*} R, E\right)\right) \cong \operatorname{Hom}_{R}\left(F_{*} \mathbb{K} \otimes_{F_{*} R} F_{*} R, E\right) \cong \operatorname{Hom}_{R}\left(F_{*} \mathbb{K}, E\right)
$$

Since $m F_{*} \mathbb{K}=0$, we see that the image of any $\phi \in \operatorname{Hom}_{R}\left(F_{*} \mathbb{K}, E\right)$ is contained in $\operatorname{ann}_{E} m \cong \mathbb{K}$ and we deduce that $\operatorname{Hom}_{R}\left(F_{*} \mathbb{K}, E\right) \cong \operatorname{Hom}_{R}\left(F_{*} \mathbb{K}, \mathbb{K}\right)$. We can now conclude that the cardinality of Γ is the $F_{*} \mathbb{K}$-dimension of $\operatorname{Hom}_{R}\left(F_{*} \mathbb{K}, \mathbb{K}\right)$. In particular Γ cannot be empty and (a) follows.

If \mathcal{U} is a \mathbb{K}-basis for $F_{*} \mathbb{K}$ containing $1 \in F_{*} \mathbb{K}$,

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{K}}\left(F_{*} \mathbb{K}, \mathbb{K}\right) \cong \prod_{b \in \mathcal{U}} \operatorname{Hom}_{\mathbb{K}}(\mathbb{K} b, \mathbb{K}) \tag{1}
\end{equation*}
$$

and when \mathcal{U} is finite, this is a one-dimensional $F_{*} \mathbb{K}$-vector space spanned by the projection onto $\mathbb{K} 1 \subset F_{*} \mathbb{K}$. If \mathcal{U} is not finite, the dimension as \mathbb{K}-vector space of (1) is at least $2^{\# u}$ hence $\operatorname{Hom}_{\mathbb{K}}\left(F_{*} \mathbb{K}, \mathbb{K}\right)$ cannot be a finite-dimensional $F_{*} \mathbb{K}$-vector space.

Theorem 4.3. Let $G=\oplus_{\gamma \in \Gamma} F_{*} E$ and \mathcal{B} be as in Theorem 4.2. Let $B \in \operatorname{Hom}_{R}\left(F_{*} R^{n}, R^{n}\right)$ be represented by $\left(B_{\gamma} T\right)_{\gamma \in \Gamma} \in \mathcal{B}$. For all $\gamma \in \Gamma$ consider E^{n} as an $R\left[\Theta_{\gamma} ; f\right]$-module with $\Theta_{\gamma} v=B_{\gamma}^{t} T v$ for all $v \in E^{n}$. Let V be an R-submodule of R^{n} and fix a matrix A whose columns generate V. If $B\left(F_{*} V\right) \subseteq V$, then $\operatorname{ann}_{E^{n}} A^{t}$ is a $R\left[\Theta_{\gamma} ; f\right]$ submodule of E^{n} for all $\gamma \in \Gamma$.

Proof. Apply the Matlis dual to the commutative diagram

where the rightmost vertical map is induced by the middle map to obtain

Note that $B^{\vee} \in \operatorname{Hom}_{R}\left(E^{n}, \oplus_{\gamma \in \Gamma} E^{n}\right)$ is given by $\left(B_{\gamma}^{t}\right)_{\gamma \in \Gamma}$.
Using the presentation $F_{*} R^{m} \xrightarrow{F_{*} A} F_{*} R^{n} \rightarrow F_{*} R^{n} / \operatorname{Im} F_{*} A \rightarrow 0$ we obtain the exact sequence

$$
0 \rightarrow\left(F_{*} R^{n} / F_{*} A\right)^{\vee} \rightarrow \operatorname{Hom}_{R}\left(F_{*} R^{n}, E\right) \xrightarrow{F_{*} A^{t}} \operatorname{Hom}_{R}\left(F_{*} R^{m}, E\right)
$$

thus

$$
\left(F_{*} R^{n} / F_{*} A\right)^{\vee}=\operatorname{ann}_{H o m\left(F_{*} R^{n}, E\right)} F_{*} A^{t}
$$

We obtain the commutative diagram

and we deduce that $\operatorname{ann}_{E^{n}} A^{t}$ is a $R\left[\Theta_{\gamma} ; f\right]$-module for all $\gamma \in \Gamma$.
Theorem 4.4. Let M be an $R[\Theta ; f]$-module with no nilpotents and assume M is an Artinian R-module. Then M has finitely many $R[\Theta ; f]$-submodules. (Cf. Corollary 4.18 in $\overline{\mathrm{BB}}$.)

Proof. Write $\mathcal{M}=\mathcal{H}(M)$. In view of [L] Theorem 4.2], there is an injection between the set of inclusions of $R[\Theta ; f]$-submodules $N \subseteq M$ and the set of surjections of F-finite F-modules $\mathcal{M} \rightarrow \mathcal{N}$ hence it is enough to show that there are finitely many such surjections. By L , Theorem 2.8] the kernels of these surjections are F-finite F-submodules of \mathcal{M} hence it is enough to show that \mathcal{M} has finitely many submodules. Assume this statement is false and choose a counterexample \mathcal{N} with infinitely many submodules.

