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HALF-BALANCED BRAIDED MONOIDAL CATEGORIES AND
TEICHMULLER GROUPOIDS IN GENUS ZERO

BENJAMIN ENRIQUEZ

ABSTRACT. We introduce the notions of a half-balanced braided monoidal category and of
its contraction. These notions give rise to an explicit description of the action of the Galois
group of Q on Teichmiiller groupoids in genus 0, equivalent to that of L. Schneps. We also
show that a prounipotent version of this action is equivalent to a graded action.

INTRODUCTION AND MAIN RESULTS

Let Mgn be the moduli space of curves of genus g with n marked points. Its fundamental
groupoid with respect to the set of maximally degenerate curves is called the Teichmiiller
groupoid T, ,,. One of the main features of Grothendieck’s geometric approach to the Galois
group G of Q is the study of its action on the profinite completions fg,n; according to this
philosophy, Gg could be characterized as the group of automorphisms of the tower of all fq)n,
compatible with natural operations, such as the Knudsen morphisms. It is therefore important
to describe explicitly the action of Gg on the collection of all the fO,n- Such a description
was obtained in [Sch]. More precisely, an explicit profinite group GT was introduced in [Dr],
together with a morphism Gg — GT. The following was then proved in [Sch]:

Theorem 1. There exists a morphism GT — Aut(fo,n), such that the morphism Gg —
Aut(Tp ) factors as Gg — GT — Aut(To,n).

The first purpose of this paper is to present a variant of the proof of [Sch]. This variant
relies on the notion of a half-balanced braided monoidal category (b.m.c.), which appeared
implicitly recently in [ST] and is here made explicit. We introduce the notion of a (half-
)balanced contraction of such a category C: it consists of a functor C — O, satisfying certain
properties. Whereas a balanced b.m.c. gives rise to representations of the framed braid group on
the plane B, (for n > 0), which is an abelian extension of the braid group B,,, a (half-)balanced
contraction gives rise to representations of quotients of B,,. This quotient is an abelian extension
of the quotient B, /Z(B,,) of B, by its center in the case of a balanced contraction, and is an
abelian extension of the mapping class group in genus zero I'y ,, (another quotient of B,,) in the
case of a half-balanced contraction. bl -

To each set S, we associate an object PaBgy — PaDihg in the category whose objects
are contractions of profinite half-balanced b.m. categories, enjoying universal properties. These
contractions may be viewed as the analogues of the universal b.m. categories appearing in [JS].
We show that the action of GT on such categories may be lifted to the half-balanced setup.
This defines in particular an action of GT on Pﬁhs, from which it is is easy to derive an
action of To,n-

The above profinite theory admits a prounipotent version. The group GT and the Te-
ichmiiller groupoid fO,n admit proalgebraic versions k — GT(k),Tp n(k), where k is a Q-
ring. We then have morphisms GT — GT(Qy), fO,n = (Ton)i = To,n(Qq), where [ is a
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prime number and (Tp,); is the pro-l completion of Tp.,. We construct a group scheme
Aut Ty, (—), together with a morphism Aut Ty, (k) — Aut(Tp (k)), a group scheme morphism

GT(—) = Aut Ty, (—), and a group Aut((To»)i, To.n(Q:)), equipped with morphisms
Aut((To.n)1) < Aut((To.n)i, Ton(Q1)) — Aut To » (Q1).

Theorem 2. The morphism Go — Aut((To,)i) factors as Gg — Aut((To.n)i, To.n(Q1)) —
Aut((To.n)1), and there exists a morphism GT(—) — Aut Ty ,(—), such that the following dia-
gram commutes

Gog ———— = Aut((Ton)1)

|

Aut((To,n)z, TO,n(Ql))

|

GT(Q) Aut Tp  (Qu)

We say that an algebraic (resp., prounipotent) group over Q is graded iff its Lie algebra is
graded by Z>¢ (resp., by Zso). We say that a groupoid G is graded prounipotent if for any
s € ObG, Autg(s) is graded prounipotent. In [Dr1], a graded Q-algebraic group GRT(—) was
constructed, together with an isomorphism GT(—) — GRT(—).

Theorem 3. There exists a graded prounipotent groupoid TOQ;Z(—) and a graded morphism
GT(—) — AutToyn(—)
GRT(—) — Aut Ty (=), such that the diagram | { commudtes.
- GRT(-) — Aut Togf;

1. TEICHMULLER GROUPOIDS IN GENUS 0

1.1. Quotient categories. Let C be a small category and let G be a group. We define an
action of G on C as the data of: (a) a group morphism G — Perm(ObC), (b) for any ¢ € G, an
assignment ObC € X — i% € Isoc(X, gX), such that i‘g{h = i’quig(.

We then get a group morphism G — AutC = {autofuncfors of C}, where the autofunctor
induced by g € G is the action of g at the level of objects, and g¢ := i ¢(i%)""! for ¢ €
Home (X,Y).

Lemma 4. 1) For any o, € (ObC)/G, there is a unique action of G x G on X(«, ) :=
Uxea,ves Home(X,Y), such that (g,h) Home(X,Y) = Home (g X, hY) and (g, h)¢ = i% (%)~ .

2) Set X(X, ) = UyegHome(X,Y), X¥(o,Y) := Uxea Home(X,Y), then G acts on these
sets (by permutation of B in the first case and of a in the second one) and we have a well-
defined map X(X,B)¢ x X(3,2)¢ — Home(X,Z) compatible all the maps Home(X,Y) x
Home (Y, Z) — Home (X, Z). Taking the product of these maps over X € o, Z € v and further
the quotient by G' x G, we obtain a map X(a, B)S*C x X(B,7)9*¢ — X(a,v)S*C, which is
associative.

The proof is straightforward. We then define the quotient category C/G by Ob(C/G) :=
(ObC)/G and (C/G)(a, B) := X(a, B)“*C.
Remark 5. If X € a and Y € 3, then (C/G)(o,3) ~ C(X,Y)x*Cy  where Gx = {g €
GlgX = X}.

Proposition 6. If D is a small category, then a functor C/T — D is the same as a functor
F :C — D, such that F(gX) = F(X) and F(i%) = idpx) for any g € G, X € ObC.
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The proof is immediate.

1.2. Quotients of the braid group. Let B, be the braid group of n strands in the plane.
It is presented by generators o1, ...,0,-1 subject to the Artin relations o;0;410; = 0410041
fori=1,...,n—2and 0,0, = 0j0; for i — j| > 1. Its center Z, := Z(B,) is isomorphic to
Z and is generated by (o1 -+ 0,-1)". There is a morphism B,, — S,,, uniquely determined by
o; — 8; := (4,74 1); it factors through a morphism B,,/Z,, — S,.

Lemma 7. Let C,, := (g|g™ = 1) be the cyclic group of order n. We have an injection Cyp, — Sy,
via g — (% 2. ’f), which admits a lift Cp, — By /Zy, given by g+ 01+ 0p_1.

Let T := By/((01+ - 0p_1)",01-+-02_1 ---01) be the mapping class group of type (0,n)
(see [Bi]). The relation oy---02_;---01 = 1 is called the sphere relation as the quotient

B,/(oy---02_, - 01) is isomorphic to the braid group of n points on the sphere. In this
group, the relation (o; ---Un_1)2" = 1 holds. The morphism B, — S, factors through a
morphism I'g ,, = Sp,.

