SOME PROPERTIES AND APPLICATIONS OF F-FINITE F-MODULES

MORDECHAI KATZMAN

1. INTRODUCTION

The purpose of this paper is to describe several applications of finiteness properties of F-finite F-modules recently discovered by M. Hochster in [H] to the study of Frobenius maps on injective hulls, Frobenius near-splittings and to the nature of morphisms of F-finite F-modules.

Throughout this paper (R, m) shall denote a complete regular local ring of prime characteristic p. At the heart of everything in this paper is the Frobenius map $f: R \to R$ given by $f(r) = r^p$ for $r \in R$. We can use this Frobenius map to define a new R-module structure on R given by $r \cdot s = r^p s$; we denote this R-module F_*R . We can then use this to define the Frobenius functor from the category of R-modules to itself: given an R-module M we define F(M) to be $F_*R \otimes_R M$ with R-module structure given by $r(s \otimes m) = rs \otimes m$ for $r, s \in R$ and $m \in M$.

Let $R[\Theta; f]$ be the skew polynomial ring which is a free R-module $\bigoplus_{i=0}^{\infty} R\Theta^i$ with multiplication $\Theta r = r^p \Theta$ for all $r \in R$. As in [K1], \mathcal{C} shall denote the category $R[\Theta; f]$ -modules which are Artinian as R-modules. For any two such modules M, N, we denote the morphisms between them in \mathcal{C} with $\operatorname{Hom}_{R[\Theta; f]}(M, N)$; thus an element $g \in \operatorname{Hom}_{R[\Theta; f]}(M, N)$ is an R-linear map such that $g(\Theta a) = \Theta g(a)$ for all $a \in M$. The first main result of this paper (Theorem 3.3) shows that under some conditions on N, $\operatorname{Hom}_{R[\Theta; f]}(M, N)$ is a finite set.

An *F*-module (cf. the seminal paper [L] for an introduction to *F*-modules and their properties) over the ring *R* is an *R*-module \mathcal{M} together with an *R*-module isomorphism $\theta_{\mathcal{M}} : \mathcal{M} \to F(\mathcal{M})$. This isomorphism $\theta_{\mathcal{M}}$ is the structure morphism of \mathcal{M} .

A morphism of F-modules $\mathcal{M} \to \mathcal{N}$ is an R-linear map g which makes the following diagram commute

$$\begin{array}{c} \mathcal{M} \xrightarrow{g} \mathcal{N} \\ \theta_{\mathcal{M}} \bigvee & & \downarrow \theta_{\mathcal{N}} \\ F(\mathcal{M}) \xrightarrow{F(g)} F(\mathcal{N}) \end{array}$$

where $\theta_{\mathcal{M}}$ and $\theta_{\mathcal{N}}$ are the structure isomorphisms of \mathcal{M} and \mathcal{N} , respectively. We denote $\operatorname{Hom}_{\mathcal{F}}(\mathcal{M},\mathcal{N})$ the *R*-module of all *morphism of F*-modules $\mathcal{M} \to \mathcal{N}$

¹⁹⁹¹ Mathematics Subject Classification. Primary 13A35, 13D45, 13P99.

Given any finitely generated *R*-module *M* and *R*-linear map $\beta : M \to F(M)$ one can obtain an *R*-module

$$\mathcal{M} = \varinjlim \left(M \xrightarrow{\beta} F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} \dots \right)$$

Since

$$F(\mathcal{M}) = \varinjlim \left(F(M) \xrightarrow{F(\beta)} F^2(M) \xrightarrow{F^2(\beta)} F^3(M) \xrightarrow{F^3(\beta)} \dots \right) = \mathcal{M}$$

we obtain an isomorphism $\mathcal{M} \cong F(\mathcal{M})$, and hence \mathcal{M} is an *F*-module. Any *F*-module which can be constructed as a direct limit as \mathcal{M} above is called an *F*-finite *F*-module with generating morphism β .

There is a close connection between $R[\Theta; f]$ -modules and F-finite F-modules given by Lyubeznik's Functor from \mathcal{C} to the category of F-finite F-modules which is defined as follows (see section 4 in [L] for the details of the construction.) Given an $R[\Theta; f]$ -module M one defines the R-linear map $\alpha : F(M) \to M$ by $\alpha(r\Theta \otimes m) = r\Theta m$; an application of Matlis duality then yields an R-linear map $\alpha^{\vee} : M^{\vee} \to F(M)^{\vee} \cong F(M^{\vee})$ and one defines

$$\mathfrak{H}(M) = \varinjlim \left(M^{\vee} \xrightarrow{\alpha^{\vee}} F(M^{\vee}) \xrightarrow{F(\alpha^{\vee})} F^2(M^{\vee}) \xrightarrow{F^2(\alpha^{\vee})} \dots \right).$$

Since M is an Artinian R-module, M^{\vee} is finitely generated and $\mathcal{H}(M)$ is an F-finite Fmodule with generating morphism $M^{\vee} \xrightarrow{\alpha^{\vee}} F(M^{\vee})$. This construction is functorial and results in an exact covariant functor from \mathcal{C} to the category of F-finite F-modules.

