Partitioning the triangles of the cross polytope into surfaces

Jonathan Spreer

Abstract

We present a constructive proof, that there exists a decomposition of the 2-skeleton of the k-dimensional cross polytope β^k into closed surfaces of genus ≤ 1 , each with a transitive automorphism group given by the vertex transitive \mathbb{Z}_{2k} -action on β^k . Furthermore we show, that for each $k \equiv 1, 5(6)$ the 2-skeleton of the (k - 1)-simplex is a union of highly symmetric tori and Möbius strips.

MSC 2010: 52B12; 52B70; 57Q15; 57M20; 05C10; Keywords: cross polytope, simplicial complexes, triangulated surfaces, difference cycles.

1 Introduction

Surfaces as subcomplexes of polytopes have already been studied by Altshuler who discovered triangulated tori in the 2-skeleton of the family of cyclic 4-polytopes $C_4(n)$ [1] and surfaces in the 2-skeleton of stacked polytopes [2]. Later Betke, Schulz and Wills proved that every orientable 2-manifold is contained in the 2-skeleton of infinitely many 4-polytopes [4].

A priori we can state, that every triangulated surface, i. e. every 2-dimensional simplicial complex with closed circuits as vertex links, with k vertices is a sub-complex of the (k-1)-simplex Δ^{k-1} and that every centrally symmetric surface with 2k vertices lies in the 2-skeleton of the k-dimensional cross polytope β^k , i. e. the convex hull of 2k points $x_i^{\pm} = (0, \ldots, 0, \pm 1, 0, \ldots, 0) \in \mathbb{R}^k, 1 \leq i \leq k$. Hence, of particular interest are surfaces which, in addition, contain the full edge graph of an ambient polytope P. These surfaces are then referred to as 1-Hamiltonian in P.

On the other hand embeddings of certain graphs into triangulated surfaces (so-called triangular embeddings) were extensively studied in the course of the proof of Heawood's Map Color Theorem in graph theory (cf. [12] or chapter 4 of [13]). If a Graph G is embeddable into a surface of genus g but not into a surface of smaller genus, then g is called the genus of G. Here, as well as in the prior case, we are interested in graph embeddings that cover the full edge graph of an ambient triangulated surface. For the complete graph or, equivalently, the *n*-simplex these are exactly the 2-neighborly surfaces.

For the complete n-partite graph with two vertices in each partition or the k-dimensional cross polytope respectively, Jungerman and Ringel were able to show the following:

Theorem 1.1 (Regular cases in [7]). For any orientable surface M and any $k \neq 2(3)$ satisfying the equality $2(k-1)(k-3) = 3(2-\chi(M))$ there exists a triangulation of M whose 1-skeleton equals the 1-skeleton of β^k .

There is a series of centrally symmetric 1-Hamiltonian surfaces S_n , $n \ge 0$, with 12n + 8 vertices in β^{6n+4} and, thus, of genus $g(S_n) = 12n^2 + 8n + 1$ (cf. [7] and Example 3.6 in [8] for a concrete list of triangles). In particular, S_0 is the 8-vertex Altshuler torus in the decomposition of β^4 described below.

A closely related question is whether or not the *i*-skeleton skel_{*i*}(*P*), $1 \le i \le (d-2)$, of a *d*-polytope *P* is *decomposable*, i. e. if there exist two (possibly bounded) PL *i*-manifolds M_1 and M_2 with $M_1 \cup M_2 = \text{skel}_i(P)$ such that $M_1 \cap M_2 \subset \text{skel}_{i-1}(P)$.

Grünbaum and Malkevitch [6] as well as Martin [11] treated the case i = 1. The case i = 2 was settled in the case of simplicial polytopes by Betke, Schulz and Wills as follows:

Theorem 1.2 (Betke, Schulz, Wills, [4]). There are exactly 5 simplicial polytopes with decomposable 2-skeletons:

- 1. The 2-skeleton of the 4-simplex Δ^4 is decomposable into 2 Möbius strips with cyclic symmetry, each with the minimum number of 5 vertices, 10 edges and 5 triangles,
- 2. the 18 triangles of the cyclic 4-polytope $C_4(6)$ with 6 vertices form the union of two Möbius strips where the triangulations equal the 6-vertex real projective plane with one triangle removed,
- 3. the triangles of the double pyramid over the 3-simplex can be partitioned into two Möbius strips on 6 vertices and 8 triangles each,
- 4. the 2-skeleton of the 4-dimensional cross polytope (i. e. the double pyramid over the octahedron) equals the union of two 8-vertex Altshuler tori and
- 5. the 20 triangles of the 5-simplex Δ^5 decompose into two copies of the 6-vertex real projective plane.

Note, that 1., 4. and 5. are highly symmetric. 1. and 4. occur as a part of the two series of decompositions presented below.

The proof of Theorem 1.2 relies on the fact, that a decomposition of the 2-skeleton of a *d*-Polytope P into two surfaces is only possible if each edge of P is contained in at most 4 triangles. Thus, $4 \leq d \leq 5$ and the number of vertices has to be bounded.

The idea of the proof of Theorem 1.2 shows that in general decompositions of a polytope P with more than 2 components are not as restrictive towards the local combinatorial structure of P. In this article we will focus on highly symmetric decompositions of the 2-skeleton of β^k and Δ^{k-1} with arbitrary many components. Therefore we define

Definition 1.3 (Difference cycle). Let $a_i \in \mathbb{N}\setminus\{0\}$, $0 \leq i \leq d$, $n := \sum_{i=0}^{d} a_i$ and $\mathbb{Z}_n = \langle (0, 1, \dots, n-1) \rangle$. The set

$$(a_0:\ldots:a_d):=\mathbb{Z}_n\cdot\{0,a_0,\ldots,\sum_{i=0}^{d-1}a_i\},\$$

where \cdot is the induced cyclic \mathbb{Z}_n -action on subsets of \mathbb{Z}_n , is called *difference cycle of dimension d on n vertices*. The number of its elements is referred to as the *length* of the difference cycle. If *C* is a union of difference cycles of dimension *d* on *n* vertices and λ is a unit of \mathbb{Z}_n such that the complex λC (obtained by multiplying all vertex labels modulo *n* by λ) equals *C*, then λ is called a *multiplier* of *C*.

