# Derivation of an integral of Boros and Moll via convolution of Student t-densities 

Christian Berg and Christophe Vignat

September 15, 2010


#### Abstract

We show that the evaluation of an integral considered by Boros and Moll is a special case of a convolution result about Student t-densities obtained by the authors in 2008.


Keywords Quartic integral, Student t-density.
AMS Classification Numbers 33C05, 60E07

## 1 Introduction

In a series of papers [4], [1],[5], [6], [2] Moll and his coauthors have considered the integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}, a>-1, m=0,1, \ldots \tag{1}
\end{equation*}
$$

It was evaluated first by George Boros, who gave the identity

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2} \frac{P_{m}(a)}{[2(a+1)]^{m+1 / 2}}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{m}(a)=\sum_{j=0}^{m} d_{j, m} a^{j} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{j, m}=2^{-2 m} \sum_{i=j}^{m} 2^{i}\binom{2 m-2 i}{m-i}\binom{m+i}{m}\binom{i}{j} \tag{4}
\end{equation*}
$$

The paper [1] gives a survey of different proofs of the formula (24).
The purpose of the present paper is to point out that the evaluation can be considered as a special case of a convolution result about Student t-densities, thereby adding yet another proof to the list of [1].

For $\nu>0$ the probability density on $\mathbb{R}$

$$
\begin{equation*}
f_{\nu}(x)=\frac{A_{\nu}}{\left(1+x^{2}\right)^{\nu+\frac{1}{2}}}, \quad A_{\nu}=\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma(\nu)} \tag{5}
\end{equation*}
$$

is called a Student t-density with $f=2 \nu$ degrees of freedom.
It is the special case $\nu=m+1 / 2$ which is relevant in connection with the integral (1).

The relevant convolution result from [3] is

$$
\begin{equation*}
\frac{1}{a} f_{n+\frac{1}{2}}\left(\frac{x}{a}\right) * \frac{1}{1-a} f_{m+\frac{1}{2}}\left(\frac{x}{1-a}\right)=\sum_{k=n \wedge m}^{n+m} \beta_{k}^{(n, m)}(a) f_{k+\frac{1}{2}}(x) \tag{6}
\end{equation*}
$$

where $0<a<1, n, m$ are nonnegative integers and $*$ is the ordinary convolution of densities.

The important issue in [3] is to prove that the coefficients $\beta_{k}^{(n, m)}(a)$ are nonnegative for $0<a<1$. This follows from explicit formulas for these coefficients in two cases: (I): $n=m$, (II): $n$ arbitrary, $m=0$, combined with the symmetry relation

$$
\begin{equation*}
\beta_{k}^{(n, m)}(a)=\beta_{k}^{(m, n)}(1-a) \tag{7}
\end{equation*}
$$

and a recursion formula

$$
\begin{equation*}
\frac{1}{2 k+1} \beta_{k+1}^{(n, m)}(a)=\frac{a^{2}}{2 n-1} \beta_{k}^{(n-1, m)}(a)+\frac{(1-a)^{2}}{2 m-1} \beta_{k}^{(n, m-1)}(a) \tag{8}
\end{equation*}
$$

We do not know an explicit formula for $\beta_{k}^{(n, m)}(a)$ when $n, m$ are arbitrary. The formula when $m=n$ is given in [3, Theorem 2.2] and reads

$$
\begin{align*}
\beta_{m+i}^{(m, m)}(a) & =(4 a(1-a))^{i}\left(\frac{m!}{(2 m)!}\right)^{2} 2^{-2 m} \frac{(2 m-2 i)!(2 m+2 i)!}{(m-i)!(m+i)!}  \tag{9}\\
& \times \sum_{j=0}^{m-i}\binom{2 m+1}{2 j}\binom{m-j}{i}(2 a-1)^{2 j}, \quad i=0, \ldots, m \tag{10}
\end{align*}
$$

The case $a=1 / 2$ leads to

$$
\begin{equation*}
\beta_{m+i}^{(m, m)}(1 / 2)=\left(\frac{m!}{(2 m)!}\right)^{2} 2^{-2 m} \frac{(2 m-2 i)!(2 m+2 i)!}{(m-i)!(m+i)!}\binom{m}{i} . \tag{11}
\end{equation*}
$$

Let us consider $n=m$ and $a=1 / 2$ in (6), where we replace $x$ by $x / 2$ and multiply by $1 / 2$ on both sides:

$$
\begin{equation*}
f_{m+1 / 2} * f_{m+1 / 2}(x)=\sum_{k=m}^{2 m} \frac{1}{2} \beta_{k}^{(m, m)}(1 / 2) f_{k+1 / 2}(x / 2) \tag{12}
\end{equation*}
$$