The main result in [H] is the surprising fact that for F-finite F-modules \mathcal{M} and \mathcal{N} , Hom_{\mathcal{F}}(\mathcal{N}, \mathcal{M}) is a finite set. In section 3 of this paper we exploit this fact to prove the second main result in this paper (Theorem 3.4) to show the following. Let $\gamma : M \to F(M)$ and $\beta : N \to F(N)$ be generating morphisms for \mathcal{N} and \mathcal{M} . Given an R-linear map g which makes the following diagram commute,

$$N \xrightarrow{\beta} F(N)$$

$$\downarrow^{g} \qquad \qquad \downarrow^{F(g)}$$

$$M \xrightarrow{\gamma} F(M)$$

one can extend that diagram to

$$N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^{2}(N) \xrightarrow{F^{2}(\beta)} \cdots$$

$$\downarrow^{g} \qquad \qquad \downarrow^{F(g)} \qquad \qquad \downarrow^{F(g)}$$

$$M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^{2}(M) \xrightarrow{F^{2}(\gamma)} \cdots$$

and obtain a map between the direct limits of the horizontal sequences, i.e., an element in $\operatorname{Hom}_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$. We prove that all elements in $\operatorname{Hom}_{\mathcal{F}}(\mathcal{N}, \mathcal{M})$ arise in this way (cf. Theorem 3.4), thus morphisms of *F*-finite *F*-modules have a particularly simple form. This answers a question implicit in [L, Remark 1.10(b)].

Finally, in section 4 we consider the module $\operatorname{Hom}_R(F_*R^n, R^n)$ of *near-splittings* of F_*R^n . We establish a correspondence between these near-splittings and Frobenius actions on E^n which enables us to prove the third main result in this paper (Theorem 4.5) which asserts that given a near-splitting ϕ corresponding to a injective Frobenius actions, there are finitely many F_*R -submodules $V \subseteq F_*R^n$ such that $\phi(V) \subseteq V$. This generalizes a similar result in [BB] to the case where R is not F-finite.

Our study of Frobenius near-splittings is based on the study of its dual notion, i.e., Frobenius maps on the injective hull $E = E_R(R/m)$ of the residue field of R. This injective hull is given explicitly as the module of inverse polynomials $\mathbb{K}[\![x_1^-, \ldots, x_d^-]\!]$ where x_1, \ldots, x_d are minimal generators of the maximal ideal of R (cf. [BS, §12.4].) Thus E has a natural R[T; f]-module structure extending $T\lambda x_1^{-\alpha_1} \ldots x_1^{-\alpha_d} = \lambda^p x_1^{-p\alpha_1} \ldots x_1^{-p\alpha_d}$ for $\lambda \in \mathbb{K}$ and $\alpha_1, \ldots, \alpha_d > 0$. We can further extend this to a natural R[T; f]-module structure on E^n given by

$$T\left(\begin{array}{c}a_1\\\vdots\\a_n\end{array}\right) = \left(\begin{array}{c}Ta_1\\\vdots\\Ta_n\end{array}\right).$$

The results of section 4 will follow from the fact that there is a dual correspondence between Frobenius near-splittings and sets of $R[\Theta; f]$ -module structures on E^n .

2. FROBENIUS MAPS OF ARTINIAN MODULES AND THEIR STABLE SUBMODULES

Given an Artinian R-module M we can embed M in E^{α} for some $\alpha \ge 0$ and extend this inclusion to an exact sequence

$$0 \to M \to E^{\alpha} \xrightarrow{A^t} E^{\beta} \to \dots$$

where $A^t \in \operatorname{Hom}_R(E_R^{\alpha}, E_R^{\beta}) \cong \operatorname{Hom}_R(R^{\alpha}, R^{\beta})$ is a $\beta \times \alpha$ matrix with entries in R. Henceforth in this section we will describe certain properties of Artinian R-modules in terms of their representations as kernels of matrices with entries in R. We shall denote $\mathbf{M}_{\alpha,\beta}$ the set of $\alpha \times \beta$ matrices with entries in R.

In this section and the next we will need the following constructions. Following [K1] we shall denote the category of Artinian $R[\Theta; f]$ -modules \mathcal{C} . We denote \mathcal{D} the category of R-linear maps $M \to F_R(M)$ where M is a finitely generated R-module, $F_R(-)$ denotes the Frobenius functor, and where a morphism between $M \xrightarrow{a} F_R(M)$ and $N \xrightarrow{b} F_R(N)$ is a commutative diagram of R-linear maps

$$M \xrightarrow{\mu} N$$

$$\downarrow^{a} \qquad \downarrow^{b}$$

$$F_{R}(M) \xrightarrow{F_{R}(\mu)} F_{R}(N)$$

Section 3 of [K1] constructs a pair of functors $\Delta : \mathcal{C} \to \mathcal{D}$ and $\Psi : \mathcal{D} \to \mathcal{C}$ with the property that for all $A \in \mathcal{C}$, the $R[\Theta; f]$ -module $\Psi \circ \Delta(A)$ is canonically isomorphic to A and for all $D = (B \xrightarrow{u} F_R(B)) \in \mathcal{D}, \Delta \circ \Psi(D)$ is canonically isomorphic to D. The functor Δ amounts to the "first step" in the construction of Lyubeznik's functor \mathcal{H} : for $A \in \mathcal{C}$ we define the *R*-linear map $\alpha : F(A) \to A$ to be the one given by $\alpha(r\Theta \otimes a) = r\Theta a$ and we let $\Delta(A)$ to be the map $\alpha^{\vee} : A^{\vee} \to F(A)^{\vee} \cong F(A^{\vee})$ (cf. section 3 in [K1] for the details of the construction.)