The dihedral group D,, := (r, s|r"™ = s> = (rs)? = 1) may be viewed as a subgroup of S,, via

r= (331), s (M2 1)

Lemma 8. There exists a unique morphism Dy, — Lo, 7+ 01+ 0p_1, S — o1(0201) -+ (Op—1-+-

lifting the injection D, — S,.

Proof. One knows that h,, := o1(0201) - (0p—1---01) € B, is the half-twist, so that
h2 =z, = (01 -0,_1)" = p", where p = 01 - - - 0,,_1 and z,, is the full twist, generating Z(B,,).
Moreover, hp,p~t = im(h,_1 € Bp_1 — By), 50 (hpp )2 =21 = zp(0p_1-- 03 - 0n_1)" ",
where we identify z,_; with its image under B,,_; — B,,. The images of h,,, p in I'g ,, therefore
satisfy h? = p" = (hn,p )% = 1, which are equivalent to a presentation of D,,. O

1.3. Teichmiiller groupoids. Let G be a group and I' C S,, be a subgroup. Assume that
G — S, is a group morphism and let I' — G be such that G ——= 5,, commutes. Let .S be a

N

r
set, with |S| = n.
Define a category Cq,s by ObCq,s := Bij([n],S); for 0,0’ € ObC¢q g, Hom(o,0’) := G xg,
{(0¢')~ta}; the composition of morphisms is induced by the product in G.
Define an action of I' on Cg g as follows. For v € T, o € Bij([n],S), v+ 0 := oy~ !, and
il € Hom(o,07™ 1) = G xg, {7} is im(y € T — G). We then obtain a quotient category
Cr.g,s :=Ca,s/T.

Example 9. When G = B, /Z, and I' = C,, we set Cyc(S) := Cr g,s; its set of objects is
Cyc(S) := Bij([n], S)/C,, (the set of cyclic orders on S).

Example 10. When G = I'g,, and I' = D,,, we set Dih(S) := Cr, g s; its set of objects is
Dih(S) := Bij([n], S)/ Dy = Cyc(S)/{£1}, which we call the set of dihedral orders on S.

Definition 11. If C is a small category and T = ObC is a map, we define the category w*C
by Ob7*C :=T and n*C(¢t,t') := C(n(t), n(t")) fort,t' € T.

We have natural maps

{planar 3-valent trees with leaves bijectively indexed by S} =% Cyc(S)
and

{planar 3-valent trees with leaves bijectively indexed by S}/(mirror symmetry) ™" Dih(S).

o1),
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We then set T ¢ := 77, .Cyc(S), To,s := m;;,Dih(S).
When S = [n], Ty, g identifies with the fundamental groupoid to the moduli stack M((%n with
respect to the set of maximally degenerate real curves (see [Schl).

2. CONTRACTIONS ON (HALF-)BALANCED CATEGORIES

2.1. (Half-)balanced categories. Recall that a braided monoidal category (b.m.c.) is a set
(C,®,1,Bxy,axyz), where C is a category, ® : C xC — C is a bifunctor, Sxy : XY - Y ®X
and axyz: (X ®Y)®Z — X ® (Y ® Z) are natural constraints, 1 € ObC and X ® 1 = X <
1® X are natural isomorphisms, satisfying the hexagon and pentagon conditions (see e.g. [Ka]).

A balanced structure on the small b.m.c. C is the datum of a natural assignment ObC >
X — 0x € Aute(X), such that

Oxey = (0x @ 0y)ByxBxy
for any X, Y € ObC (see |J9]); the naturality condition is 0x/¢ = ¢fx for any X, X’ € ObC
and ¢ € Home (X, X').

Similarly, a half-balanced structure on C is the data of: (a) an involutive autofunctor * :
C—oC X— X" suchthat ( XQY)"=Y*"®@ X" (f®g) =¢"® f*forany X,..., Y’ € Ob(
and f S HOIIlc(X, X’), g € HomC(Y, Y/), CL;( = axx, ﬂ;(y = ﬂy*x*, ai;(YZ = azry*Xx*; (b) a
natural assignment ObC € X — ax € Isoc(X, X*), such that

axgy = (ay ® ax)Bxy
for any X,Y € ObC; here naturality means that ay ¢ = ¢*ax for any ¢ € Home (X, Y).

Note that a half-balanced structure gives rise to a balanced structure by x := ax~ax.

2.2. Contractions.

Definition 12. A contraction on the small balanced category C is a functor (=) : C = O,
X — (X), such that:
1) for any X,Y € ObC, (Y @ X) = (X @Y )(=: (X,Y)), and {(fy ®idx)Bxy) = id(x,v);
2) for any X,Y,Z € ObC, (X QY)® Z) = (X @ (Y ® Z2))(=: (X,Y,Z)) and {axyz) =
id(X)Y7Z>.
When needed, we will call such a contraction a “balanced contraction”.
Remark 13. These axioms imply (fxgy) = id(x,y) for any X,Y € ObC, and therefore
<9)(> = 1d<X) by taking Y =1

Definition 14. A contraction on the small half-balanced category C is a functor (—) : C — O,
such that:
1) (=) is a balanced contraction on C;
2) for any X € ObC, (X) = (X*) and (ax) = idx).
When needed, we will call such a contraction a “half-balanced contraction”.
Lemma 15. If (=) : C — O is a contraction on a half-balanced category, then for any X,Y €
ObC, (fx ® 0y") = idix,y) = (0% ®idy)ByxBxy).
Proof. We have
Bxy (07" ®@idx)ax-gy-Bxty- By @idx-)axey
= Bxy (65" ®@idx)ax-gy-Bxry-axey (idx ©6y")
= Bxi (05" @idx)(ay- ® ax-)axey (idx @651)
= Bxy (05" ®idx)(ay-ay ® ax-ax)pxy (idx @0y")
= ﬁ;(%/(idy ®ex)ﬁxy(idx ®6‘;1) =0x ® 9;1.
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Now (axgy) = (ax+@y+) = id(x,yy by the half-balanced contraction axiom, and (8x3 (6" ®
idx)) = (Bxiy.(05+ ®idx-)) = id;x,y) by the balanced contraction axiom. It follows that
(Ox ®9{,1> =idx,yy. The second statement follows from (0% ®idy)By xBxy = (Ox ®9;1)6‘X®y
and <9X®y> = id(X)y>. O

2.3. Relation with braid group representations. Set B, := Z" x B,,, where the action
of By, is Z™ is via B,, — S, — Aut(Z"); B,, is usually called the framed braid group of the
plane. If C is a balanced b.m.c. and X € ObC, then there is a morphism B,, — Aut¢(X®") (a

parenthesization of the nth fold tensor product being chosen), given in the strict case by
0; — idyei-1 ®x Qidxen—i, o0;+— idyei- ®Bx x @idxen—i-1.

Here ¢; is the ith generator of Z" C B,,.

We now define B,,/Z,, to be the quotient of B, by its central subgroup (isomorphic to Z)
generated by ([, 0i)zn (recall that z, is a generator of Z,, = Z(B,); the product in Z" is
denoted multiplicatively). One can prove that there is a (generally non-split) exact sequence

| Z" s By /Zy — By Zn — 1.

