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Abstract

We show that the evaluation of an integral considered by Boros and
Moll is a special case of a convolution result about Student t-densities
obtained by the authors in 2008.
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1 Introduction

In a series of papers [4],[1],[5],[6],[2] Moll and his coauthors have considered the
integral
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It was evaluated first by George Boros, who gave the identity
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The paper [1] gives a survey of different proofs of the formula (2]).

The purpose of the present paper is to point out that the evaluation can be
considered as a special case of a convolution result about Student t-densities,
thereby adding yet another proof to the list of [IJ.
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For v > 0 the probability density on R
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is called a Student t-density with f = 2v degrees of freedom.

It is the special case v = m + 1/2 which is relevant in connection with the
integral ().

The relevant convolution result from [3] is

1 T 1 — n,m)
(&) (75) - 3 s e o

k=nAm
where 0 < a < 1, n, m are nonnegative integers and * is the ordinary convolution
of densities.

The important issue in [3] is to prove that the coefficients B,g"’m) (a) are non-
negative for 0 < a < 1. This follows from explicit formulas for these coefficients
in two cases: (I): n = m, (II): n arbitrary, m = 0, combined with the symmetry
relation

v (@) = B (1 - a) (7)
and a recursion formula
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We do not know an explicit formula for ﬁk )( ) when n,m are arbitrary.
The formula when m = n is given in [3, Theorem 2.2] and reads
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The case a = 1/2 leads to
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Let us consider n = m and a = 1/2 in ([@l), where we replace x by /2 and
multiply by 1/2 on both sides:
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The left-hand side is equal to
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where we have used the substitution ¢t =y — /2. Clearly
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Finally, substituting ¢t = y/1 + 2%/4 s we get
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where a = (1 — 22/4)/(1 + 22 /4).
The right-hand side of (I2]) is equal to
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Combining this gives
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Using that 2(a + 1) = 4/(1 + 22 /4) we get
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where
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Using the binomial formula for (a + 1)’ and interchanging the summations, we

finally get
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which can easily be reduced to ().
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