Proposition 2.1. Let $M = \ker A^t \subseteq E^{\alpha}$ be an Artinian R-module where $A \in \mathbf{M}_{\alpha,\beta}$. Let $\mathbf{B} = \{B \in \mathbf{M}_{\alpha,\alpha} \mid \operatorname{Im} BA \subseteq \operatorname{Im} A^{[p]}\}$. For any $R[\Theta; f]$ -module structure on M, $\Delta(M)$ can be identified with an element in $\operatorname{Hom}_R(\operatorname{Coker} A, \operatorname{Coker} A^{[p]})$ and thus represented by multiplication by some $B \in \mathbf{B}$. Conversely, any such B defines an $R[\Theta; f]$ -module structure on M which is given by the restriction to M of the Frobenius map $\phi: E^{\alpha} \to E^{\alpha}$ defined by $\phi(v) = B^t T(v)$ where T is the natural Frobenius map on E^{α} .

Proof. Matlis duality gives an exact sequence $R^{\beta} \xrightarrow{A} R^{\alpha} \to M^{\vee} \to 0$ hence

$$\Delta(M) \in \operatorname{Hom}_R(M^{\vee}, F_R(M^{\vee})) \cong \operatorname{Hom}_R(\operatorname{Coker} A, \operatorname{Coker} A^{[p]}).$$

Let $\Delta(M)$ be the map ϕ : Coker $A \to \operatorname{Coker} A^{[p]}$.

In view of Theorem 3.1 in [K1] we only need to show that any such *R*-linear map is given by multiplication by an $B \in \mathbf{B}$, and that any such *B* defines an element in $\Delta(M)$.

We can find a map ϕ' which makes the following diagram

commute, where q_1 and q_2 are quotient maps. The map ϕ' is given by multiplication by some $\alpha \times \alpha$ matrix $B \in \mathbf{B}$. Conversely, any such matrix B defines a map ϕ making the diagram above commute, and $\Psi(\phi)$ gives a $R[\Theta; f]$ -module structure on M as described in the last part of the theorem.

Notation 2.2. We shall henceforth describe Artinian *R*-modules with a given $R[\Theta; f]$ module structure in terms of the two matrices in the statement of Proposition 2.1 and talk about Artinian *R*-modules $M = \operatorname{Ker} A^t \subseteq E^{\alpha}$ where $A \in \mathbf{M}_{\alpha\beta}$ with $R[\Theta; f]$ -module structure given by $B \in \mathbf{M}_{\alpha\alpha}$.

3. Morphisms in \mathcal{C}

In this section we raise two questions. The first of these asks when for given $R[\Theta; f]$ modules M, N, the set $\operatorname{Hom}_{R[\Theta; f]}(M, N)$ is finite; later in this section we prove that this holds when N has no Θ -torsion. The following two examples illustrate why this set is not finite in general, and why it is finite in a special simple case.

Example 3.1. Let \mathbb{K} be an infinite field of prime characteristic p and let $R = \mathbb{K}[\![x]\!]$. Let $M = \operatorname{ann}_E xR$ and fix an $R[\Theta; f]$ -module structure on M given by $\Theta a = x^p T a$ where T is the standard Frobenius action on E. Note that $\Theta M = 0$ and that for all $\lambda \in \mathbb{K}$ the map

 $\mu_{\lambda} : M \to M$ given by multiplication by λ is in $\operatorname{Hom}_{R[\Theta;f]}(M,M)$, and hence this set is infinite.

Example 3.2. Let $I, J \subseteq R$ be ideals, and fix $u \in (I^{[p]} : I)$ and $v \in (J^{[p]} : J)$. Endow $\operatorname{ann}_E I$ and $\operatorname{ann}_E J$ with $R[\Theta; f]$ -module structures given by $\Theta a = uTa$ and $\Theta b = vTb$ for $a \in \operatorname{ann}_E I$ and $b \in \operatorname{ann}_E J$ where T is the standard Frobenius map on E.

If $g : \operatorname{ann}_E I \to \operatorname{ann}_E J$ is *R*-linear, an application of Matlis duality yields $g^{\vee} : R/J \to R/I$ and we deduce that g is given by multiplication by an element in $w \in (I : J)$. If in addition $g \in \operatorname{Hom}_{R[\Theta;f]}(\operatorname{ann}_E I, \operatorname{ann}_E J)$, we must have $wuTa = g(\Theta a) = \Theta g(a) = vTwa = vw^pTa$, for all $a \in \operatorname{ann}_E I$, hence $(vw^p - uw)T \operatorname{ann}_E I = 0$ and $vw^p - uw \in I^{[p]}$. The finiteness of $\operatorname{Hom}_{R[\Theta;f]}(\operatorname{ann}_E I, \operatorname{ann}_E J)$ translates in this setting to the finiteness of the set of solutions for the variable w of the equation above, and it is not clear why this set should be finite. However, if we simplify to the case where I = 0, the set of solutions of $vw^p - uw = 0$ over the the fraction field of R has at most p elements, and in this case we can deduce that $\operatorname{Hom}_{R[\Theta;f]}(E, \operatorname{ann}_E J)$ has at most p elements.