Proposition 16. Let C <;>> O be a balanced contraction of C, then we have a commutative
diagram
B, <+ B, — Aute(X®")
{ R =)
Bn/Z, + Bn/Z, — Auto((X®"))

Proof. We have im(([]/_, 6;)2n € Bn — Aute(X®")) = Oxen, so according to Remark [[3)]

the image of this in Autp((X®")) is id xeny. The factorization implied in the right square
follows. The left square obviously commutes. g

Set now T, be the quotient of B, by the normal subgroup generated by (ITi-, 6:)zn and

5%01 .- ~a,2171 -+-01. Then we have an exact sequence 1 — Z" = I'g,, = I'g,, = 1.

Proposition 17. Let C be a half-balanced b.m.c., let C <:>> O be a half-balanced contraction and
let X € ObC. Then we have a comutative diagram

B, « B, — Aute(X®")

{ 4 =)
I, + T, — Auto((X®"))

Proof. We have im(630y---02_;---01 € B, — Aute(X®")) = (0% @ idy)ByxBxy (Y =
X®n=1) whose image in Auto((X®")) is idxen by Lemma [I5 O

3. UNIVERSAL (HALF-)BALANCED CATEGORIES

3.1. Universal (strict) braided monoidal categories. Recall that the small b.m.c. C is
called strict iff (X®@Y)®Z = X@(Y®Z)(= X®Y®Z)and axy,z = idxgygz forany X,Y,Z €
ObC. Following [JS], we associate a universal strict b.m.c. Bg to each set S. Its set of objects
is ObBg 1= Uy,>0S™; the tensor product is defined by s ® s’ = (s1,...,5n,8],...,5,,) € Gnn’
for s = (s1,...,8,) € 8™, 8 =(s4,...,8,) € S If s e Sm, s’ € S™, then Homp,(s,s') =0
if n # n', and Homg, (s,s') = By Xs, {f € Su|s'f = s} if n = n/. The tensor product of
morphisms is induced by restriction from the group morphism B, X B,y — By, (b, ') — bxb/,
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uniquely determined by o; * 1 = 0, 1 *x 0y = 0p—14+ (Which corresponds to the juxtaposition
of braids). The braiding is fs s = bpn’, Where bpps € Bpyps is given by

bpn = (Un’ .. .01) . (0n+n/_1 .. 'Un)'

The universal property of Bg is then expressed as follows: to each strict small b.m.c. C and
any map S — Ob(C, there corresponds a unique tensor functor Bg — C, such that the diagram
S — Ob(C commutes.

N

ObBg
We now describe the universal b.m.c. PaBg associated to S ([JS| Ba]). Define first T;, as the
set of parenthesizations of a word in n identical letters. Equivalently, this is the set of planar
3-valent rooted trees with n leaves, e.g. the tree

root

corresponds to the word (ee)(ee). The concatenation of words is a map Ty, X T, = Thgm,
(t,t') = txt' (e.g., (oo, 00) — (e0)(e)e); this is illustrated in terms of trees as follows

root

root 00t

)\ * )\ )
The set of objects of PaBg is then defined by ObPaBg := U, >0T}, x S™; the tensor product is
defined by (¢, s)®(t', s’) := (txt’, s®s’). The morphisms are defined by Hompag, ((, s), (', 5")) :=
Homp, (s,s’). The tensor product of morphisms and the braiding and associativity constraints
are uniquely determined by the condition that the obvious functor PaBg — Bg is monoidal.
In particular, axyz corresponds to 1 € B|x|1|y|+|z|, Where [(s,t)| = n for (s,t) € T, x S™.

Then PaBg has a universal property with respect to non-necessarily strict braided monoidal
categories, analogous to that of Bg.

3.2. Universal balanced categories. For s € ObBg, set 0, 1= 2|, € Autp,(s) C Bys|- The
assignment s — 6, equips Bg with a balanced structure. We denote by B%‘” the resulting
balanced strict b.m.c. One checks that it has the following universal property:

Lemma 18. To any balanced strict small b.m.c. C and any map S EN ObC, such that O =
idy(s) for any s € S, there corresponds a unique functor Bg‘ll — C compatible with the balanced
and monoidal structures, such that the diagram S ——— Qb(C  commutes.

|

Ob B4

If now X = (s,t) € ObPaBg, we set 0x := 0, € Autpg(s) = Autpaps(X). The assignment
X +— 0x equips PaBg with the structure of a balanced b.m.c., denoted PaBgal and enjoying
a universal property with respect to maps S — ObC, where C is a balanced braided monoidal

category such that 0y, = id() similar to Lemma I8l
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3.3. Universal half-balanced categories. We define an involution * : Bg — Bg as follows.
It is given at the level of objects by s* := (sp,...,s1) for s = (s1,...,8,) and the level of
morphisms by restriction of the automorphism o; — o,_; of B,. For s € ObBg, we set
as = hys € Isopy(s,s*) C Bjg. This defines the structure of a half-balanced category on
Bg, denoted ng“l, whose balanced structure is that described in Subsection It has the
following universal property:

Lemma 19. For each strict half-balanced small b.m.c. C and each map S 2, ObC such that for
any s € S, f(s)* = f(s) and ay(s) = idy(,), there exists a unique functor ng“l — C, compatible
with the monoidal and half-balanced structures, and such that the diagram S —— Ob(C

T

Ob B!

commutes.

We now define an involution * of PaBg as follows. At the level of objects, it is given by
X* = (t*,8") for X = (t,s), where t* is the parenthesized word ¢, read in the reverse order
(in terms of trees, this is the mirror image of t). At the level of morphisms, it coincides
with the involution * of Bg. We define the assignment ObPaBg > X — ax by ax :=as €
Isop, (s, s*) = Isopap. (X, X*) for X = (¢, s). This equips PaBg with a half-balanced structure;
the resulting half-balanced b.m.c. is denoted PaB’SLb“l. Its underlying balanced b.m.c. is PaBg“l.
It has a universal property with respect to half-balanced small braided monoidal categories C

and maps S EN ObC, such that f(s)* = f(s) and ay.) = idy(y), similar to that of Lemmas
and

4. UNIVERSAL CONTRACTIONS FOR BALANCED CATEGORIES

PaB%! — PaCycg
We will construct categories (Pa)Cycg and a diagram | 4 in which the
B%"l —+  Cycg
horizontal functors are contractions and the left vertical functor is the canonical monoidal
functor. -

We construct Cycg as follows. Define first Cycg as the category with the same objects as
Bg‘ll, and B,, replaced by B,,/Z,,) in the definition of morphisms. Define an action of Z on (SSf/c g
by 1-(s1,,8n) := (8p,81,...,8n—1) and i} € Iso(s,1-5) C B, /Zy, is the class of o1 - 0,,_1.
We then set Cycg := Cycg/Z. Note that Ob Cycg = Un>o0 Cyc,, (S), where Cyc,, (S) = S™/C,,.
We then define a functor B%‘ll — Cycg as the composite functor B%"l — CAy/cS — Cycg.