The left-hand side is equal to

$$
\begin{gathered}
L:=A_{m+1 / 2}^{2} \int_{-\infty}^{\infty} \frac{d y}{\left[\left(1+y^{2}\right)\left(1+(x-y)^{2}\right)\right]^{m+1}} \\
=A_{m+1 / 2}^{2} \int_{-\infty}^{\infty} \frac{d t}{\left[\left(1+(t+x / 2)^{2}\right)\left(1+(t-x / 2)^{2}\right)\right]^{m+1}},
\end{gathered}
$$

where we have used the substitution $t=y-x / 2$. Clearly

$$
L=A_{m+1 / 2}^{2}\left(1+x^{2} / 4\right)^{-2(m+1)} \int_{-\infty}^{\infty} \frac{d t}{\left[1+2 t^{2} \frac{1-x^{2} / 4}{\left(1+x^{2} / 4\right)^{2}}+\frac{t^{4}}{\left(1+x^{2} / 4\right)^{2}}\right]^{m+1}}
$$

Finally, substituting $t=\sqrt{1+x^{2} / 4} s$ we get

$$
L=2 A_{m+1 / 2}^{2}\left(1+x^{2} / 4\right)^{-2 m-3 / 2} \int_{0}^{\infty} \frac{d s}{\left[1+2 a s^{2}+s^{4}\right]^{m+1}},
$$

where $a=\left(1-x^{2} / 4\right) /\left(1+x^{2} / 4\right)$.
The right-hand side of (12) is equal to

$$
\begin{equation*}
R:=\sum_{i=0}^{m} \frac{1}{2} \beta_{m+i}^{(m, m)}(1 / 2) \frac{A_{m+i+1 / 2}}{\left(1+x^{2} / 4\right)^{m+i+1}} \tag{13}
\end{equation*}
$$

Combining this gives

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}= \\
& \quad \frac{\pi}{2^{2 m+2}} \frac{(1 / 2)_{m}}{((2 m)!)^{2}} \sum_{i=0}^{m} \frac{(2 m-2 i)!(2 m+2 i)!}{(m+1 / 2)_{i}(m-i)!}\binom{m}{i}\left(1+x^{2} / 4\right)^{m+1 / 2-i}
\end{aligned}
$$

Using that $2(a+1)=4 /\left(1+x^{2} / 4\right)$ we get

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2} \frac{P_{m}(a)}{[2(a+1)]^{m+1 / 2}}
$$

where

$$
\left.P_{m}(a)=\frac{(1 / 2)_{m}}{((2 m)!)^{2}} \sum_{i=0}^{m} \frac{(2 m-2 i)!(2 m+2 i)!}{(m+1 / 2)_{i}(m-i)!}\binom{m}{i}[(a+1) / 2]\right)^{i}
$$

Using the binomial formula for $(a+1)^{i}$ and interchanging the summations, we finally get

$$
P_{m}(a)=\sum_{j=0}^{m} d_{j, m} a^{j}
$$

with

$$
d_{j, m}=\frac{(1 / 2)_{m}}{((2 m)!)^{2}} \sum_{i=j}^{m} \frac{(2 m-2 i)!(2 m+2 i)!}{(m+1 / 2)_{i}(m-i)!2^{i}}\binom{m}{i}\binom{i}{j}
$$

which can easily be reduced to (4).

## References

[1] T. Amdeberhan and V. H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones. Ramanujan J. 18 (2009), 91-102.
[2] T. Amdeberhan, V. H. Moll and C. Vignat, The Evaluation of a quartic Integral via Schwinger, Schur and Bessel. Manuscript. arXiv:1009.2399v1[math.CA]
[3] C. Berg and C. Vignat, Linearization coefficients of Bessel polynomials and properties of Student t-distributions. Const. Approx. 27 (2008), 15-32.
[4] G. Boros and V. H. Moll, An integral hidden in Gradshteyn and Ryzhik. J. Comput. Appl. Math. 106 (1999), 361-368.
[5] D. V. Manna and V. H. Moll, A remarkable sequence of integers. Expo Math. 27 (2009), 289-312.
[6] V. H Moll, Seized opportunities, Notices Amer. Math. Soc. 57 (2010), 476484.

Christian Berg, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark email: berg@math.ku.dk

Christophe Vignat, Laboratoire des Signaux et Systèmes, Université d'Orsay, France
email: christophe.vignat@u-psud.fr