As in [L], for any $R[\Theta; f]$ -module M we define the submodule of nilpotent elements to be Nil $(M) = \{a \in M \mid \Theta^e a = 0 \text{ for some } e \geq 0\}$. We recall that when M is an Artinian R-module there exists an $\eta \geq 0$ such that $\Theta^{\eta}M = 0$ (cf. [HS, Proposition 1.11] and [L, Proposition 4.4].) We also define $M_{\text{red}} = M/\text{Nil}(M)$ and $M^* = \bigcap_{e\geq 0} R\Theta^e M$ where $R\Theta^e M$ denotes the R-module generated by $\{\Theta^e a \mid a \in M\}$. We also note that when M is an $R[\Theta; f]$ module which is Artinian as an R-module, there exists an $e \geq 0$ such that $M^* = R\Theta^e M$ and also $(M_{\text{red}})^* = (M^*)_{\text{red}}$ (cf. section 4 in [K2].)

Theorem 3.3. Let M, N be $R[\Theta; f]$ -modules and let $\phi \in \operatorname{Hom}_{R[\Theta; f]}(M, N)$. We have $\mathcal{H}(\operatorname{Im} \phi) = 0$ if and only if $\phi(M) \subseteq \operatorname{Nil}(N)$ and, consequently, if $\operatorname{Nil}(N) = 0$, the map $\mathcal{H} : \operatorname{Hom}_{R[\Theta; f]}(M, N) \to \operatorname{Hom}_{\mathcal{F}_R}(\mathcal{H}(N), \mathcal{H}(M))$ is an injection and $\operatorname{Hom}_{R[\Theta; f]}(M, N)$ is a finite set.

Proof. We apply \mathcal{H} to the commutative diagram

$$\begin{array}{c}
M \\
\phi \\
\downarrow \\
Im \phi \\
\downarrow \\
M \\
N
\end{array}$$

to obtain the commutative diagram

Now $\mathcal{H}(\phi) = 0$ if and only if $\mathcal{H}(\operatorname{Im} \phi) = 0$, and by [L, Theorem 4.2] this is equivalent to $(\operatorname{Im} \phi)_{\mathrm{red}}^* = 0$.

Choose $\eta \ge 0$ such that $\Theta^{\eta} \operatorname{Nil}(N) = 0$ and choose $e \ge 0$ such that $(\operatorname{Im} \phi)^* = R\Theta^e \operatorname{Im} \phi$.

Now

$$\begin{split} (\mathrm{Im}\,\phi)^*_{\mathrm{red}} &= 0 &\Leftrightarrow \quad R\Theta^{\eta}R\Theta^e\phi(M) = 0 \\ &\Leftrightarrow \quad R\Theta^{\eta+e}\phi(M) = 0 \\ &\Leftrightarrow \quad \mathrm{Im}\,\phi \subseteq \mathrm{Nil}(N) \end{split}$$

The second statement now follows immediately.

The second main result in this section, Theorem 3.4 shows that all morphisms of F-finite F-modules arise as images of maps of $R[\Theta; f]$ -modules under Lyubeznik's functor \mathcal{H} .

Theorem 3.4. Let \mathcal{M} and \mathcal{N} be *F*-finite *F*-modules. For every $\phi \in \operatorname{Hom}_{\mathcal{F}_R}(\mathcal{N}, \mathcal{M})$ there exist generating morphisms $\gamma : M \to F(M) \in \mathcal{D}$ and $\beta : N \to F(N) \in \mathcal{D}$ for \mathcal{M} and \mathcal{N} , respectively, and a morphism (in the category \mathcal{D})

$$N \xrightarrow{\beta} F(N)$$

$$\downarrow^{g} \qquad \downarrow^{F(g)}$$

$$M \xrightarrow{\gamma} F(M)$$

such that $\phi = \mathcal{H}(\Psi(g))$.

Proof. Choose any generating morphisms

$$\mathcal{N} = \varinjlim \left(N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^2(N) \xrightarrow{F^2(\beta)} \dots \right)$$

and

$$\mathcal{M} = \varinjlim \left(M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^2(M) \xrightarrow{F^2(\gamma)} \dots \right)$$

and fix any $\phi \in \operatorname{Hom}_{\mathcal{F}_R}(\mathcal{N}, \mathcal{M})$.

For all $j \ge 0$ let ϕ_j be the restriction of ϕ to the image of $F^j(N)$ in \mathcal{N} .

The fact that ϕ is a morphism of *F*-modules implies that for every $j \ge 0$ we have a commutative diagram

where $\theta_{\mathcal{M}}$ and $\theta_{\mathcal{N}}$ are the structure isomorphims of \mathcal{M} and \mathcal{N} , respectively, and where the compositions of the vertical maps are ϕ_j and $F(\phi_j)$. Repeated applications of the Frobenius

functor yields a commutative diagram

and we can now extend this commutative diagram to the left to obtain

This commutative diagram defines a *R*-linear map $\psi_j : \mathbb{N} \to \mathbb{M}$. Furthermore, we show next that this ψ_j is a map of \mathcal{F} -modules, i.e., that for all $j \ge 0$, $F(\psi_j) \circ \theta_{\mathbb{N}} = \theta_{\mathbb{M}} \circ \psi_j$. Fix $j \ge 0$ and abbreviate $\psi = \psi_j$.