Let us show that the functor (=) : B4 — Cycg satisfies the balanced contraction condition.
If 5,5 € ObBg, with s = (s1,...,8,) and 8’ = (s},...,s),), then s’ ® s = (s1,...,8,) =
n'- (s ®s'), which implies that (s ® ') = (s' ® 5). Then (fy @ ids)fs,s € Isograr(s ® 5',5' @

8) = Bpyn corresponds to (z, * idy)bnn = (01 - -Un+n/_1)”,. Its image in CAy/cS is then

igés € Cycg(s®s',n' - (s ®s')), whose image in Cycg is id s s
We now prove the universality of this contraction.

Proposition 20. Let C be a strict small balanced b.m.c., equipped with a map S 4, ObC and
a balanced contraction C — O. Then there is a functor Cycqg — O, such that the diagram
Bbsal — CyCS

4 J  commutes.

cC - @
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Proof. First note that since (0x) = id(xy for X = f(s1) ®---® f(sn) and any (s1,...,s,) €
__ B! — Cycg
ObBY%!, we have a functor F : Cycg — O, such that the diagram | } commutes.

c - 0
If (s1,...,5n) € ObCycg = ObBY!, then F(s1,...,50) = (f(51) @+ @ f(s)) = (f(s0) ®
f(s1)®--® f(sp—1)) = F(sp,-..,Sn—1), therefore F(¢9X) = F(X) for any X € ObCycg and
any g € Z. Moreover, we have
Flifs,,..5m) = Flo1-0n1) = ((04(s0) ® (a0 (3 1) Brs1)@@f (50 1). f5m)

- idF(sl,m ,Sn)

by the balanced contraction property.
According to Proposition [6 this implies that we have a factorization C/}Sr/c s — Cycg

N

o
O

We now construct the category PaCycg as follows. Let PIT, := {planar 3-valent trees
equipped with a bijection {leaves} [n], compatible with the cyclic orders}. We first de-

fine the category PaCycg by Ob P/a_(\3§c5 = Up>oPIT,, x S™, Hom ((t,0),(t',d") =
S

Hom(E;Cs (0,0"). We define an action of Z on PaCycg by 1-(¢, (s1,...,5n)) :== (¢, (Sn, $1, -+ Sn—1))s
where if t = (T, {leaves of T} = [n]), then t' := (T, {leaves of T} = [n] 1 mpd n [n]), and
i%t,cr) := il; we then set PaCycg := PaCycg/Z, so in particular ObPaCycg = {(a planar
3-valent tree, a map {leaves} — S)}.

We define a map T,, — PIT,, t — 7(t) as the operation of (a) assigning labels 1,...,n to
the vertices of the tree ¢, numbered from left to right; (b) replacing the root and the edges

connected to it, by a single edge. E.g., we have

root

( )=/

1 2 3 4
We define a functor PaB%" — PaCycg by the condition that (a) at the level of objects,
it is given by the map U,>0T, x S™ — U,>o(PIT, x S™)/C,, and by projection, and (b)

PaB%' — PaCycg
the diagram | J commutes. Let us check that this defines a contraction.
B  —  Cycg
(X®Y) = (Y ® X) follows from the fact that for t € T,,, t' € Ty, m7(t @t') and 7(¢' ®t) can be
obtained from one another by cyclic permutation of [n + n']; here we recall that (¢,t') — t* ¢
is the concatenation map Ty, X Ty — Tp4pns. The fact that (X @Y)® Z) = (X @ (Y ® Z))
follows from 7((¢t *t) *t"") = w(t * (¢’ « ¢'")), which is illustrated as follows

t”. -t
y i i y i i /t \
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It is then clear that (axyz) = id(xy,z). The proof of ((fy ® idx)Bxy) = id(x,y) is as

above. We now prove the universality of the contraction (—) : PaBgal — PaCycg.

Proposition 21. Let C be a balanced small b.m.c., equipped with a contraction C — O
and a map S — ObC. Then there exists a functor PaCycg — O, such that the diagram
PaB%! — PaCycg

J J commutes.
C — @)
o PaB%' — PaCycg
Proof. We first construct a functor PaCycg — O, such that | 1 com-

C — o
mutes. We define a map PIT,, x S™ — Ob O as follows. Let (¢, (s1,...,8,)) € PIT,, x S™. Let e
be an edge of t. Cutting ¢ at e, we obtain two rooted trees ¢; (i = 1,2) equipped with injective
maps {leaves of ¢;} — [n]. The images of these maps are of the form {a,a +1,...;a+ n1}
and {a +n1+1,...,a 4+ ny + na} (the integers being taken modulo n). We then define the
image of (¢, (s1,...,n)) to be <(®flea+[nl]f(si)) ® (®féa+nl+[n2]f(si))>. The axioms then im-
ply that this object do not depend on e. Indeed, if ¢’ is another edge, then to the shortest

path e = e; — e3 — -+ — e = € from e to ¢ there corresponds a sequence of isomor-
—1

phisms of the corresponding objects; each isomorphism has the form (A ® (B @ C)) ang)
<ﬁ5,1A®B(051®idA®B)>

— (C ® (A® B)), see

RSN

or (AR (B®C)) - (C®(A® B)) = (B® (C® A)), see

ool

One then proves as before that we have a functor P/a_(\3§c g — O, which factors through the
action of Z. g

(A®B)®C)

5. UNIVERSAL CONTRACTIONS FOR HALF-BALANCED CATEGORIES

PaB%* — PaDihg
We now construct categories (Pa)Dihg and a commutative diagram | +
Bital  —  Dihg
where the horizontal functors are contractions. -
We first construct Dihg as follows. Define first Dihg as the category with the same objects
as B! with B,, replaced by its quotient I'g,. Let D := Z x (Z/2) be the infinite dihedral

group presented as D := (r, s|s?> = (rs)? = 1). We define an action of D on Dihg as follows. The
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action on objects is defined by 7+ (s1,...,8n) := (Sn, S1, -+, Sn—1), S (815, 8n) = (Sny- -+, 81),
and iy = 01+ 0p_1, iy = hy. We then set Dihg = Dihg/D.
Note that ObDihg = U,>0Dih,(S), where Dih,(S) = S™/D,, and D,, is the quotient

of D by the relation r™ = 1. We define a functor B’gf’al <;>> Dihg as the composite functor

ng“l — ]5\&15 — Dihg. Let us show that it satisfies the half-balanced contraction conditions.
(=)

BY%! & Cycg
We have a commutative diagram | J  Since the left vertical functor is surjec-
B2 5 Dihg
tive on objects and the bottom functor is a balanced contraction, the upper functor satisfies the
balanced contraction condition. If now s = (s1,...,s,) € ObB2 then s* = (sp,...,81) =

s+ 8, so the classes of s and s* are the same in Dihg = ﬁls/D, hence (s) = (s*). Then

(as) = (i3) = id(s. All this shows that B> Y Dihg is a half-balanced contraction. We now
prove the universality of this contraction.