Note, that for any unit $\lambda \in \mathbb{Z}_n^{\times}$ the complex λC is *combinatorially isomorphic* to C, i. e. C and λC are equal up to a relabeling of the vertices. In particular all $\lambda \in \mathbb{Z}_n^{\times}$ are multipliers of the complex $\bigcup_{\lambda \in \mathbb{Z}_n^{\times}} \lambda C$.

The definition of a difference cycle above is similar to the one given in [9]. For a more thorough introduction into the field of the more general difference sets and their multipliers see Chapter VI and VII in [3].

Throughout this article we will look at difference cycles as simplicial complexes with a transitive automorphism group given by the cyclic \mathbb{Z}_n -action on its elements: Every (d+1)-tuple $\{x_0, \ldots, x_d\}$ is interpreted as a *d*-simplex $\Delta^d = \langle x_0, \ldots, x_d \rangle$. A simplicial complex *C* is called *transitive*, if its group of automorphisms acts transitively on the set of vertices. In particular any union of difference cycles is a transitive simplicial complex.

Remark 1.4. It follows from the definition that the set of difference cycles of dimension d on k vertices defines a partition of the d-skeleton of the (k-1)-simplex. Two (d+1)-tuples (a_0, \ldots, a_d) and (b_0, \ldots, b_d) both of sum k define the same difference cycle if and only if for a fixed $j \in \mathbb{Z}$ we have $a_{(i+j) \mod (d+1)} = b_i$ for all $0 \leq i \leq d$.

Proposition 1.5. Let $(a_0 : \ldots : a_d)$ be a difference cycle of dimension d on n vertices and $1 \le k \le d+1$ the smallest integer such that $k \mid (d+1)$ and $a_i = a_{i+k}, \ 0 \le i \le d-k$. Then $(a_0 : \ldots : a_d)$ is of length $\sum_{i=0}^{k-1} a_i = \frac{nk}{d+1}$.

Proof. We set $m := \frac{nk}{d+1}$ and compute

$$\left\langle 0+m, a_0+m, \dots, (\Sigma_{i=0}^{d-1}a_i)+m \right\rangle = \left\langle \Sigma_{i=0}^{k-1}a_i, \Sigma_{i=0}^ka_i, \dots, \Sigma_{i=0}^{d-1}a_i, 0, a_1, \dots, \Sigma_{i=0}^{k-2}a_i \right\rangle$$
$$= \left\langle 0, a_0, \dots, \Sigma_{i=0}^{d-1}a_i \right\rangle$$

(all entries modulo n). Hence, the length of $(a_0 : \ldots : a_d)$ is $\leq \frac{nk}{d+1}$ and since k is minimal with $k \mid (d+1)$ and $a_i = a_{i+k}$, the upper bound is attained.

2 The decomposition of $skel_2(\beta^k)$ into closed surfaces

In the sequel we will look at the boundary of the k-dimensional cross polytope in terms of the abstract simplicial complex

$$\partial \beta^{k} = \{ \langle a_{1}, \dots, a_{k} \rangle | a_{i} \in \{0, \dots, 2k-1\}, \{i, k+i\} \notin \{a_{1}, \dots, a_{k}\}, \forall 0 \leq i \leq k-1 \}.$$
(2.1)

In particular, the diagonals of β^k are precisely the edges $\langle i, k+i \rangle$, $1 \leq i \leq k$, and, thus, coincide with the difference cycle (k:k). We can now state our main result:

Theorem 2.1. The 2-skeleton of the k-dimensional cross polytope β^k can be decomposed into triangulated vertex transitive closed surfaces.

More precisely, if $k \equiv 1, 2(3)$, $\operatorname{skel}_2(\beta^k)$ decomposes into $\frac{(k-1)(k-2)}{3}$ triangulated vertex transitive closed surfaces of Euler characteristic 0 on 2k vertices and, if $k \equiv 0(3)$, into $\frac{k}{3}$ disjoint copies of $\partial\beta^3$ (on 6 vertices each) and $\frac{k(k-3)}{3}$ triangulated vertex transitive closed surfaces of Euler characteristic 0 on 2k vertices otherwise.

In this section, we will explicitly construct the transitive surfaces and determine their topological types for any given integer $k \ge 3$. The proof will consist of a number of consecutive lemmata.

Lemma 2.2. The 2-skeleton of β^k can be written as the following set of difference cycles:

$$(l:j:2k-l-j), (l:2k-l-j:j)$$

for 0 < l < j < 2k - l - j, $k \notin \{l, j, l + j\}$, and

(j:j:2(k-j))

for 0 < j < k with $2j \neq k$. If $k \not\equiv 0(3)$ all of them are of length 2k, if $k \mod 3 = 0$ the difference cycle $\left(\frac{2k}{3} : \frac{2k}{3} : \frac{2k}{3}\right)$ has length $\frac{2k}{3}$.

Proof. Let β^k be the k-dimensional cross polytope with vertices $\{0, \ldots, 2k-1\}$ and diagonals $\{j, k+j\}, 0 \leq j \leq k-1$. It follows from the recursive construction of β^k as the double pyramid over β^{k-1} that it contains all 3-tuples of vertices as triangles except the ones including a diagonal. Thus, a difference cycle of the form (a:b:c) lies in $\text{skel}_2(\beta^k)$ if and only if $k \notin \{a, b, a+b\}$. In particular $\text{skel}_2(\beta^k)$ is a union of difference cycles.