All objects in the category of F-finite F-modules have finite length (cf. L , Theorem 3.2]) hence we may assume that among all counterexamples \mathcal{M} has minimal length. By [H] Corollary 5.2] the isomorphism class of any simple F-finite F-module is a finite set and the set of simple submodules of \mathcal{M} belong to finitely many of these isomorphism classes, namely those occurring as factors in a composition series for \mathcal{M}. We deduce that there are finitely many simple F-finite F-submodules of \mathcal{N}. Since \mathcal{M} has infinitely many F-finite F-submodules, there must be a simple F-finite F-submodule $\mathcal{P} \subsetneq \mathcal{N}$ contained in infinitely many F-finite F-submodules of \mathcal{M}. The infinite set of images of these in the quotient $\mathcal{M} / \mathcal{P}$ exhibit a counterexample of smaller length.

Corollary 4.5. Let $B \in \operatorname{Hom}_{R}\left(F_{*} R^{n}, R\right)$ be represented by $\left(B_{\gamma}^{t} T\right)_{\gamma \in \Gamma} \in \mathcal{B}$, and assume that $\left(B_{\gamma}^{t} T\right): E \rightarrow \oplus_{\gamma \in \Gamma} E$ is injective. Then there are finitely many B-compatible submodules of $F_{*} R^{n}$.

Proof. For all $\gamma \in \Gamma$ write $Z_{\gamma}=\left\{v \in E^{n} \mid B_{\gamma}^{t} T v\right\}$ and let C_{γ} be a matrix with columns in R^{n} be such that $Z_{\gamma}=\operatorname{ann}_{E^{n}} C_{\gamma}^{t}$. If $\operatorname{Im} C_{\gamma} \subseteq m R^{n}$ for all $\gamma \in \Gamma$, then $\sum_{\gamma \in \Gamma} \operatorname{Im} C_{\gamma}$ is not the whole of R^{n}, and if C is a matrix whose columns generate $\sum_{\gamma \in \Gamma} \operatorname{Im} C_{\gamma}$, for any non-zero $v \in \operatorname{ann}_{E^{n}} C^{t} \neq 0$, we have $\left(B_{\gamma}\right)^{t} T v=0$ for all $\gamma \in \Gamma$. We conclude that there exists a $\gamma \in \Gamma$ such that, $\operatorname{Im} C_{\gamma}=R^{n}$, i.e., that the Frobenius map $B_{\gamma}^{t} T$ on E^{n} has no nilpotents. For this $\gamma \in \Gamma$, Theorem 4.4 shows that E^{n} has finitely many $R[\Theta ; f]$-submodules where the action of Θ is given by $B_{\gamma}^{t} T$.

Let V be an R-submodule of R^{n} and fix a matrix A whose columns generate V. Theorem 4.3 implies that if $F_{*} V \subseteq F_{*} R^{n}$ is B-compatible then $\operatorname{ann}_{E^{n}} A^{t} \subseteq E^{n}$ is an $R[\Theta ; f]-$ submodule of E^{n} with the Frobenius action given by $B_{\gamma}^{t} T$ for all $\gamma \in \Gamma$, and hence there are finitely many such B-compatible submodules.

Acknowledgements

I thank Karl Schwede for our pleasant discussions on Frobenius splittings and in particular for showing me a variant of results in section 4 in the F-finite case.

References

[BB] M. Blickle and G. Böckle. Cartier Modules: finiteness results. Preprint, oai:arXiv.org:0909.2531.
[BK] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation theory. rogress in Mathematics, 231, Birkhuser Boston, Inc., Boston, MA, 2005.
[BS] M. P. Brodmann and R. Y. Sharp. Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
[F] R. Fedder. F-purity and rational singularity. Transactions of the AMS, 278 (1983), no. 2, pp. 461-480.
[HS] R. Hartshorne and R. Speiser. Local cohomological dimension in characteristic p, Ann. of Math. 105 (1977), pp. 45-79.
[H] M. Hochster. Some finiteness properties of Lyubeznik's \mathcal{F}-modules. Algebra, geometry and their interactions, pp. 119-127, Contemporary Mathematics, 448, American Mathematical Society, Providence, RI, 2007.
[K1] M. Katzman. Parameter test ideals of Cohen Macaulay rings. Compositio Mathematica, 144 (2008), pp. 933-948.
[K2] M. Katzman. Frobenius maps on injective hulls and their applications to tight closure. Journal of the LMS, to appear.
[L] G. Lyubeznik. F-modules: applications to local cohomology and D-modules in characteristic $p>0$. J. Reine Angew. Math. 491 (1997), pp. 65-130.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom

E-mail address: M.Katzman@sheffield.ac.uk

[^0]: 1991 Mathematics Subject Classification. Primary 13A35, 13D45, 13P99.