Proposition 22. Let C be a strict half-balanced b.m.c., equipped with a map S EN Ob(C, such
that f(s)* = f(s) for any s € S, and with a half-balanced contraction C — O. Then there exists
Bl —  Dihg
a functor Dihg — O, such that the diagram | 1 commutes.
C — @)

Proof. We define a functor ]3&15 — O by the following conditions: it coincides at the level of
objects with the functor B! — C — O; since the images by this functor of z,,, 01 ---02_; -0 €
Authbaz (81,-++,8n) C By are respectively (0¢(s,)g...0 f(s,)) and

(07 (1) ®iday_, 1(s) Bor, s, fs0)Brs). 01, 1(s0) € Auto((f(s1) @ -+ ® f(sn))),
which are the identity by Remark [[3 and Lemma [[5] the composite functor Bia — C — O

Bl —  Dihg Dihs — Dihg
factorizes as 1 We now show as above that F' factorizes as N 1
C - 0 @)

Indeed, for s = (s1,...,8p) € ObDihg, then F(s) = (f(s1)®---® f(sn)). Then F(r-s) =
(f(sp)® - ® f(sp—1)) = F(s), using the axiom (X ® Y) = (Y ® X)) of balanced contractions,
and F(s - 5) = (f(sn) @ -~ @ f(s1)) = ((f(s1) @ -~ @ f(sn))") = {f(51) @ - @ f(s50)) = F(5)

using the axiom (X*) = (X) of half-balanced contraction. If now s = (s1,---,8,) € Ob Dihg,
then F(z;) = id(x) by the same argument as in Proposition 20, and
Fiy) = flha) = (g, @ @ ap(s) (1 dss1)0-0 5 (sn2) OBf(sn1).f(s)

(s 5@ @1 (5n-0) DB (sn-2) 7 (sn-D)@F(50)) 7 Br(sn), fls)@ @1 (s0)
= Qf(s1)@-®f(sn)
Hence F(i3) = (af(s)®.-@f(s,)) = 1d(s)- So we have the desired factorization of F'. O

We now construct the category PaDihg as follows. We first define the category PaDihg
by ObPaDihg = U,>oPIT, x S™, PaDihg((t,s), (',s')) = Dihg(s,s’). The group D acts on
PaDihg as follows. The action on objects is g - (t,s) = (g - t,g - 8), where for t = (T, {leaves

of T} 5 [n]), r-t = (T,{leaves of T} = [n] 1 mpd n [n]), s-t = (T,{leaves of T} &
n] " ), and i, ) = i¢ € Tsogg (s,g-s) for (t,5) € ObPaDihg. We then set

PaDihg := PaDihg/D.



HALF-BALANCED CATEGORIES AND TEICHMULLER GROUPOIDS IN GENUS ZERO 11

We have Ob PaDihg = {(a planar 3-valent tree, a map {leaves} — S)}/(mirror symmetry) =
Unso(PIT, x §™)/D,. We define a functor PaB%*" — PaDihg by the condition that: (a)
at the level of objects, it is given by the canonical map T, x S™ — (PIT,, x S™)/D,, (b) the

PaB"" — PaDihg
diagram 4 4 commutes. One proves as above that this is a half-balanced
Bibtal  —  Dihg
contraction. Using the arguments of the proofs of Propositions 20l 21l and 22 one proves:

Proposition 23. Let C be a half-balanced braided monoidal category, equipped with a map

S % 0ObC such that f(s)* = f(s) for any s € S, and a balanced contraction C — O. Then
PaBs — PaDihg

there exists a functor PaDihg — O, such that the diagram | J commutes.
Bital  —  Dihg

We then have natural diagrams

Bs — BY¥ — B PaBs — PaB%' — PaBY*
¥ ;. and + +
Cycg — Dihg PaCycgy — PaDihg

These diagrams fit in a bigger diagram, with a collection of functors from the left to the right-
hand side diagram.

6. COMPLETIONS

Let G — S, be a group morphism. One can define the relative pro-l and relative prounipotent
completions G; and G(—) of G — S,,. They fit in exact sequences 1 — U; — G; — S, — 1 and
1—=U(-) = G(-) = S, — 1, where U; and U(—) are pro-I and Q-prounipotent. We have
a morphism G; — G(Q;) (J[HM], Lemma A.7), fitting in a sequence of morphisms G — G —
G; — G(Qy), where G is the profinite completion of G. Applying this to B, are any of this
quotients By, /Z,, T'g.n considered above, we obtain for each of the categories C = (Pa)th)(bal),
(Pa)Cycg, (Pa)Dihg, completed categories C, C;, C(—), and functors C — C — C; — C(Q)).

Let us say that a pro-I (resp., prounipotent) b.m.c. is a b.m.c. C, equipped with an assignment
ObC 3 X — Ux < Aute(X), such that Ux is pro-l (resp., prounipotent) for any X, and for
any X,Y € ObC and f € Isoc(X,Y), fUxf~! = Uy and im(P, — Aute(X1 ® ---® X,,)) C
Ux,g--ax, (here P, = Ker(B,, — S,) is the pure braid group with n strands). Similarly, C is
called profinite if Aut¢(X) is profinite for any X € ObC.

Then the completions (?a-l)\B s: (Pa)Bg, and (Pa)Bg(—) are profinite, pro-/ and prounipo-
tent (strict) braided monoidal categories and are universal for such braided monoidal categories
C, equipped with a map S — Ob(C.

7. ACTIONS OF THE GROTHENDIECK—TEICHMULLER GROUP

7.1. Grothendieck-Teichmiiller semigroups. Recall that the Grothendieck—Teichmiiller semi-
group is defined ([D1]) as

GT = {(\, f) € (1 +2Z) x B|f(Y,X) = f(X,Y)"},

J(Xs, X0) X" f(Xo, X3) X" f( X0, Xo) XT" =1, 05(f)O1(f) = 0o (f)02(f)0a(f)},
where Fy is the free group with two generators X,Y, 0y,...,04 : Fo — P, are simplicial
morphisms, X1 X2Xs = 1, m = (A — 1)/2. It is a semigroup with (A, f)(N, f") = (N, f"),
where A = AN and f"” = O p)(f)f', where O\ 1y € End(Fy) is given by (X,Y)
(f/XY =1 Y*"). Then GT — End(F»)?, (A, f) — () is a semigroup morphism. The
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profinite, pro-I and prounipotent analogues @, GT, and GT(—) of GT are defined by replac-
ing (Z, F3) by (Z,F»), (Z;,(F);), and k — (k, F5(k)) where k is a Q-ring. We then have

morphisms of semigroups GT — GT — GT, — GT(Q,); the associated groups are denoted
GT,GT,GT,,GT(-).

7.2. Action on (half-)braided monoidal categories. The semigroup GT acts on {braided
monoidal categories} as follows: (A, f)*(C,®, Bxy,axyz) = (C,®, By, a'xy z), where By =
Bxy (By xBxy)™ and

dvy 7z = axyzf(ByxBxy ®idz,ayy ,(idx @Bzy By z)axy z)-

In the same way, GT acts on {braided monoidal categories C, such that Aut¢(X) is finite
for any X € ObC}, GT,; acts on {pro-l braided monoidal categories} and GT(k) acts on {k-
prounipotent braided monoidal categories}.

We have natural functors {half-balanced braided monoidal categories} — {balanced braided
monoidal categories} — {braided monoidal categories}.