Note, that each ordered 3-tuple 0 < l < j < 2k - l - j defines exactly two distinct difference cycles on the set of 2k vertices, namely

$$(l:j:2k-l-j)$$
 and $(l:2k-l-j:j)$

and it follows immediately that there is no other difference cycle $(a : b : c), k \notin \{a, b, a + b\}$ on 2k vertices with a, b, c pairwise distinct.

For any positive integer 0 < j < k with $2j \neq k$ there is exactly one difference cycle

$$(j:j:2k-2j))_{j}$$

and since j must fulfill 0 < 2j < 2k there are no further difference cycles without diagonals with at most two different entries.

The length of the difference cycles follows directly from Proposition 1.5 with d = 2 and n = 2k.

Lemma 2.3. A closed 2-dimensional pseudomanifold S defined by m difference cycles of full length on the set of n vertices has Euler characteristic $\chi(S) = (1 - \frac{m}{2})n$.

Proof. Since all difference cycles are of full length, S consists of n vertices and $m \cdot n$ triangles. Additionally, the pseudo manifold property asserts that S has $\frac{3}{2}m \cdot n$ edges and, thus,

$$\chi(S) = n - \frac{3}{2}m \cdot n + m \cdot n = n(1 - \frac{m}{2}).$$

Lemma 2.4. Let 0 < l < j < 2k - l - j, $k \notin \{l, j, l + j\}$ and m := gcd(l, j, 2k). Then

$$S_{l,j,2k} := \{ (l:j:2k-l-j), (l:2k-l-j:j) \} \cong \{1,\ldots,m\} \times \mathbb{T}^2,$$

where all connected components of $S_{l,j,2k}$ are combinatorially isomorphic to each other.

Proof. The link of vertex 0 in $S_{l,j,2k}$ is equal to the cycle

Since 0 < l < j < 2k - l - j and $k \notin \{l, j, l + j\}$ all vertices are distinct and $lk_{S_{l,j,2k}}(0)$ is the boundary of a hexagon. By the vertex transitivity all other links are cycles and $S_{l,j,2k}$ is a surface.

Since l, j and 2k - l - j are pairwise distinct both (l : j : 2k - l - j) and (l : 2k - l - j : j) have full length and by Lemma 2.3 the surface has Euler characteristic 0.

In order to see that $S_{l,j,2k}$ is oriented we look at the (oriented) boundary of the triangles in $S_{l,j,2k}$ in terms of 1-dimensional difference cycles:

$$\begin{aligned} \partial(l:j:2k-l-j) &= (j:2k-j) - (l+j:2k-l-j) + (l:2k-l) \\ \partial(l:2k-l-j:j) &= (2k-l-j:l+j) - (2k-j:j) + (l:2k-l) \\ &= (j:2k-j) - (l+j:2k-l-j) + (l:2k-l) \end{aligned}$$

and, thus $\partial(l:j:2k-l-j) - \partial(l:2k-l-j:j) = 0$ and $S_{l,j,2k}$ is oriented. Now consider

$$(l:j:2k-l-j) = \mathbb{Z}_{2k} \cdot \langle 0, l, l+j \rangle$$

Clearly $\langle (0+i) \mod 2k, (l+i) \mod 2k, (l+j+i) \mod 2k \rangle$ share at least one vertex if $i \in \{0, l, 2k - l, j, 2k - j, 2k - l - j, l + j\}$. For any other value of i < 2k the intersection of the triangles is empty. By iteration it follows, that (l : j : 2k - l - j) has exactly gcd(0, l, 2k - l, j, 2k - j, 2k - l - j, l + j) = gcd(l, j, 2k) = m connected components. The same holds for (l : 2k - l - j : j) and $(0, \ldots, (2k - 1))^i \cdot \langle 0, l, l + j \rangle$ is disjoint to $\langle 0, l, 2k - j \rangle$ for $i \notin \{0, l, 2k - l, j, 2k - j, 2k - l - j, l + j\}$. Together with the fact that $star_{S_{l,j,2k}}(0)$ consists

of triangles of both (l : j : 2k - l - j) and (l : 2k - l - j : j) it follows that $S_{l,j,2k}$ has m connected components and by a shift of the indices one can see that all of them must be combinatorially isomorphic.

As a consequence it follows that $S_{l,j,2k} \cong \{1, \ldots, m\} \times \mathbb{T}^2$.

Remark 2.5. Some of the connected components of the surfaces presented above are combinatorially isomorphic to the so-called Altshuler tori

$$\{(1:n-3:2), (1:2:n-3)\}$$

with $n = \frac{2k}{m} \ge 7$ vertices mentioned above (cf. proof of Theorem 4 in [2]). However, other triangulations of transitive tori are part of the decomposition as well: in the case k = 6 there are four different combinatorial types of tori. This is in fact the total number of combinatorial types of transitive tori on 12 vertices (cf. Table 1).

Lemma 2.6. Let

$$M := \left\{ (j:j:2(k-j)) \mid 0 < j < k; 2j \neq k \right\},\$$

$$M_1 := \left\{ (l:l:2(k-l)) \mid 1 \le l \le \left\lfloor \frac{k-1}{2} \right\rfloor \right\} and\$$

$$M_2 := \left\{ (k-l:k-l:2l)) \mid 1 \le l \le \left\lfloor \frac{k-1}{2} \right\rfloor \right\}.$$

For all $k \ge 3$ the triple (M, M_1, M_2) defines a partition

$$M = M_1 \dot{\cup} M_2$$

into two sets of equal order. In particular we have $|M| \mod 2 = 0$.

