# Partitioning the triangles of the cross polytope into surfaces 

Jonathan Spreer


#### Abstract

We present a constructive proof, that there exists a decomposition of the 2 -skeleton of the $k$-dimensional cross polytope $\beta^{k}$ into closed surfaces of genus $\leqslant 1$, each with a transitive automorphism group given by the vertex transitive $\mathbb{Z}_{2 k}$-action on $\beta^{k}$. Furthermore we show, that for each $k \equiv 1,5(6)$ the 2 -skeleton of the $(k-1)$-simplex is a union of highly symmetric tori and Möbius strips.


MSC 2010: 52B12; 52B70; 57Q15; 57M20; 05C10;
Keywords: cross polytope, simplicial complexes, triangulated surfaces, difference cycles.

## 1 Introduction

Surfaces as subcomplexes of polytopes have already been studied by Altshuler who discovered triangulated tori in the 2-skeleton of the family of cyclic 4-polytopes $C_{4}(n)$ [1] and surfaces in the 2-skeleton of stacked polytopes [2]. Later Betke, Schulz and Wills proved that every orientable 2 -manifold is contained in the 2 -skeleton of infinitely many 4-polytopes [4].

A priori we can state, that every triangulated surface, i. e. every 2-dimensional simplicial complex with closed circuits as vertex links, with $k$ vertices is a sub-complex of the ( $k-1$ )-simplex $\Delta^{k-1}$ and that every centrally symmetric surface with $2 k$ vertices lies in the 2 -skeleton of the $k$-dimensional cross polytope $\beta^{k}$, i. e. the convex hull of $2 k$ points $x_{i}^{ \pm}=(0, \ldots, 0, \pm 1,0, \ldots, 0) \in \mathbb{R}^{k}, 1 \leqslant i \leqslant k$. Hence, of particular interest are surfaces which, in addition, contain the full edge graph of an ambient polytope $P$. These surfaces are then referred to as 1-Hamiltonian in $P$.

On the other hand embeddings of certain graphs into triangulated surfaces (so-called triangular embeddings) were extensively studied in the course of the proof of Heawood's Map Color Theorem in graph theory (cf. [12] or chapter 4 of [13]). If a Graph $G$ is embeddable into a surface of genus $g$ but not into a surface of smaller genus, then $g$ is called the genus of $G$. Here, as well as in the prior case, we are interested in graph embeddings that cover the full edge graph of an ambient triangulated surface. For the complete graph or, equivalently, the $n$-simplex these are exactly the 2 -neighborly surfaces.

For the complete $n$-partite graph with two vertices in each partition or the $k$-dimensional cross polytope respectively, Jungerman and Ringel were able to show the following:

Theorem 1.1 (Regular cases in [7]). For any orientable surface $M$ and any $k \not \equiv 2(3)$ satisfying the equality $2(k-1)(k-3)=3(2-\chi(M))$ there exists a triangulation of $M$ whose 1 -skeleton equals the 1 -skeleton of $\beta^{k}$.

There is a series of centrally symmetric 1 -Hamiltonian surfaces $S_{n}, n \geqslant 0$, with $12 n+8$ vertices in $\beta^{6 n+4}$ and, thus, of genus $g\left(S_{n}\right)=12 n^{2}+8 n+1$ (cf. [7] and Example 3.6 in [8] for a concrete list of triangles). In particular, $S_{0}$ is the 8 -vertex Altshuler torus in the decomposition of $\beta^{4}$ described below.

A closely related question is whether or not the $i$-skeleton $\operatorname{skel}_{i}(P), 1 \leqslant i \leqslant(d-2)$, of a $d$-polytope $P$ is decomposable, i. e. if there exist two (possibly bounded) PL $i$-manifolds $M_{1}$ and $M_{2}$ with $M_{1} \cup M_{2}=\operatorname{skel}_{i}(P)$ such that $M_{1} \cap M_{2} \subset \operatorname{skel}_{i-1}(P)$.