Proposition 24. The action of GT on {braided monoidal categories} lifts to compatible actions
on { (half-)balanced braided monoidal categories}. Similarly, the actions of GT, . .. ,GT(k) lift to
compatible actions on { (half-)balanced finite braided monoidal categories}, ..., {(half-)balanced
k-prounipotent braided monoidal categories}.

Proof. This lift is given by (A, f) * (C,®, Bxy,axyz,0x) := (C,®, By, a'xy 7, 0% ), where
0 = 0% and (A, [)*(C, ®, Bxy, axyz,ax) := (C,®, Byy, dyyz, d’y), where dy == (ax-ax)™ax,
where m = (A —1)/2. O

Proposition 25. Let C be a half-balanced category and let C <:>> O be a half-balanced contrac-

tion. Then for any (X, f) € GT, the composite functor (A, f) xC = C D 0isa half-balanced
contraction on (X, f)*C. Here (X, f)*C = C is the identity functor (which is not tensor). Same
statements with C finite, ..., k-unipotent and GT replaced by GT, ..., GT (k).

Proof. Assume that (C, Sxy,ax) is half-balanced; we set 0x := ax+ax. Then (C,Bxy,0x)
is balanced and 6y = 0%. Then (6} ® idx)Byy = (fy @ idx)Bxy (0% ® Oy)™0%g, . The
identities (fx) = id(x), (0%' ® 0y) =id(x,yy (see Lemma[lH) and ((fy ® idx)Bxy) = id/x v,
(as (=) is a half-balanced contraction) imply that ((0y ® idx)B%y) = id(x,yy, so (=) is a
balanced contraction for (A, f) * C. Moreover, a’x = ax(ax-ax)™ = ax0%, so (fx) = idx,
implies (a'y) = (ax) = id(x). O

7.3. Action on PaDihg. For (A, f) € GT, let i( sy be the endomorphism of PaB{"** defined

as the composite functor PaB(Sh)bal ey (A1) *Path)bal = Path)bal, where the first functor

is the unique (half-)balanced monoidal functor which is the identity on objects, and the second
functor is the identity functor (which is not monoidal). As in [E], Proposition 80, one shows
that (A, f) = i(\s) is a morphism GT — End(PaB(Sh)bal)"p. One similarly defines morphisms

— /\(h)bal (h)bal
GT — End(PaBg~ )7, ..., GT(k) — End(PaBg, " ).

For (A, f) € GT, we define an endofunctor j(, s of PaDihg as follows: according to Propo-
sition 25, the composite functor (), f) * PaB%* 5 PaBL = PaDihg is a half-balanced
(=

— PaDihg, there exists a unique

~

contraction. By universality of the contraction Pang“l
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endofunctor j(y sy of PaDihg, such that the following diagram commutes

o))

/\N.
PaBy'" — = (), f)  PaBy"* —— PaBy""

Hl l @

PaDihg — > PaDihg

Jonp

Proposition 26. The map (A, f) — jep) defines a morphism GT — End(PaDihg); one
similarly defines morphisms GT — End(PﬁhS)‘)p, etc.

Proof. We have a commutative diagram

(1) PaBl" — = (X, f') « PaB}!
=) PaB2

|

PaDihg — = PaDihg

RICT
which gives rise to

O G T R P hbal
(A, f) * PaB&" —— (X, f)(V, f') « PaB{

lN

(=) PaB

l<>

PaDihg , PaDihg
IO £

Composing it with the analogue of (@) with (X', f') replaced by (), f), we get a commutative
diagram

(N f)xaar ry)oa
PaB/}"! IR P, f) « PaBl
(=) PaBy
l<—>
PaDihg PaDihg

I 19T )

On the other hand, both ((A, f)*a(n g)) 5y and oy 5y(v, f7) are tensor functors Pang“l —

A, FYX, f7) « PaB* of half-balanced braided monoidal categories, inducing the identity at
the level of objects, and by the uniqueness of such functors, they coincide. The above diagram
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may therefore be rewritten as

XN L)

PaB"" ————="(A, f)(N, f') x PaB""

lw

_ hbal
(=) PaByg
l(—)
PaDihg _ _ PaDihg
I £ CT(N )

which may be viewed as a functor between half-balanced categories with a contraction.
On the other hand, another such a functor is

XL L F),

PaBibe ————— (X f)(X, /') « PaB2b

lw

(=) PaB2

l(—)

PaDihg - PaDihg
TN

(=)

By the universality of the contraction Pang“l — PaDihg, we then have jo ryov 5y =

TV IO F)-

7.4. Action on Teichmiiller groupoids and proof of Theorem [Il Tj s may be viewed as
the full subcategory of PaDihg whose objects are the classes modulo D of PITg x Bij(|S], S).
The action of GT then restricts to T g, and similarly in the completed cases. In the profinite
case, one checks that that resulting action coincides with that defined in in [Sch|. This proves
Theorem 11

7.5. Proof of Theorem [2l We define T ,,(k) by ObTp »(k) = ObTp ,, and for b,c € Ob Ty,
Homyy, , )(b,¢) = Autr, , (b)(k) X Autr, () Homry , (b,c), where for G a finitely generated
group, G(k) is its prounipotent completibn.

If 7 is a finitely generated group, we define the group scheme Autw(—) by Autn(k) :=
Aut((Lie7)¥), where for Lier is the Lie algebra of the prounipotent completion of 7, gk =
lim, (g/gn) ®k, and go = g, gn+1 = [9, §n]. We then have a morphism Aut 7(k) — Aut(n(k)),
0 — 0.. Aut(m,7(Qy)) is then defined as {(0,6;) € Aut 7(Q;) x Aut(m)|0.i = i6;}, where i is
the morphism m — m(Qy).

If G is a groupoid such that Isog(b,c) # 0 for any b, ¢ € Ob G, then the choice of b € ObG
gives rise to an isomorphism Aut G ~ 7P ¢—{} x Aut 7, where 7 = Autg(b); we then define
the group scheme AutG(—) by Aut G(k) := n(k)%P¢~{} x Autn(k). We define as above
Aut(Gy, G(Qy)) and the morphisms Aut(G;) + Aut(Gi, G(Q;)) — Aut G(Q)).

We have morphisms Gg — GT; — GT(Q;) and a functor PaBg; — PaBg(Q;). Theorem 2
follows from the fact that this functor is compatible with the actions of GT;, GT(Q;) on PaBg ,
PaBs(Ql).
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8. GRADED ASPECTS

Let t, be the graded Lie algebra with generators ¢;;, ¢ # j € [n] and relations ¢;; = t;;,
[tijs tik + k) = 0, [tij, tie] = O for 4, j, k, [ distinct. Let p,, be the quotient of t,, by the relations
Zﬂ jzitij = 0, for any i € [n]. Equivalently, p, is presented by generators t;; are relations
tii = tij, Ejlj#i ti; = 0 for any 4, and [t;;, ti] = 0 for 4, j, k, [ distinct.

Let k be a Q-ring, then the set M (k) of Drinfeld associators defined over k is the set of pairs
(11, ®) € k x exp(§%), satisfying the duality, hexagon and pentagon conditionsﬂ (see [Dr]). The

data of t € T}, and (u, ®) € M (k) gives rise to a morphism B, =¥ exp(t) x S,,, which extends
to an isomorphism B, (k) = exp(tX) x S, (see e.g. [AET]) if p € k*.