Proof. From $1 \leq l \leq \lfloor \frac{k-1}{2} \rfloor$ it follows that k-l > l and 2l < k < 2(k-l), thus $M_1 \cap M_2 = \emptyset$ and $M_1 \cup M_2 \subseteq M$.

On the other hand let $\lfloor \frac{k-1}{2} \rfloor < j < k - \lfloor \frac{k-1}{2} \rfloor$. If k is odd then $\frac{k-1}{2} < j < \frac{k+1}{2}$ which is impossible for $j \in \mathbb{N}$. If k is even, then $\frac{k}{2} - 1 < j < \frac{k}{2} + 1$, hence j = k which is excluded in the definition of M. All together $M_1 \cup M_2 = M$ holds and

$$|M| = 2\left\lfloor \frac{k-1}{2} \right\rfloor = \begin{cases} k-1 & \text{if } k \text{ is odd} \\ k-2 & \text{else.} \end{cases}$$

Lemma 2.7. The complex

$$S_{l,2k} := \{ (l:l:2(k-l)), (k-l:k-l:2l) \},\$$

 $1 \leq l \leq \lfloor \frac{k-1}{2} \rfloor$, is a disjoint union of $\frac{k}{3}$ copies of $\partial \beta^3$ if $3 \mid k$ and $l = \frac{k}{3}$ and a surface of Euler characteristic 0 otherwise.

Proof. We proof that $S_{l,2k}$ is a surface by looking at the link of vertex 0:

where 2l = k - l and 2k - 2l = k + l if and only if $l = \frac{k}{3}$. Thus, $lk_{S_{l,j,2k}}(0)$ is either the boundary of a hexagon or, in the case $l = \frac{k}{3}$, the boundary of a quadrilateral and $S_{l,2k}$ is a surface.

Furthermore, if $l \neq \frac{k}{3}$ the surface $S_{l,2k}$ is a union of two difference cycles of full length and by Lemma 2.3 we have $\chi(S_{l,2k}) = 0$. If $l = \frac{k}{3}$, $(\frac{k}{3} : \frac{k}{3} : \frac{k}{3})$ is of length $\frac{2k}{3}$ and it follows

$$\chi(S_{\frac{k}{3},2k}) = 2k - \frac{8}{2}k + \frac{8}{3}k = \frac{2}{3}k.$$

By a calculation analogue to the one in the proof of Lemma 2.4 one obtains that $S_{\frac{k}{3},2k}$ consists of $gcd(l,2k) = \frac{k}{3}$ isomorphic connected components of type {3,4}. Hence, $S_{\frac{k}{3},2k}$ is a disjoint union of $\frac{k}{3}$ copies of $\partial\beta^3$.

Theorem 2.8 (Lutz [10]). Let n = 8 + 2m for $m \ge 0$. Then the complex

$$A_6(n) := \{ (1:1:(n-2)), (2:(\frac{n}{2}-1):(\frac{n}{2}-1) \}$$

is a torus for m even and a Klein bottle for m odd.

Lemma 2.9. Let $k \ge 3$, $1 \le l \le \lfloor \frac{k-1}{2} \rfloor$, $l \ne \frac{k}{3}$ and $n := \gcd(l,k)$. Then $S_{l,2k}$ is isomorphic to n copies of $A_6(\frac{2k}{n})$.

Proof. Since $n = \gcd(l, k) = \gcd(l, k-l)$ we have $n = \min\{\gcd(l, 2(k-l)), \gcd(2l, k-l)\}$ and either $\frac{l}{n} \in \mathbb{Z}_{\frac{2k}{n}}^{\times}$ or $\frac{k-l}{n} \in \mathbb{Z}_{\frac{2k}{n}}^{\times}$ holds. It follows by multiplying with l or k-l that $A_6(\frac{2k}{n})$ is isomorphic to $S_{\frac{l}{n}, \frac{2k}{n}} = S_{\frac{k-l}{n}, \frac{2k}{n}}$. By the monomorphism

$$\mathbb{Z}_{\underline{2k}} \to \mathbb{Z}_{2k} \quad j \mapsto (lj \mod 2k)$$

we have a relabeling of $S_{\frac{l}{n},\frac{2k}{n}}$ and a small computation shows that the relabeled complex is equal to the connected component of $S_{l,2k}$ containing 0. By a shift of the vertex labels we see that all other connected components of $S_{l,2k}$ are isomorphic to the one containing 0 what states the result.

Proof of Theorem 2.1. Lemma 2.2 and Lemma 2.6 describe $\text{skel}_2(\beta^k)$ in terms of 2 series of pairs of difference cycles

$$\{(l:j:2k-l-j), (l:2k-l-j:j)\}$$
 and $\{(l:l:2(k-l)), (k-l:k-l:2l)\}$

for certain parameters j and l. Lemma 2.4 determines the topological type of the first and Theorem 2.8 together with Lemma 2.7 and 2.9 verifies the type of the second series.

Since $|\operatorname{skel}_2(\beta^k)| = \binom{2k}{3} - k(2k-2)$ and for $k \neq 0(3)$ all surfaces have exactly 4k triangles we get an overall number of $\frac{(k-1)(k-2)}{3}$ surfaces. If k = 0(3) all surfaces but one have 4k triangles, the last one has $\frac{8k}{3}$ triangles. All together this implies that there are $\frac{k(k-3)}{3}$ of Euler characteristic 0 and $\frac{k}{3}$ copies of $\partial\beta^3$.

Table 1 shows the decomposition of $\text{skel}_2(\beta^k)$ for $3 \leq k \leq 10$. The table was computed using the GAP package simpcomp [5]. For a complete list of the decomposition for $k \leq 90$ see [14].