Grünbaum and Malkevitch [6] as well as Martin [11] treated the case $i=1$. The case $i=2$ was settled in the case of simplicial polytopes by Betke, Schulz and Wills as follows:

Theorem 1.2 (Betke, Schulz, Wills, [4]). There are exactly 5 simplicial polytopes with decomposable 2-skeletons:

1. The 2-skeleton of the 4 -simplex $\Delta^{4}$ is decomposable into 2 Möbius strips with cyclic symmetry, each with the minimum number of 5 vertices, 10 edges and 5 triangles,
2. the 18 triangles of the cyclic 4-polytope $C_{4}(6)$ with 6 vertices form the union of two Möbius strips where the triangulations equal the 6-vertex real projective plane with one triangle removed,
3. the triangles of the double pyramid over the 3-simplex can be partitioned into two Möbius strips on 6 vertices and 8 triangles each,
4. the 2-skeleton of the 4-dimensional cross polytope (i. e. the double pyramid over the octahedron) equals the union of two 8-vertex Altshuler tori and
5. the 20 triangles of the 5 -simplex $\Delta^{5}$ decompose into two copies of the 6 -vertex real projective plane.

Note, that 1., 4. and 5. are highly symmetric. 1. and 4. occur as a part of the two series of decompositions presented below.

The proof of Theorem 1.2 relies on the fact, that a decomposition of the 2-skeleton of a $d$-Polytope $P$ into two surfaces is only possible if each edge of $P$ is contained in at most 4 triangles. Thus, $4 \leqslant d \leqslant 5$ and the number of vertices has to be bounded.

The idea of the proof of Theorem 1.2 shows that in general decompositions of a polytope $P$ with more than 2 components are not as restrictive towards the local combinatorial structure of $P$. In this article we will focus on highly symmetric decompositions of the 2 -skeleton of $\beta^{k}$ and $\Delta^{k-1}$ with arbitrary many components. Therefore we define

Definition 1.3 (Difference cycle). Let $a_{i} \in \mathbb{N} \backslash\{0\}, 0 \leqslant i \leqslant d, n:=\sum_{i=0}^{d} a_{i}$ and $\mathbb{Z}_{n}=$ $\langle(0,1, \ldots, n-1)\rangle$. The set

$$
\left(a_{0}: \ldots: a_{d}\right):=\mathbb{Z}_{n} \cdot\left\{0, a_{0}, \ldots, \Sigma_{i=0}^{d-1} a_{i}\right\}
$$

where • is the induced cyclic $\mathbb{Z}_{n}$-action on subsets of $\mathbb{Z}_{n}$, is called difference cycle of dimension $d$ on $n$ vertices. The number of its elements is referred to as the length of the difference cycle. If $C$ is a union of difference cycles of dimension $d$ on $n$ vertices and $\lambda$ is a unit of $\mathbb{Z}_{n}$ such that the complex $\lambda C$ (obtained by multiplying all vertex labels modulo $n$ by $\lambda$ ) equals $C$, then $\lambda$ is called a multiplier of $C$.

Note, that for any unit $\lambda \in \mathbb{Z}_{n}^{\times}$the complex $\lambda C$ is combinatorially isomorphic to $C$, i. e. $C$ and $\lambda C$ are equal up to a relabeling of the vertices. In particular all $\lambda \in \mathbb{Z}_{n}^{\times}$are multipliers of the complex $\bigcup_{\lambda \in \mathbb{Z}_{n}^{\times}} \lambda C$.

The definition of a difference cycle above is similar to the one given in [9]. For a more thorough introduction into the field of the more general difference sets and their multipliers see Chapter VI and VII in [3].

Throughout this article we will look at difference cycles as simplicial complexes with a transitive automorphism group given by the cyclic $\mathbb{Z}_{n}$-action on its elements: Every $(d+1)$ tuple $\left\{x_{0}, \ldots, x_{d}\right\}$ is interpreted as a $d$-simplex $\Delta^{d}=\left\langle x_{0}, \ldots, x_{d}\right\rangle$. A simplicial complex $C$ is called transitive, if its group of automorphisms acts transitively on the set of vertices. In particular any union of difference cycles is a transitive simplicial complex.
Remark 1.4. It follows from the definition that the set of difference cycles of dimension $d$ on $k$ vertices defines a partition of the $d$-skeleton of the $(k-1)$-simplex. Two $(d+1)$-tuples $\left(a_{0}, \ldots, a_{d}\right)$ and $\left(b_{0}, \ldots, b_{d}\right)$ both of sum $k$ define the same difference cycle if and only if for a fixed $j \in \mathbb{Z}$ we have $a_{(i+j) \bmod (d+1)}=b_{i}$ for all $0 \leqslant i \leqslant d$.