Proposition 27. There exists a unique morphism T ,, — exp(pX) x S,,, such that the diagram
B, ¥ exp(i%) xS, N R
l 1 commutes. It gives rise to an isomorphism T (k) = exp(pX) x S,,.

Lo — exp(pX) xS,

2
S 0h i

Proof. One checks that i. s takes z, to exp(u Zl§i<j§n ti;) and o; - - o2
to a conjugate of exp(u Zj‘ i ti;). This implies the announced commutative diagram. Let
Lo == Ker(lon, — S,) and [y, (k) be its k-prounipotent completion. The morphism
Lon — exp(py) x Sy gives rise to a morphism Iy (k) — exp(py); let us show that this is

an isomorphism. We have a morphism t, — grLie P,,, where P, := Ker(B,, — S,), given
by tij = class of log(oy---0;-2)07_i(07---0;-2)"". We then have a commutative diagram
t, — grlieP,
+ J where the horizontal maps are surjective and the Lie algebras in the

pn — £r Lie FO,[n]
right side are generated in degree 1. The Lie algebra morphism corresponding to the group
morphism Iy ,,) (k) — exp(p¥) is a Lie algebra morphism Lie Iy , (k) — pX, whose associated
graded morphism is a graded Lie algebra morphism gr Liel'¢ [, (k) — pX. The composite map
pX — grLie Fopmy@k — p¥ is a graded isomorphism, as it can be checked on the degree 1 part
of p,. It follows that the morphism p, — grLiel ) is injective as well, therefore it is an
isomorphism of Lie algebras. So I'g (k) — exp(pk) is an isomorphism. O

We define a category PaDih{" similarly to PaDihg, i.e., as the quotient by D of an inter-

mediate category PaDih? obtained from P/a_]\:)/ihs by replacing ', by exp(pX) x S, and the
morphism D — D,, — T, by D — D,, — S,, — exp(pX) x S,.

If (1, ®) € M(k), recall that a braided monoidal category PaCD$ may be defined as fol-
lows: ObPaCD% = ObPaBg; Hompacpe ((s,t), (s',)) is empty if [s| # [s/[, and is equal
to exp(tX) x {f € S,|s'f = s}; the composition is induced by the product in exp(t<) x S,;
and the tensor product is obtained by restriction from the group morphism (exp(tk) X Sy) X
(exp(t5,) x Spr) — exp(tn+n ) X Spns, induced by the Lie algebra morphism X x X, — tg_m
(t”,O) — tij, (0,ti5) — tntin+tj, and the group morphism S, x S,y — Spin, (0,0 ) = o*o,
such that (o *0')(i) = o (i) for i € [n], and (o xo’)(n+1i) =n+ o'(i) for ¢ € [n']. The braiding
constraint is defined by Bxy = (e”t”/ 2)["]’"*‘["/]3”,”/ and the associativity constraint is defined
by axyz = (q)(tm’t23))[n],n-{-[n/],n—i-n/—i-[n”] for |X| =n, |Y| = n’, |Z| = n”, Sn,n’ € Sn+n’ is
defined by s,/ (i) =n' + i for i € [n] and sy, (n+ i) =i for ¢ € [n'], and for I1,..., I, C [m]
disjoint subsets, the morphism t,, — t,,, £ — x> is defined by tij — Zaeli,ﬁelj tag. Then

it g is a graded Lie algebra, then g¥ is the degree completion of g ® k.
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PaCDE is a braided monoidal category; it follows that there is a unique monoidal functor
jo : PaBg — PaCD?7 which induces the identity on objects.

—~—— gr
We then define a functor PaCD$§ — PaDih{" as the composite functor PaACD$§ — PaDihg —
PaDih", where the first functor is induced by the projection morphisms t, — p,, and the sec-

gr —~—"gr
ond functor is the quotient functor PaDihg — PaDihg /D ~ PaDih{/.

Proposition 28. The functor PaCD? — PaDih{" is a half-balanced contraction.
Proof. We first show:
Lemma 29. Let X € ObPaBy,, be of degree n, then

m(hn € PaB{.}(X,X*) - PaCD?o}(XvX*)) = exp(% Z tZJ)(}l n2 1. )6 eXp(t ) Sn
1<i<j<n

Proof. 1t suffices to prove this for a particular Xo € ObPaB,; of degree n, say Xo =

o(o(--- (ee))). Indeed, if we denote by h;Y € PaB,} (X, X*) the element corresponding to h,

and if we have im(h;X°) = exp(4 D i<icj<n ti;) (4 21 1), then if X is another object with the

same degree, then im(h;\) = ®x; x- im(h°)Px x,, where xy = im(1 € PaB(X,Y) —

PaCD{ }(X, Y) = exp(t€)xS,,). As Py x+ = (111 iy )‘I)Xo, (111 i 711), Zl§i<j§n tij €

t,, is central and ®xs x- = @}i)xg, im(hX) = exp(§ El§i<j§n tu)(}l iy ’f)
We now prove that statement for Xg = e(e(---(ee))) of degree n, which we redenote
X,. The proof is by induction on n. The statement is clear for n = 1,2. Assume it

at order n — 1. Then hin € PaB (X, X)) may be viewed as the composite morphism

B ide ®hn_1 Boxe o, I . - ®
Xn = e® Xy =" e X, — X, ,®e = X whose image in PaCD{,,
is sexp(§ >y t1i) exp(5 Yocicjen tiy) (125 ), where s = (L% ,"1). So this image is
exp(% Elgiqgn tij)(’rllngl o 711) U

We then show:
Lemma 30. Let X,Y € ObPaBy,) be of degrees n,m, then
im((fy ®1idx)Bxy € PaB{ }(X RY,Y®X)— PaCD{.}(X RY,Y ® X))

_ ooon o ndl - n+m i
- (m+1 cem4n 1 - exp Z Z ta])'

J€"+[ ] agn+m]—{j}

Proof. The image of Bxy is (.1 1 e "T0 10 " )exp(h >ic[n],jent(m) tij), While the
image of Ay ® idx is exp(u Zj<j,e[m] tiir)- O

End of proof of Proposition[28 If X € Ob PaCDg has degree n, then the image of ax €
PaCD (X, X*) in PaDihg (X, X*) = exp(p¥) 1 S, s (1,2, 77 1) as im(X, e by € b =

n n—1
pn) = 0. Now (1,2, 1)=i%, therefore after taking the quotient by D, (ax) = id(x) in
EndPaDth ((X)).

Similarly, if X,Y € Ob(PaCch) have degrees n, m, then the image of (fy ® idx)Bxy €
PaCD3(X ® Y,V ® X) in PaDth (X®Y,Y ® X) = exp(pX,,,) X Snim is €™, where ¢ =
(% g - n-’:im) as 1m(zae[n+m]_{]} taj € thtm — Pngm) = 0 for any j. It follows that this
image coincides with if;éy, whose image in AutpaDihgr(<X ®Y)) is id(xgyy. It follows that
((0y ®idx)Bxy) =id(xgy) € Autpapiny (X ®Y)). All this implies that PaCD$ — PaDih{’
satisfies the half-balanced contraction conditions. (]

Proposition 28 immediately implies:
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Corollary 31. There exists a unique functor PaDihg kg PaDih{", with is the identity on
Jo

objects and such that the diagram PaBg PaCDE commutes.