3 The decomposition of $\operatorname{skel}_2(\Delta^{k-1})$

First note, that $\operatorname{skel}_2(\Delta^{k-1})$, $k \ge 3$, equals the set of all triangles on k vertices. By looking at its vertex links we can see that in the case of 2k vertices the complex $\{(l:k-l:k)\}$ can not be part of a triangulated surface for any 0 < l < k. Thus, the decomposition of $\operatorname{skel}_2(\beta^k)$ can not be extended to a decomposition of $\operatorname{skel}_2(\Delta^{2k-1})$ in an obvious manner. However, for other numbers of vertices the situation is different:

Theorem 3.1. Let k > 1, $k \equiv 1, 5(6)$. Then the 2-skeleton of Δ^{k-1} decomposes into $\frac{k-1}{2}$ collections of Möbius strips

$$M_{l,k} := \{ (l : l : k - 2l) \},\$$

 $1 \leq l \leq \frac{k-1}{2}$ each with $n := \gcd(l,k)$ isomorphic connected components on $\frac{k}{n}$ vertices and $\frac{k^2-6k+5}{12}$ collections of tori

$$S_{l,j,k} := \{ (l:j:k-l-j), (l:k-l-j:j) \},\$$

 $1 \leq l < j < k - l - j$, with $m := \gcd(l, j, k)$ connected components on $\frac{k}{m}$ vertices each.

We first prove the following

Lemma 3.2. $M_{l,k}$ with $k \ge 5$, $k \ne 0(3)$ and $k \ne 0(4)$ is a triangulation of $n := \gcd(l,k)$ cylinders $[0,1] \times \partial \Delta^2$ if $\frac{k}{n}$ is even and of n Möbius strips if $\frac{k}{n}$ is odd.

Proof. We first look at

$$M_{1,k} = \{ \langle 0, 1, 2 \rangle, \langle 1, 2, 3 \rangle, \dots, \langle k - 2, k - 1, 0 \rangle, \langle k - 1, 0, 1 \rangle \}$$

for $k \ge 5$ (see Figure 3.1). Every triangle has exactly two neighbors. Thus, the alternating sum

$$+\langle 0, 1, 2 \rangle - \langle 1, 2, 3 \rangle + \ldots + (-1)^{k-1} \langle k - 1, 0, 1 \rangle$$

induces an orientation if and only if k is even and for any $l \in \mathbb{Z}_k^{\times}$ the complex $M_{l,k}$ is a cylinder if k is even and a Möbius strip if k is odd. Now suppose that $n = \gcd(l, k) > 1$. Since $k \neq 0(3)$ and $k \neq 0(4)$ we have $\frac{k}{n} \geq 5$ and by a relabeling we see, that the connected components of $M_{l,k}$ are combinatorially isomorphic to $M_{\frac{l}{n},\frac{k}{n}} \cong M_{1,\frac{k}{n}}$.

Figure 3.1: The cylinder (1:1:2l-2) and the Möbius strip (1:1:2l-3). The vertical boundary components $(\langle 0,1 \rangle)$ are identified.

Remark 3.3. If $k \equiv 0(4)$ the connected components of $M_{\frac{k}{4},k} = \{(\frac{k}{4}:\frac{k}{4}:\frac{k}{2})\}$ equal $\{(1:1:2)\}$ which is the boundary of Δ^3 . If $k \equiv 0(3)$ then $M_{\frac{k}{3},k}$ is a collection of disjoint triangles (isomorphic to $\{(1:1:1)\}$).

Lemma 3.4. $S_{l,j,k}$, 0 < l < j < k, $k \neq 0(2)$, is a triangulation of $m := \gcd(l, j, k)$ connected components of isomorphic tori on $\frac{k}{m}$ vertices.

Proof. The link of vertex 0 equals

$$\operatorname{lk}_{S_{l,j,k}}(0) = \underbrace{k-j-l}_{k-j} \underbrace{j}_{l+j}$$

(cf. proof of Lemma 2.4). Since 0 < l < j < k - l - j and $k \neq 0(2)$ the link is the boundary of a hexagon, $\frac{k}{m} \geq 7$ and $S_{l,j,k}$ is a surface. By Lemma 2.3 $S_{l,j,k}$ is of Euler characteristic 0. The proof of the orientability and the number of connected components is analogue to the one given in the proof of Lemma 2.4. It follows that

$$S_{l,j,k} \cong \{1,\ldots,m\} \times \mathbb{T}^2.$$

Together with Lemma 3.2 and Lemma 3.4 it suffices to show that the two series presented above contain all triangles of Δ^{k-1} in order to proof Theorem 3.1:

Proof. Let $\langle a, b, c \rangle \in \text{skel}_2(\Delta^{k-1})$, a < b < c. Then $\langle a, b, c \rangle \in (b - a : c - b : k - (c - a))$. Now if b - a, c - b and k - (c - a) are pairwise distinct we have

• $\langle a, b, c \rangle \in S_{b-a, c-b, k} = S_{b-a, k-(c-a), k}$ if b - a < c - b, k - (c - a), k = (c - a), k - (c - a), k = (c

- $\langle a, b, c \rangle \in S_{c-b, b-a, k} = S_{c-b, k-(c-a), k}$ if c-b < b-a, k-(c-a) or
- $\langle a, b, c \rangle \in S_{k-(c-a), b-a, k} = S_{k-(c-a), c-b, k}$ if k (c-a) < c b, b a.