Proposition 1.5. Let $\left(a_{0}: \ldots: a_{d}\right)$ be a difference cycle of dimensiond on $n$ vertices and $1 \leqslant k \leqslant d+1$ the smallest integer such that $k \mid(d+1)$ and $a_{i}=a_{i+k}, 0 \leqslant i \leqslant d-k$. Then $\left(a_{0}: \ldots: a_{d}\right)$ is of length $\sum_{i=0}^{k-1} a_{i}=\frac{n k}{d+1}$.

Proof. We set $m:=\frac{n k}{d+1}$ and compute

$$
\begin{aligned}
\left\langle 0+m, a_{0}+m, \ldots,\left(\Sigma_{i=0}^{d-1} a_{i}\right)+m\right\rangle & =\left\langle\Sigma_{i=0}^{k-1} a_{i}, \Sigma_{i=0}^{k} a_{i}, \ldots, \Sigma_{i=0}^{d-1} a_{i}, 0, a_{1}, \ldots, \Sigma_{i=0}^{k-2} a_{i}\right\rangle \\
& =\left\langle 0, a_{0}, \ldots, \Sigma_{i=0}^{d-1} a_{i}\right\rangle
\end{aligned}
$$

(all entries modulo $n$ ). Hence, the length of $\left(a_{0}: \ldots: a_{d}\right)$ is $\leqslant \frac{n k}{d+1}$ and since $k$ is minimal with $k \mid(d+1)$ and $a_{i}=a_{i+k}$, the upper bound is attained.

## 2 The decomposition of $\operatorname{skel}_{2}\left(\beta^{k}\right)$ into closed surfaces

In the sequel we will look at the boundary of the $k$-dimensional cross polytope in terms of the abstract simplicial complex

$$
\begin{equation*}
\partial \beta^{k}=\left\{\left\langle a_{1}, \ldots, a_{k}\right\rangle \mid a_{i} \in\{0, \ldots, 2 k-1\},\{i, k+i\} \nsubseteq\left\{a_{1}, \ldots, a_{k}\right\}, \forall 0 \leqslant i \leqslant k-1\right\} . \tag{2.1}
\end{equation*}
$$

In particular, the diagonals of $\beta^{k}$ are precisely the edges $\langle i, k+i\rangle, 1 \leqslant i \leqslant k$, and, thus, coincide with the difference cycle $(k: k)$. We can now state our main result:
Theorem 2.1. The 2-skeleton of the $k$-dimensional cross polytope $\beta^{k}$ can be decomposed into triangulated vertex transitive closed surfaces.

More precisely, if $k \equiv 1,2(3)$, skel $_{2}\left(\beta^{k}\right)$ decomposes into $\frac{(k-1)(k-2)}{3}$ triangulated vertex transitive closed surfaces of Euler characteristic 0 on $2 k$ vertices and, if $k \equiv 0(3)$, into $\frac{k}{3}$ disjoint copies of $\partial \beta^{3}$ (on 6 vertices each) and $\frac{k(k-3)}{3}$ triangulated vertex transitive closed surfaces of Euler characteristic 0 on $2 k$ vertices otherwise.

In this section, we will explicitly construct the transitive surfaces and determine their topological types for any given integer $k \geqslant 3$. The proof will consist of a number of consecutive lemmata.