Pick any $a \in \mathbb{N}$ represented as an element of $F^e(N)$. If e < j then the fact that ϕ is a morphism of F-modules. implies that

$$\theta_{\mathcal{M}} \circ \psi(a) = \theta_{\mathcal{M}} \circ \phi(a) = F(\phi) \circ \theta_{\mathcal{N}}(a) = F(\psi) \circ \theta_{\mathcal{N}}(a)$$

Assume now that $e \geq j$; we have

$$\theta_{\mathcal{M}} \circ \psi(a) = \theta_{\mathcal{M}} \circ \theta_{\mathcal{M}}^{-1} \circ F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\phi_j)(a)$$
$$= F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\phi_j)(a)$$

and

$$\begin{split} F(\psi) \circ \theta_{\mathcal{N}}(a) &= F\left(\theta_{\mathcal{M}}^{-1} \circ F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\phi_j)\right) \left(F^e(\beta)(a)\right) \\ &= F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e+1-j}(\phi_j) \left(F^e(\beta)(a)\right) \\ &= F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\theta_{\mathcal{M}}) \circ F^{e-j}(\phi_j)(a) \\ &= F(\theta_{\mathcal{M}}^{-1}) \circ \cdots \circ F^{e-1-j}(\theta_{\mathcal{M}}^{-1}) \circ F^{e-j}(\phi_j)(a) \end{split}$$

where the penultimate inequality follows from the fact that ϕ is a morphism of F-modules.

Consider now the set $\{\psi_i\}_{i\geq 0}$; it is a finite set according to Theorem 5.1 in [H], hence we can find a sequence $0 \leq i_1 < i_2 < \ldots$ such that $\psi_{i_1} = \psi_{i_2} = \ldots$. By replacing \mathbb{N} and \mathcal{M} with $F^{i_1}(\mathbb{N})$ and $F^{i_1}(\mathbb{M})$ we may assume that $i_1 = 0$.

Pick $j \ge 0$ so that $\phi(N) \subseteq F^j(M)$. Since $\mathcal{M} \cong F^j(\mathcal{M})$ we may replace \mathcal{M} with $F^j(\mathcal{M})$ and assume that $\phi(N) \subseteq M$ and hence also that for all $e \ge 0$, $F^e(\phi)(F^e(N)) \subseteq F^e(M)$. Fix now any $e \ge 0$ and pick any $i_k > e$; the fact that $\psi_0 = \psi_{i_k}$ implies that for all $a \in F^e(N)$, $F^e(\phi_0)(a) = \psi_0(a) = \psi_{i_k}(a) = \phi(a)$ and since this holds for all $e \ge 0$ we deduce that ϕ is induced from the commutative diagram

$$N \xrightarrow{\beta} F(N) \xrightarrow{F(\beta)} F^{2}(N) \xrightarrow{F^{2}(\beta)} \cdots$$

$$\downarrow^{\phi_{0}} \qquad \downarrow^{F(\phi_{0})} \qquad \downarrow^{F^{2}(\phi_{0})}$$

$$M \xrightarrow{\gamma} F(M) \xrightarrow{F(\gamma)} F^{2}(M) \xrightarrow{F^{2}(\gamma)} \cdots$$

An application of the functor Ψ to the leftmost square in the commutative diagram above yields a morphism of $R[\Theta; f]$ -modules $g: M \to N$ and $\phi = \mathcal{H}(g)$.

4. Applications to Frobenius splittings

For any *R*-module M let F_*M denote the additive Abelian group M with *R*-module structure given by $r \cdot a = r^p a$ for all $r \in R$ and $a \in M$. In this section we study the module $\operatorname{Hom}_R(F_*R^n, R^n)$ of *near-splittings* of F_*R^n . Given such an element $\phi \in \operatorname{Hom}_R(F_*R^n, R^n)$ we will describe the submodules $V \subseteq F_*R^n$ for which $\phi(V) \subseteq V$. These submodules in the case n = 1, known as ϕ -compatible ideals, are of significant importance in algebraic geometry (cf. [BK] for a study of applications of Frobenius splittings and their compatible submodules in algebraic geometry.) We will prove that under some circumstances these form a finite set and thus generalize a result in [BB] obtained in the F-finite case.

We first exhibit the following easy implication of Matlis duality necessary for the results of this section.

Lemma 4.1. For any (not necessarily finitely generated) R-module M, $\operatorname{Hom}_R(M, R) \cong \operatorname{Hom}_R(R^{\vee}, M^{\vee})$.

Proof. For all $a \in E$ let $h_a \in \operatorname{Hom}_R(R, E)$ denote the map sending 1 to a.

For any $\phi \in \operatorname{Hom}_R(M, R)$, $\phi^{\vee} \in \operatorname{Hom}_R(R^{\vee}, M^{\vee})$ is defined as $(\phi^{\vee}(h_a))(m) = \phi(m)a$ for any $m \in M$ and $a \in E$. For any $\psi \in \operatorname{Hom}_R(R^{\vee}, M^{\vee})$ we define $\tilde{\psi} \in \operatorname{Hom}_R(M, R) \cong$ $\operatorname{Hom}_R(M, E^{\vee})$ as $(\tilde{\psi}(m))(a) = (\psi(h_a))(m)$ for all $a \in E$ and $m \in M$. Note that the function $\psi \mapsto \tilde{\psi}$ is *R*-linear.