If on the other hand at least two of the entries are equal, then (b-a:c-b:k-(c-a)) = (l:l:k-2l) for $1 \leq l \leq \frac{k-1}{2}$. Thus, the decomposition of $\text{skel}_2(\Delta^{k-1})$ is complete. \Box

Table 2 shows the decomposition of $\text{skel}_2(\Delta^{k-1})$ for $k \in \{5, 7, 11, 13, 35\}$.

A complete list of the decomposition of $\text{skel}_2(\beta^k)$ and $\text{skel}_2(\Delta^{k-1})$ for $k \leq 100$ can be found in [14].

k	$f_2(\beta^k)$	topological type	difference cycles
3	8	\mathbb{S}^2	$\{(1:1:4), (2:2:2)\}$
4	32	\mathbb{T}^2	$\{(1:2:5), (1:5:2)\}, \{(1:1:6), (3:3:2)\}$
5	80	\mathbb{T}^2	$\{(1:2:7), (1:7:2)\}, \{(1:3:6), (1:6:3)\}$
		\mathbb{K}^2	$\{(1:1:8), (4:4:2)\}, \{(2:2:6), (3:3:4)\}$
6	160	$\{1,2\} \times \mathbb{S}^2$	$\{(2:2:8), (4:4:4)\}$
		\mathbb{T}^2	$ \{(1:2:9), (1:9:2)\}, \{(1:3:8), (1:8:3)\}, \{(1:4:7), (1:7:4)\}, \\ \{(2:3:7), (2:7:3)\}, \{(3:4:5), (3:5:4)\}, \{(1:1:10), (5:5:2)\} $
7	280	\mathbb{T}^2	$ \{ (1:2:11), (1:11:2) \}, \{ (1:3:10), (1:10:3) \}, \{ (1:4:9), (1:9:4) \}, \\ \{ (1:5:8), (1:8:5) \}, \{ (2:3:9), (2:9:3) \}, \{ (3:5:6), (3:6:5) \} $
		$\{1,2\} \times \mathbb{T}^2$	$\{(2:4:8), (2:8:4)\}$
		\mathbb{K}^2	$\{(1:1:12), (6:6:2)\}, \{(2:2:10), (5:5:4)\}, \{(3:3:8), (4:4:6)\}$
8	448	\mathbb{T}^2	$ \{(1:2:13), (1:13:2)\}, \{(1:3:12), (1:12:3)\}, \{(1:4:11), (1:11:4)\}, \\ \{(1:5:10), (1:10:5)\}, \{(1:6:9), (1:9:6)\}, \\ \{(2:3:11), (2:11:3)\}, \\ \{(2:5:9), (2:9:5)\}, \\ \{(3:4:9), (3:9:4)\}, \\ \{(3:6:7), (3:7:6)\}, \\ \{(4:5:7), (4:7:5)\}, \\ \{(1:1:14), (7:7:2)\}, \\ \{(3:3:10), (5:5:6)\} $
		$\{1,2\} \times \mathbb{T}^2$	$\{(2:4:10), (2:10:4)\}, \{(2:2:12), (6:6:4)\}$
9	672	$\{1, 2, 3\} \times \mathbb{S}^2$	$\{(3:3:12), (6:6:6)\}$
		\mathbb{T}^2	$ \begin{array}{l} \{(1\!:\!2\!:\!15),(1\!:\!15\!:\!2)\},\{(1\!:\!3\!:\!14),(1\!:\!14\!:\!3)\},\{(1\!:\!4\!:\!13),(1\!:\!13\!:\!4)\},\\ \{(1\!:\!5\!:\!12),(1\!:\!12\!:\!5)\},\{(1\!:\!6\!:\!11),(1\!:\!11\!:\!6)\},\{(1\!:\!7\!:\!10),(1\!:\!10\!:\!7)\},\\ \{(2\!:\!3\!:\!13),(2\!:\!13\!:\!3)\},\{(2\!:\!5\!:\!11),(2\!:\!11\!:\!5)\},\{(3\!:\!4\!:\!11),(3\!:\!11\!:\!4)\},\\ \{(3\!:\!5\!:\!10),(3\!:\!10\!:\!5)\},\{(3\!:\!7\!:\!8),(3\!:\!8\!:\!7)\},\\ \end{tabular}$
		$\{1,2\} \times \mathbb{T}^2$	$\{(2:4:12), (2:12:4)\}, \{(2:6:10), (2:10:6)\}, \{(4:6:8), (4:8:6)\}$
		\mathbb{K}^2	$\{(1:1:16), (8:8:2)\}, \{(2:2:14), (7:7:4)\}, \{(4:4:10), (5:5:8)\}$
10	960	T ²	$ \begin{array}{l} \{(1:2:17),(1:17:2)\},\{(1:3:16),(1:16:3)\},\{(1:4:15),(1:15:4)\},\\ \{(1:5:14),(1:14:5)\},\{(1:6:13),(1:13:6)\},\{(1:7:12),(1:12:7)\},\\ \{(1:8:11),(1:11:8)\},\{(2:3:15),(2:15:3)\},\{(2:5:13),(2:13:5)\},\\ \{(2:7:11),(2:11:7)\},\{(3:4:13),(3:13:4)\},\{(3:5:12),(3:12:5)\},\\ \{(3:6:11),(3:11:6)\},\{(3:8:9),(3:9:8)\}, \{(4:5:11),(4:11:5)\},\\ \{(4:7:9),(4:9:7)\}, \{(5:6:9),(5:9:6)\}, \{(5:7:8),(5:8:7)\},\\ \{(1:1:18),(9:9:2)\}, \{(3:3:14),(7:7:6)\} \end{array} $
		$\{1,2\} \times \mathbb{I}^2$	$\{(2:4:14), (2:14:4)\}, \{(2:0:12), (2:12:0)\}$
		$\{1,2\} \times \mathbb{T}^2$	$ \{(1:1:18), (9:9:2)\}, \{(3:3:14), (7:7:6)\} $ $ \{(2:4:14), (2:14:4)\}, \{(2:6:12), (2:12:6)\} $
		$ \{1,2\} \times \mathbb{K}^2$	$ \{(2:2:16), (8:8:4)\}, \{(4:4:12), (6:6:8)\}$

Table 1: The decomposition of the 2-skeleton of β^k ($k \leq 10$) into transitive surfaces.