Lemma 2.2. The 2-skeleton of $\beta^{k}$ can be written as the following set of difference cycles:

$$
(l: j: 2 k-l-j),(l: 2 k-l-j: j)
$$

for $0<l<j<2 k-l-j, k \notin\{l, j, l+j\}$, and

$$
(j: j: 2(k-j))
$$

for $0<j<k$ with $2 j \neq k$. If $k \not \equiv 0(3)$ all of them are of length $2 k$, if $k \bmod 3=0$ the difference cycle ( $\left.\frac{2 k}{3}: \frac{2 k}{3}: \frac{2 k}{3}\right)$ has length $\frac{2 k}{3}$.
Proof. Let $\beta^{k}$ be the $k$-dimensional cross polytope with vertices $\{0, \ldots, 2 k-1\}$ and diagonals $\{j, k+j\}, 0 \leqslant j \leqslant k-1$. It follows from the recursive construction of $\beta^{k}$ as the double pyramid over $\beta^{k-1}$ that it contains all 3 -tuples of vertices as triangles except the ones including a diagonal. Thus, a difference cycle of the form $(a: b: c)$ lies in $\operatorname{skel}_{2}\left(\beta^{k}\right)$ if and only if $k \notin\{a, b, a+b\}$. In particular $\operatorname{skel}_{2}\left(\beta^{k}\right)$ is a union of difference cycles.

Note, that each ordered 3-tuple $0<l<j<2 k-l-j$ defines exactly two distinct difference cycles on the set of $2 k$ vertices, namely

$$
(l: j: 2 k-l-j) \text { and }(l: 2 k-l-j: j)
$$

and it follows immediately that there is no other difference cycle ( $a: b: c$ ), $k \notin\{a, b, a+b\}$ on $2 k$ vertices with $a, b, c$ pairwise distinct.

For any positive integer $0<j<k$ with $2 j \neq k$ there is exactly one difference cycle

$$
(j: j: 2 k-2 j))
$$

and since $j$ must fulfill $0<2 j<2 k$ there are no further difference cycles without diagonals with at most two different entries.

The length of the difference cycles follows directly from Proposition 1.5 with $d=2$ and $n=2 k$.

Lemma 2.3. A closed 2-dimensional pseudomanifold $S$ defined by $m$ difference cycles of full length on the set of $n$ vertices has Euler characteristic $\chi(S)=\left(1-\frac{m}{2}\right) n$.

Proof. Since all difference cycles are of full length, $S$ consists of $n$ vertices and $m \cdot n$ triangles. Additionally, the pseudo manifold property asserts that $S$ has $\frac{3}{2} m \cdot n$ edges and, thus,

$$
\chi(S)=n-\frac{3}{2} m \cdot n+m \cdot n=n\left(1-\frac{m}{2}\right) .
$$

Lemma 2.4. Let $0<l<j<2 k-l-j, k \notin\{l, j, l+j\}$ and $m:=\operatorname{gcd}(l, j, 2 k)$. Then

$$
S_{l, j, 2 k}:=\{(l: j: 2 k-l-j),(l: 2 k-l-j: j)\} \cong\{1, \ldots, m\} \times \mathbb{T}^{2}
$$

where all connected components of $S_{l, j, 2 k}$ are combinatorially isomorphic to each other.
Proof. The link of vertex 0 in $S_{l, j, 2 k}$ is equal to the cycle


Since $0<l<j<2 k-l-j$ and $k \notin\{l, j, l+j\}$ all vertices are distinct and $\mathrm{lk}_{S_{l, j, 2 k}}(0)$ is the boundary of a hexagon. By the vertex transitivity all other links are cycles and $S_{l, j, 2 k}$ is a surface.

Since $l, j$ and $2 k-l-j$ are pairwise distinct both $(l: j: 2 k-l-j)$ and $(l: 2 k-l-j: j)$ have full length and by Lemma 2.3 the surface has Euler characteristic 0.