It is now enough to show that for all $\phi \in \operatorname{Hom}_R(M, R)$, $\widetilde{\phi^{\vee}} = \phi$, and indeed for all $a \in E$ and $m \in M$

$$\left(\widetilde{\phi^{\vee}}(m)\right)(a) = \left(\phi^{\vee}(h_a)\right)(m) = \phi(m)a,$$

i.e., $\left(\widetilde{\phi^{\vee}}(m)\right) \in \operatorname{Hom}_{R}(E, E)$ is given by multiplication by $\phi(m)$ and so under the identification of $\operatorname{Hom}_{R}(E, E)$ with $R, \widetilde{\phi^{\vee}}$ is identified with ϕ .

We can now prove a generalization Lemma 1.6 in [F] in the form of the next two theorems.

Theorem 4.2. (a) The F_*R -module $\operatorname{Hom}_R(F_*R, E)$ is injective of the form $\bigoplus_{\gamma \in \Gamma} F_*E \oplus$ H where Γ is non-empty, $H = \bigoplus_{\lambda \in \Lambda} F_*E(R/P_\lambda)$, Λ is a (possibly empty) set, P_λ is a non-maximal prime ideal of R for all $\lambda \in \Lambda$ and $E(R/P_{\lambda})$ denotes the injective hull of R/P_{λ} .

(b) Write $\mathcal{B} = \operatorname{Hom}_{F_*R}(E, \bigoplus_{\gamma \in \Gamma} F_*E) \subseteq \prod_{\gamma \in \Gamma} \operatorname{Hom}_{F_*R}(E, F_*E)$. We have

$$\operatorname{Hom}_{R}\left(F_{*}R,R\right)\cong\mathfrak{B}\subseteq\prod_{\gamma\in\Gamma}\operatorname{Hom}_{F_{*}R}\left(E,F_{*}E\right)\cong\prod_{\gamma\in\Gamma}F_{*}RT$$

where T is the standard Frobenius map on E.

(c) The set Γ is finite if and only if $F_*\mathbb{K}$ is a finite extension of \mathbb{K} , in which case $\#\Gamma = 1$.

Proof. The functors $\operatorname{Hom}_R(-, E) = \operatorname{Hom}_R(-\otimes_{F_*R} F_*R, E)$ and $\operatorname{Hom}_{F_*R}(-, \operatorname{Hom}_R(F_*R, E))$ from the category of F_*R -modules to itself are isomorphic by the adjointness of Hom and \otimes , and since $\operatorname{Hom}_R(-, E)$ is an exact functor, so is $\operatorname{Hom}_{F_*R}(-, \operatorname{Hom}_R(F_*R, E))$, thus $\operatorname{Hom}_R(F_*R, E)$ is an injective F_*R -module and hence of the form $G \oplus H$ where G is a direct sum of copies of F_*E and H is as in the statement of the Theorem. Write $G = \bigoplus_{\gamma \in \Gamma} F_*E$. To finish establishing (a) we need only verify that $\Gamma \neq \emptyset$ and we do this below.

Pick any $h \in \text{Hom}_R \left(E, \bigoplus_{\lambda \in \Lambda} F_*E(R/P_\lambda) \right)$. For any $a \in E$, h(a) can be written as a finite sum $b_{\lambda_1} + \cdots + b_{\lambda_s}$ where $\lambda_1, \ldots, \lambda_s \in \Lambda$ and $b_{\lambda_1} \in F_*E(R/P_{\lambda_1}), \ldots, b_{\lambda_s} \in F_*E(R/P_{\lambda_s})$. Use prime avoidance to pick a $z \in m \setminus \bigcup_{i=1}^s P_{\lambda_i}$; now z and its powers act invertibly on each of $F_*E(R/P_{\lambda_1}), \ldots, F_*E(R/P_{\lambda_s})$ while a power of z kills a, and so we must have h(a) = 0. We deduce that $\text{Hom}_R \left(E, \bigoplus_{\lambda \in \Lambda} F_*E(R/P_\lambda) \right) = 0$ and

$$\operatorname{Hom}_{R}\left(E, \operatorname{Hom}_{R}\left(F_{*}R, E\right)\right) \cong \operatorname{Hom}_{R}\left(E, G \oplus \bigoplus_{\lambda \in \Lambda} F_{*}E(R/P_{\lambda})\right)$$
$$\cong \operatorname{Hom}_{R}\left(E, G\right) \oplus \operatorname{Hom}_{R}\left(E, \bigoplus_{\lambda \in \Lambda} F_{*}E(R/P_{\lambda})\right)$$
$$\cong \operatorname{Hom}_{R}\left(E, G\right)$$
$$\cong \operatorname{Hom}_{R}\left(E, \oplus_{\gamma \in \Gamma} F_{*}E\right)$$
$$= \mathfrak{B}.$$

Now $\operatorname{Hom}_R(E, F_*E)$ is the *R*-module of Frobenius maps on *E* which is isomorphic as an F_*R module to F_*RT and we conclude that $\operatorname{Hom}_R(E, \operatorname{Hom}_R(F_*R, E)) \subseteq \prod_{\gamma \in \Gamma} F_*RT$.

An application of the Matlis dual and Lemma 4.1 now gives

$$\operatorname{Hom}_{R}(F_{*}R, R) \cong \operatorname{Hom}_{R}(E, \operatorname{Hom}_{R}(F_{*}R, E))$$

and (b) follows.