Table 2: The decomposition of the 2-skeleton of Δ^{k-1} $(k \in \{5, 7, 11, 13, 35\})$ by topological types.

k	topological type	difference cycles		
5	\mathbb{M}^2	$\{(1:1:3)\},\$	$\{(2:2:1)\}$	
7	\mathbb{M}^2	$\{(1:1:5)\},\$	$\{(2:2:3)\},\$	{(3:3:1)}
	\mathbb{T}^2	$\{(1:2:4), (1:4:2)\}$	(()))	
11	M ²	$\{(1 \cdot 1 \cdot 0)\}$	$\{(2\cdot 2\cdot 7)\}$	{(3.3.5)}
11	141	$\{(1,1,3)\},\$	$\{(2\cdot 2\cdot 7)\},\$	{(3.3.3)},
	T2	$\{(1\cdot 2\cdot 8), (1\cdot 8\cdot 2)\}$	$\{(1\cdot3\cdot7), (1\cdot7\cdot3)\}$	$\{(1:4:6), (1:6:4)\}$
	±	$\{(2:3:6), (2:6:3)\}$	$\{(2:4:5), (2:5:4)\}$	((1.1.0), (1.0.1)),
12	1 мл2	$\{(1,1,11)\}$	((2.2.0))	{(2.2.7)}
15	141	$\{(1,1,11)\},\$	$\{(2,2,3)\},\$	$\{(3,3,1)\},\$
	m2	$\{(4.4.5)\},\$	$\{(3,3,3)\},$	$\{(0,0,1)\}$
	ш	$\{(1.2.10), (1.10.2)\},\$	$\{(1.3.3), (1.3.3)\}, \{(2.3.3)\}, $	$\{(1.4.0), (1.0.4)\}, \{(2.4.7), (2.7.4)\}$
		$\{(1.5.7), (1.7.5)\}, \{(2.5.6), (2.6.5)\}$	$\{(2.3.6), (2.6.3)\},\$	$\{(2.4.1), (2.1.4)\},\$
	- n a 9	$\{(2.0.0), (2.0.0)\},\$	((2, 2, 21))	((2, 2, 20))
35	1912	$\{(1:1:33)\},$	$\{(2:2:31)\},$	$\{(3:3:29)\},$
		$\{(4:4:27)\},$	$\{(6:6:23)\},$	$\{(8:8:19)\},$
		$\{(9:9:17)\},$	$\{(11:11:13)\},$	$\{(12:12:11)\},$
	(1 F) M/2	$\{(13:13:9)\},$	$\{(10; 10; 3)\},\$	$\{(17, 17, 1)\}$
	$\{1,\ldots, 5\} \times \mathbb{M}^2$	$\{(0;0;20)\},\$	$\{(10; 10; 15)\},$	{(10:10:0)}
	$\{1,\ldots,\ell\} \times \mathbb{W}$	$\{(1:1:21)\},$	$\frac{\{(14;14;i)\}}{\{(1,2,21),(1,21,2)\}}$	((1, 4, 20), (1, 20, 4))
	1-	$\{(1:2:32), (1:32:2)\}, \{(1:5:20), (1:20:5)\}$	$\{(1:3:31), (1:31:3)\},$	$\{(1:4:30), (1:30:4)\}, \{(1:7:27), (1:27:7)\}$
		$\{(1:3:29), (1:29:3)\},$	$\{(1:0:26), (1:26:0)\},\$	$\{(1:1:21), (1:21:1)\},$
		$\{(1:0:20), (1:20:0)\}, \{(1:11:22), (1:22:11)\}$	$\{(1:9:20), (1:20:9)\},\$	$\{(1:10:24), (1:24:10)\}, \{(1:12:21), (1:21:12)\}$
		$\{(1:11:23), (1:23:11), (1:10,14$	$\{(1:12:22), (1:22:12)\}, \{(1:12:12, 12, 12, 12, 12, 12, 12, 12, 12, 12, $	$\{(1:13:21), (1:21:13)\},\$
		$\{(1:14:20), (1:20:14), (2:20:2)\}$	$\{(1:10:19), (1:19:10)\}, \{(2,4,20), (2,20,4)\}$	$\{(1:10:10), (1:10:10)\},\$
		$\{(2.3.30), (2.30.3)\},\$	$\{(2.4.29), (2.29.4)\},\$	$\{(2.3.26), (2.26.3)\},\$
		$\{(2:0:21), (2:21:0)\},\$	$\{(2:1:20), (2:20:1)\},\$	$\{(2:0:20), (2:20:0)\},\$
		$\{(2:9:24), (2:24:9)\}, \{(2:12:24), (2:24:9)\}, \}$	$\{(2:10:23), (2:23:10)\},\$	$\{(2:11:22), (2:22:11)\},\$
		$\{(2.12.21), (2.21.12), (2.12), (2.12.12), (2.12.12), (2.12.12), (2.12.12), $	$\{(2.13.20), (2.20.13)\}, \{(2.16.17), (2.17.16)\}$	$\{(2.14.19), (2.19.14)\}, \{(2.4.98), (3.98.4)\}$
		$\{(2.13, 10), (2.13, 13), (2.13, 13), (2.5,$	$\{(2.6, 26), (2.26, 6)\}$	$\{(3,4,20), (3,20,4)\},\$
		$\{(3,3,27), (3,27,3)\},$	$\{(3.0.20), (3.20.0)\},\$	$\{(3,7,20), (3,20,7)\},\$
		$\{(3.0.24), (3.24.0)\}, \{(2.11.21), (2.21.11)\}$	$\{(3.9.23), (3.23.9)\},\$	$\{(3, 10, 22), (3, 22, 10)\},\$
		$\{(3,11,21),(3,21,11),(3,21,11),(3,11),(3,11),($	$\{(3, 12, 20), (3, 20, 12)\},\$	$\{(3.13.19), (3.19.13)\},\$
		$\{(3, 14, 16), (3, 16, 14)\}$	$\{(3, 13, 17), (3, 17, 13)\},\$	$\{(4.3.20), (4.20.3)\},\$
		$\{(4.0.23), (4.23.0)\},\$	$\{(4.10.24), (4.24.1)\}, \{(4.10.21), (4.24.1)\}, \}$	$\{(4.0.23), (4.23.0)\},\$
		$\{(4,3,22), (4,22,3)\},\$	$\{(4.10.21), (4.21.10)\}, \{(4.12.12)\}$	$\{(4.11.20), (4.20.11)\},\$
		$\{(4.12.13), (4.13.12)\}$	$\{(4.10.10), (4.10.10)\}, \{(5.24.6)\}$	$\{(4, 14, 17), (4, 17, 14)\}, \{(5, 7, 93), (5, 93, 7)\}$
		$\{(4.10,10), (4.10,10)\}$	$\{(5.0.24), (5.24.0)\},\$	$\{(5,1,25), (5,25,1)\},\$
		$\{(5.12.18), (5.12.0)\},\$	$\{(5.3.21), (5.21.3)\}, \{(5.13.17), (5.17.13)\}$	$\{(5.11.13), (5.13.11)\}, \{(5.14.16), (5.16.14)\}$
		$\{(6.7.22), (6.22.7)\}$	$\{(6\cdot8\cdot21), (6\cdot21\cdot8)\}$	$\{(6.9.20), (6.20.9)\}$
		$\{(6.10.19), (6.19.10)\}$	$\{(6.11.18), (6.18.11)\}$	$\{(6:12:17), (6:17:12)\}$
		$\{(6:13:16), (6:16:13)\}$	$\{(6:14:15), (6:15:14)\},$	$\{(7:8:20), (7:20:8)\}$
		$\{(7:9:19), (7:19:9)\}$	$\{(7:10:18), (7:18:10)\}$	$\{(7:11:17), (7:17:11)\}$
		$\{(7:12:16), (7:16:12)\}$	$\{(7:13:15), (7:15:13)\},$	{(8:9:18), (8:18:9)}
		{(8:10:17).(8:17:10)	$\{(8:11:16), (8:16:11)\}.$	$\{(8:12:15), (8:15:12)\}.$
		{(8:13:14), (8:14:13)	$\{(9:10:16), (9:16:10)\}.$	$\{(9:11:15), (9:15:11)\}.$
		$\{(9:12:14), (9:14:12)\}$	$\{(10:11:14), (10:14:11)\}$	$\{(10:12:13), (10:13:12)\}$
	$\{1,\ldots,5\}\times\mathbb{T}^2$	$\{(5:10:20), (5:20:10)\}$	}	