In order to see that $S_{l, j, 2 k}$ is oriented we look at the (oriented) boundary of the triangles in $S_{l, j, 2 k}$ in terms of 1-dimensional difference cycles:

$$
\begin{aligned}
\partial(l: j: 2 k-l-j) & =(j: 2 k-j)-(l+j: 2 k-l-j)+(l: 2 k-l) \\
\partial(l: 2 k-l-j: j) & =(2 k-l-j: l+j)-(2 k-j: j)+(l: 2 k-l) \\
& =(j: 2 k-j)-(l+j: 2 k-l-j)+(l: 2 k-l)
\end{aligned}
$$

and, thus $\partial(l: j: 2 k-l-j)-\partial(l: 2 k-l-j: j)=0$ and $S_{l, j, 2 k}$ is oriented.
Now consider

$$
(l: j: 2 k-l-j)=\mathbb{Z}_{2 k} \cdot\langle 0, l, l+j\rangle
$$

Clearly $\langle(0+i) \bmod 2 k,(l+i) \bmod 2 k,(l+j+i) \bmod 2 k\rangle$ share at least one vertex if $i \in$ $\{0, l, 2 k-l, j, 2 k-j, 2 k-l-j, l+j\}$. For any other value of $i<2 k$ the intersection of the triangles is empty. By iteration it follows, that ( $l: j: 2 k-l-j$ ) has exactly $\operatorname{gcd}(0, l, 2 k-l, j, 2 k-j, 2 k-l-j, l+j)=\operatorname{gcd}(l, j, 2 k)=m$ connected components. The same holds for $(l: 2 k-l-j: j)$ and $(0, \ldots,(2 k-1))^{i} \cdot\langle 0, l, l+j\rangle$ is disjoint to $\langle 0, l, 2 k-j\rangle$ for $i \notin\{0, l, 2 k-l, j, 2 k-j, 2 k-l-j, l+j\}$. Together with the fact that $\operatorname{star}_{S_{l, j, 2 k}}(0)$ consists
of triangles of both $(l: j: 2 k-l-j)$ and $(l: 2 k-l-j: j)$ it follows that $S_{l, j, 2 k}$ has $m$ connected components and by a shift of the indices one can see that all of them must be combinatorially isomorphic.

As a consequence it follows that $S_{l, j, 2 k} \cong\{1, \ldots, m\} \times \mathbb{T}^{2}$.
Remark 2.5. Some of the connected components of the surfaces presented above are combinatorially isomorphic to the so-called Altshuler tori

$$
\{(1: n-3: 2),(1: 2: n-3)\}
$$

with $n=\frac{2 k}{m} \geqslant 7$ vertices mentioned above (cf. proof of Theorem 4 in [2]). However, other triangulations of transitive tori are part of the decomposition as well: in the case $k=6$ there are four different combinatorial types of tori. This is in fact the total number of combinatorial types of transitive tori on 12 vertices (cf. Table 1).

Lemma 2.6. Let

$$
\begin{aligned}
M & :=\{(j: j: 2(k-j)) \mid 0<j<k ; 2 j \neq k\}, \\
M_{1} & :=\left\{(l: l: 2(k-l)) \left\lvert\, 1 \leqslant l \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor\right.\right\} \text { and } \\
M_{2} & \left.:=\{(k-l: k-l: 2 l)) \left\lvert\, 1 \leqslant l \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor\right.\right\} .
\end{aligned}
$$

For all $k \geqslant 3$ the triple $\left(M, M_{1}, M_{2}\right)$ defines a partition

$$
M=M_{1} \dot{\cup} M_{2}
$$

into two sets of equal order. In particular we have $|M| \bmod 2=0$.
Proof. From $1 \leqslant l \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor$ it follows that $k-l>l$ and $2 l<k<2(k-l)$, thus $M_{1} \cap M_{2}=\varnothing$ and $M_{1} \cup M_{2} \subseteq M$.

On the other hand let $\left\lfloor\frac{k-1}{2}\right\rfloor<j<k-\left\lfloor\frac{k-1}{2}\right\rfloor$. If $k$ is odd then $\frac{k-1}{2}<j<\frac{k+1}{2}$ which is impossible for $j \in \mathbb{N}$. If $k$ is even, then $\frac{k}{2}-1<j<\frac{k}{2}+1$, hence $j=k$ which is excluded in the definition of $M$. All together $M_{1} \cup M_{2}=M$ holds and

$$
|M|=2\left\lfloor\frac{k-1}{2}\right\rfloor= \begin{cases}k-1 & \text { if } k \text { is odd } \\ k-2 & \text { else. }\end{cases}
$$

Lemma 2.7. The complex

$$
S_{l, 2 k}:=\{(l: l: 2(k-l)),(k-l: k-l: 2 l)\},
$$

$1 \leqslant l \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor$, is a disjoint union of $\frac{k}{3}$ copies of $\partial \beta^{3}$ if $3 \mid k$ and $l=\frac{k}{3}$ and a surface of Euler characteristic 0 otherwise.