Write $\mathbb{K} = R/m$ and note that $F_*\mathbb{K}$ is the field extension of \mathbb{K} obtained by adding all *p*th roots of elements in \mathbb{K} . We next compute the cardinality of Γ as the $F_*\mathbb{K}$ -dimension of Hom_{$F_*\mathbb{K}$} ($F_*\mathbb{K}, G$). A similar argument to the one above shows that

$$\operatorname{Hom}_{F_*\mathbb{K}}\left(F_*\mathbb{K},\bigoplus_{\lambda\in\Lambda}F_*E(R/P_{\lambda})\right)=0$$

hence $\operatorname{Hom}_{F_*\mathbb{K}}(F_*\mathbb{K}, G) = \operatorname{Hom}_{F_*\mathbb{K}}(F_*\mathbb{K}, \operatorname{Hom}_R(F_*R, E)).$

We may identify $\operatorname{Hom}_{F_*\mathbb{K}}(F_*\mathbb{K}, \operatorname{Hom}_R(F_*R, E))$ and $\operatorname{Hom}_{F_*R}(F_*\mathbb{K}, \operatorname{Hom}_R(F_*R, E))$. Another application of the adjointness of Hom and \otimes gives

 $\operatorname{Hom}_{F_*R}(F_*\mathbb{K}, \operatorname{Hom}_R(F_*R, E)) \cong \operatorname{Hom}_R(F_*\mathbb{K} \otimes_{F_*R} F_*R, E) \cong \operatorname{Hom}_R(F_*\mathbb{K}, E)$

Since $mF_*\mathbb{K} = 0$, we see that the image of any $\phi \in \operatorname{Hom}_R(F_*\mathbb{K}, E)$ is contained in ann_E $m \cong \mathbb{K}$ and we deduce that $\operatorname{Hom}_R(F_*\mathbb{K}, E) \cong \operatorname{Hom}_R(F_*\mathbb{K}, \mathbb{K})$. We can now conclude that the cardinality of Γ is the $F_*\mathbb{K}$ -dimension of $\operatorname{Hom}_R(F_*\mathbb{K}, \mathbb{K})$. In particular Γ cannot be empty and (a) follows.

If \mathcal{U} is a \mathbb{K} -basis for $F_*\mathbb{K}$ containing $1 \in F_*\mathbb{K}$,

(1)
$$\operatorname{Hom}_{\mathbb{K}}(F_*\mathbb{K},\mathbb{K}) \cong \prod_{b \in \mathcal{U}} \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}b,\mathbb{K})$$

and when \mathcal{U} is finite, this is a one-dimensional $F_*\mathbb{K}$ -vector space spanned by the projection onto $\mathbb{K}1 \subset F_*\mathbb{K}$. If \mathcal{U} is not finite, the dimension as \mathbb{K} -vector space of (1) is at least $2^{\#\mathcal{U}}$ hence $\operatorname{Hom}_{\mathbb{K}}(F_*\mathbb{K},\mathbb{K})$ cannot be a finite-dimensional $F_*\mathbb{K}$ -vector space. \Box

Theorem 4.3. Let $G = \bigoplus_{\gamma \in \Gamma} F_*E$ and \mathcal{B} be as in Theorem 4.2. Let $B \in \operatorname{Hom}_R(F_*R^n, R^n)$ be represented by $(B_{\gamma}T)_{\gamma \in \Gamma} \in \mathcal{B}$. For all $\gamma \in \Gamma$ consider E^n as an $R[\Theta_{\gamma}; f]$ -module with $\Theta_{\gamma}v = B_{\gamma}^t Tv$ for all $v \in E^n$. Let V be an R-submodule of R^n and fix a matrix A whose columns generate V. If $B(F_*V) \subseteq V$, then $\operatorname{ann}_{E^n} A^t$ is a $R[\Theta_{\gamma}; f]$ submodule of E^n for all $\gamma \in \Gamma$.

Proof. Apply the Matlis dual to the commutative diagram

where the rightmost vertical map is induced by the middle map to obtain

$$0 \longrightarrow (R^{n}/A)^{\vee} \longrightarrow E^{n}$$

$$\downarrow_{B^{\vee}} \qquad \qquad \downarrow_{B^{\vee}}$$

$$0 \longrightarrow (F_{*}R^{n}/F_{*}A)^{\vee} \longrightarrow \operatorname{Hom}_{R}(F_{*}R^{n}, E)$$

Note that $B^{\vee} \in \operatorname{Hom}_R(E^n, \bigoplus_{\gamma \in \Gamma} E^n)$ is given by $(B^t_{\gamma})_{\gamma \in \Gamma}$.

Using the presentation $F_*R^m \xrightarrow{F_*A} F_*R^n \to F_*R^n / \operatorname{Im} F_*A \to 0$ we obtain the exact sequence

$$0 \to (F_*R^n/F_*A)^{\vee} \to \operatorname{Hom}_R(F_*R^n, E) \xrightarrow{F_*A^{\iota}} \operatorname{Hom}_R(F_*R^m, E)$$

thus

$$(F_*R^n/F_*A)^{\vee} = \operatorname{ann}_{\operatorname{Hom}(F_*R^n,E)} F_*A^t.$$

10

We obtain the commutative diagram

and we deduce that $\operatorname{ann}_{E^n} A^t$ is a $R[\Theta_{\gamma}; f]$ -module for all $\gamma \in \Gamma$.

Theorem 4.4. Let M be an $R[\Theta; f]$ -module with no nilpotents and assume M is an Artinian R-module. Then M has finitely many $R[\Theta; f]$ -submodules. (Cf. Corollary 4.18 in [BB].)