References

- [1] A. Altshuler. Manifolds in stacked 4-polytopes. J. Combinatorial Theory Ser. A, 10:198–239, 1971.
- [2] A. Altshuler. Polyhedral realization in R³ of triangulations of the torus and 2-manifolds in cyclic 4-polytopes. Discrete Math., 1(3):211–238, 1971/1972.
- [3] T. Beth, D. Jungnickel, and H. Lenz. *Design theory. Vol. I*, volume 69 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, second edition, 1999.
- [4] U. Betke, C. Schulz, and J. M. Wills. Zur Zerlegbarkeit von Skeletten. Geometriae Dedicata, 5(4):435– 451, 1976.
- [5] F. Effenberger and J. Spreer. simpcomp A GAP package, Version 1.3.3. http://www.igt. uni-stuttgart.de/LstDiffgeo/simpcomp, 2010. Submitted to the *GAP Group*.
- [6] B. Grünbaum and J. Malkevitch. Pairs of edge-disjoint Hamiltonian circuits. Aequationes Math., 14(1/2):191–196, 1976.
- [7] M. Jungerman and G. Ringel. The genus of the n-octahedron: regular cases. J. Graph Theory, 2(1):69-75, 1978.
- [8] W. Kühnel. Centrally-symmetric tight surfaces and graph embeddings. Beiträge Algebra Geom., 37(2):347–354, 1996.
- [9] W. Kühnel and G. Lassmann. Permuted difference cycles and triangulated sphere bundles. Discrete Math., 162(1-3):215-227, 1996.
- [10] F. H. Lutz. Equivelar and d-Covered Triangulations of Surfaces. II. Cyclic Triangulations and Tessellations. arXiv:1001.2779v1 [math.CO], preprint 27 pages, 18 figures, January 2010.
- [11] P. Martin. Cycles hamiltoniens dans les graphes 4-réguliers 4-connexes. Aequationes Math., 14(1/2):37–40, 1976.
- [12] G. Ringel. Triangular embeddings of graphs. In Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pages 269– 281. Lecture Notes in Math., Vol. 303. Springer, Berlin, 1972.
- [13] G. Ringel. Map color theorem. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 209.
- [14] J. Spreer. Supplemental material to the article "Partitions of the triangles of the cross polytope into surfaces", 2010.

Institut für Geometrie und Topologie Universität Stuttgart 70550 Stuttgart Germany