LT

PaDihg —%> PaDih’’

Recall that the graded Grothendieck-Teichmiiller group GRT (k) is defined as GRT(k) =
GRT (k) x k*, where GRT; (k) is the set of all g € exp(j%) C exp(t§) (f2 C t3 being the Lie
subalgebra generated by t12,t23), such that

g>*t =gt 4+ Ad(g5%?) T (tes) + Ad(g%H?) T H(tis) = tiz + tag + tis,

2,3,4 1,234 1,23 _ 1,2,34 12,34
g g g =9 g )

equipped with the group law (g1 * g2)(4, B) := ¢g1(Ad(g2(A, B))(A), B)g2(A4, B), on which k*
acts by (c-g)(A,B) := g(c*A,c'B).

We now construct an action of this group on PaDih{ . For this, we recall from [E] the
notion of infinitesimally braided monoidal category (i.b.m.c.).

Definition 32. An i.b.m.c. is a braided monoidal category (C,®,cxy,axyz), which is

(1) symmetric, i.e., such that cy xcxy = idxgy for any X, Y € Ob(C,

(2) prounipotent (see Section [0), i.e., equipped with an assignment ObC > X — Ux <
Aute(X), such that fUx f~' =Uy for f € Isoc(X,Y),

(3) equipped with a functorial assignment (ObC)? 3 (X,Y) + txy € Lielxgy, such that
tyx = cyxtyxcxy and

txov,z = axyz(idx ®tyz)a;(%/z + (CYX & idz)ayxz(idy ®tXZ)al_/.1XZ(CYX & idz)_l.

According to [Dr], GRT(k) acts on {i.m.b. categories} from the right as follows: g €
GRT; (k) C exp(f¥) acts by (C, ®,cxy,axyz,txy)g := (C,®, cxy, a'yy 7 txy), where a’yy 5, ==
g(th®idZ, axyz(idx ®tyz)a;(1yz)axyz and ¢ € k* acts by (C, .. .)~g = (C, R, cxy,axyz, Ctxy).
Moreover, PaCDyg, equipped with cxy := 8|x|,|y|, ¢xvz = id|x|4|v|+/z| and txy = t[1\2X|],\X|+[IYH
is universal among i.b.m.cs C, equipped with a map S — Ob(C. We derive from this, as in [E],
Proposition 80, a morphism GRT(k) — Aut(PaCDyg).

We now introduce the notion of a balanced i.b.m.c.

Definition 33. A balanced structure on the i.b.m.c. C is a functorial assignment ObC > X —
tx € Lielx, such that for any X,Y € Ob(C, txgy —tx ®idy —idx ®ty =txy.

Definition 34. A contraction on the small balanced i.b.m.c. C is a functor C <;>> O, such that for
any X,Y,Z € Ob(C, (X®Y) = (Y X)(=: (X,1)), (XeY)®Z) = (Xe(Y®Z))(=:(X,Y,Z)),
(exy) = id<X1y>, (axyz) = id(X,Y,Z>7 and (txy + 2idx ®ty) = 0.
Remark 35. We derive from the latter condition that (tx) = 0 for any X € ObC. Indeed, it
gives by symmetrization (txgy) = 0, and therefore (tx) = 0 by taking Y = 1. By antisym-
metrization, this condition also implies (tx ® idy —idx ®ty) = 0.

We now construct a universal contraction on balanced i.b.m. categories.

Proposition 36. The i.b.m.c. PaCDg is equipped with a balanced structure given by tx =
Y i<icj<ntij for |X| =mn. Then the functor PaCDg — PaDih{’ is a contraction.

Proof. For |X| = n, |[Y] =m, txy + 2idx ®ty = 3 c,ipm] 2oacntm]—{j} tiar S0 (txy +
2idx ®ty) =0 as Zae[n+m]7{j} tio = 01in ppiy, for any j € n+ [m]. O
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Proposition 37. Let C be a balanced i.b.m.c. and let C <—>_> O be a contraction. Let S %
ObC be a map such that for any s € S, tyi) = 0. Then we have a commutative diagram
PaCDs — C

1 1
PaDih¥ — O

Proof. As C is an i.b.m.c., there exists a unique functor PaCDg — C of i.b.m. categories,
extending f. As ty,) = 0 for s € S, it is compatible with the balanced structures. The
construction of the commutative diagram is similar to the proof of Propositions 21l O

Proposition 38. 1) The action of GRT (k) on {i.b.m. categories} lifts to { balanced i.b.m. categories}
as follows: for (C,®,cxy,axyz,txy,tx) a balanced i.b.m.c., and g € GRT(k), C-g =
(C,....thy), where t'y = ctx and ¢ =im(g € GRT (k) — k*).

2)IfC L5 0 is a contraction of the balanced i.b.m.c. C, then C-g — C L5 0 is a contraction
of the balanced i.b.m.c. C (where C - g = C is the identity of the underlying categories).

The proof is immediate.

We now construct an action of GRT (k) on PaCDg — PaDih¥ . A morphism GRT(k) —
Aut(PaCDyg), g ~ a4 is defined by a, : PaCDg — PaCDg % g — PaCDg, where the first
morphism is the unique functor of i.m.b. categories, inducing the identity on objects, and the
second morphism is the identification of the underlying categories.

We define a morphism GRT (k) — Aut(PaDih{"), g — j, by the condition that the diagram

PaCDg — PaCDg=xg
(=1 _ =) is a functor of balanced i.b.m. categories with contractions. We
PaDihy %  PaDih¥
PaCDs ¢ PaCDg
then have a commutative diagram  (-){ 4=
PaDih¥ 2 PaDih¥

Let now (u, ®) € M(k), where p € k™, be an associator. It gives rise to an isomorphism
1o : GT(k) = GRT(k), defined by the condition that g * ® = ® *xig(g) for any g € GT(k). In
the diagram

(=) (=)

T e T
PaBs —— PaCDs PaDihs —— PaDihY’
P P
gl i@(g)t gl J{icp(g)
PaBs —''- PaCDs  PaDihg —%~ PaDih¥

Th~— = 7
(=) (=)
all the squares except perhaps the rightmost one commute. But this last square has to commute
by the uniqueness of the morphism PaDihg — O in Proposition 23] (the existence in this
proposition implies uniqueness by abstract nonsense).

All this implies that the isomorphism PaDihg ke PaDih{’ gives rise to a commutative
GT(k) — AutPaDihg
diagram sl 1
GRT(k) — AutPaDih{’

The isomorphism PaDihg % PaDih{ and the actions of G(R)T(k) on these categories
induce the identity at the level of objects. We then define T(Jq):I to be the full subcategory of
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PaDih[g:]7 whose set of objects is (PIT,, X Bij([n], [n]))/Dn, and obtain this way an isomorphism

GT(k) — AutTp,(k)
Ton(k) — T(‘Jq):I inducing a commutative diagram | i
GRT(k) — AutTy (k)
This proves Theorem 3

Remark 39. T3 could alternatively be defined as 7%,,Cr.q,s, where I' = D,,, G = exp(pX) x

)

Sn, and S = [n] (see Section [I]).
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