Proof. Write $\mathcal{M} = \mathcal{H}(M)$. In view of [L, Theorem 4.2], there is an injection between the set of inclusions of $R[\Theta; f]$ -submodules $N \subseteq M$ and the set of surjections of F-finite F-modules $\mathcal{M} \to \mathcal{N}$ hence it is enough to show that there are finitely many such surjections. By [L, Theorem 2.8] the kernels of these surjections are F-finite F-submodules of \mathcal{M} hence it is enough to show that \mathcal{M} has finitely many submodules. Assume this statement is false and choose a counterexample \mathcal{M} with infinitely many submodules.

All objects in the category of F-finite F-modules have finite length (cf. [L, Theorem 3.2]) hence we may assume that among all counterexamples \mathcal{M} has minimal length. By [H, Corollary 5.2] the isomorphism class of any simple F-finite F-module is a finite set and the set of simple submodules of \mathcal{M} belong to finitely many of these isomorphism classes, namely those occurring as factors in a composition series for \mathcal{M} . We deduce that there are finitely many simple F-finite F-submodules of \mathcal{M} . Since \mathcal{M} has infinitely many F-finite F-submodules, there must be a simple F-finite F-submodule $\mathcal{P} \subsetneq \mathcal{M}$ contained in infinitely many F-finite F-submodules of \mathcal{M} . The infinite set of images of these in the quotient \mathcal{M}/\mathcal{P} exhibit a counterexample of smaller length. \Box

Corollary 4.5. Let $B \in \text{Hom}_R(F_*R^n, R)$ be represented by $(B^t_{\gamma}T)_{\gamma \in \Gamma} \in \mathcal{B}$, and assume that $(B^t_{\gamma}T) : E \to \bigoplus_{\gamma \in \Gamma} E$ is injective. Then there are finitely many *B*-compatible submodules of F_*R^n .

Proof. For all $\gamma \in \Gamma$ write $Z_{\gamma} = \{v \in E^n \mid B_{\gamma}^t T v\}$ and let C_{γ} be a matrix with columns in \mathbb{R}^n be such that $Z_{\gamma} = \operatorname{ann}_{E^n} C_{\gamma}^t$. If $\operatorname{Im} C_{\gamma} \subseteq m\mathbb{R}^n$ for all $\gamma \in \Gamma$, then $\sum_{\gamma \in \Gamma} \operatorname{Im} C_{\gamma}$ is not the whole of \mathbb{R}^n , and if C is a matrix whose columns generate $\sum_{\gamma \in \Gamma} \operatorname{Im} C_{\gamma}$, for any non-zero $v \in \operatorname{ann}_{E^n} C^t \neq 0$, we have $(B_{\gamma})^t T v = 0$ for all $\gamma \in \Gamma$. We conclude that there exists a $\gamma \in \Gamma$ such that, $\operatorname{Im} C_{\gamma} = \mathbb{R}^n$, i.e., that the Frobenius map $B_{\gamma}^t T$ on E^n has no nilpotents. For this $\gamma \in \Gamma$, Theorem 4.4 shows that E^n has finitely many $\mathbb{R}[\Theta; f]$ -submodules where the action of Θ is given by $B_{\gamma}^t T$.

Let V be an R-submodule of \mathbb{R}^n and fix a matrix A whose columns generate V. Theorem 4.3 implies that if $F_*V \subseteq F_*\mathbb{R}^n$ is B-compatible then $\operatorname{ann}_{\mathbb{E}^n} A^t \subseteq \mathbb{E}^n$ is an $\mathbb{R}[\Theta; f]$ submodule of \mathbb{E}^n with the Frobenius action given by $B^t_{\gamma}T$ for all $\gamma \in \Gamma$, and hence there are finitely many such B-compatible submodules.

MORDECHAI KATZMAN

Acknowledgements

I thank Karl Schwede for our pleasant discussions on Frobenius splittings and in particular for showing me a variant of results in section 4 in the F-finite case.

References

- [BB] M. Blickle and G. Böckle. Cartier Modules: finiteness results. Preprint, oai:arXiv.org:0909.2531.
- [BK] M. Brion and S. Kumar. Frobenius splitting methods in geometry and representation theory. rogress in Mathematics, 231, Birkhuser Boston, Inc., Boston, MA, 2005.
- [BS] M. P. Brodmann and R. Y. Sharp. Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
- [F] R. Fedder. F-purity and rational singularity. Transactions of the AMS, 278 (1983), no. 2, pp. 461–480.
- [HS] R. Hartshorne and R. Speiser. Local cohomological dimension in characteristic p, Ann. of Math. 105 (1977), pp. 45–79.
- [H] M. Hochster. Some finiteness properties of Lyubeznik's F-modules. Algebra, geometry and their interactions, pp. 119–127, Contemporary Mathematics, 448, American Mathematical Society, Providence, RI, 2007.
- [K1] M. Katzman. Parameter test ideals of Cohen Macaulay rings. Compositio Mathematica, 144 (2008), pp. 933–948.
- [K2] M. Katzman. Frobenius maps on injective hulls and their applications to tight closure. Journal of the LMS, to appear.
- [L] G. Lyubeznik. F-modules: applications to local cohomology and D-modules in characteristic p > 0.
 J. Reine Angew. Math. 491 (1997), pp. 65–130.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF SHEFFIELD, HICKS BUILDING, SHEFFIELD S3 7RH, UNITED KINGDOM

E-mail address: M.Katzman@sheffield.ac.uk

12