Proof. We proof that $S_{l, 2 k}$ is a surface by looking at the link of vertex 0 :

where $2 l=k-l$ and $2 k-2 l=k+l$ if and only if $l=\frac{k}{3}$. Thus, $\mathrm{lk}_{S_{l, j, 2 k}}(0)$ is either the boundary of a hexagon or, in the case $l=\frac{k}{3}$, the boundary of a quadrilateral and $S_{l, 2 k}$ is a surface.

Furthermore, if $l \neq \frac{k}{3}$ the surface $S_{l, 2 k}$ is a union of two difference cycles of full length and by Lemma 2.3 we have $\chi\left(S_{l, 2 k}\right)=0$. If $l=\frac{k}{3},\left(\frac{k}{3}: \frac{k}{3}: \frac{k}{3}\right)$ is of length $\frac{2 k}{3}$ and it follows

$$
\chi\left(S_{\frac{k}{3}, 2 k}\right)=2 k-\frac{8}{2} k+\frac{8}{3} k=\frac{2}{3} k .
$$

By a calculation analogue to the one in the proof of Lemma 2.4 one obtains that $S_{\frac{k}{3}, 2 k}$ consists of $\operatorname{gcd}(l, 2 k)=\frac{k}{3}$ isomorphic connected components of type $\{3,4\}$. Hence, $S_{\frac{k}{3}, 2 k}$ is a disjoint union of $\frac{k}{3}$ copies of $\partial \beta^{3}$.

Theorem 2.8 (Lutz [10]). Let $n=8+2 m$ for $m \geqslant 0$. Then the complex

$$
A_{6}(n):=\left\{(1: 1:(n-2)),\left(2:\left(\frac{n}{2}-1\right):\left(\frac{n}{2}-1\right)\right\}\right.
$$

is a torus for $m$ even and a Klein bottle for $m$ odd.
Lemma 2.9. Let $k \geqslant 3,1 \leqslant l \leqslant\left\lfloor\frac{k-1}{2}\right\rfloor, l \neq \frac{k}{3}$ and $n:=\operatorname{gcd}(l, k)$. Then $S_{l, 2 k}$ is isomorphic to $n$ copies of $A_{6}\left(\frac{2 k}{n}\right)$.

Proof. Since $n=\operatorname{gcd}(l, k)=\operatorname{gcd}(l, k-l)$ we have $n=\min \{\operatorname{gcd}(l, 2(k-l)), \operatorname{gcd}(2 l, k-l)\}$ and either $\frac{l}{n} \in \mathbb{Z}_{2 k}^{\times}$or $\frac{k-l}{n} \in \mathbb{Z}_{\underline{2 k}}^{\times}$holds. It follows by mulitplying with $l$ or $k-l$ that $A_{6}\left(\frac{2 k}{n}\right)$ is isomorphic to $S_{\frac{l}{n}, \frac{2 k}{n}}^{n}=S_{\frac{k-l}{n}, \frac{2 k}{n}}$. By the monomorphism

$$
\mathbb{Z}_{\frac{2 k}{n}} \rightarrow \mathbb{Z}_{2 k} \quad j \mapsto(l j \quad \bmod 2 k)
$$

we have a relabeling of $S_{\frac{l}{n}, \frac{2 k}{n}}$ and a small computation shows that the relabeled complex is equal to the connected component of $S_{l, 2 k}$ containing 0 . By a shift of the vertex labels we see that all other connected components of $S_{l, 2 k}$ are isomoprhic to the one containing 0 what states the result.

Proof of Theorem 2.1. Lemma 2.2 and Lemma 2.6 describe $\operatorname{skel}_{2}\left(\beta^{k}\right)$ in terms of 2 series of pairs of difference cycles

$$
\{(l: j: 2 k-l-j),(l: 2 k-l-j: j)\} \text { and }\{(l: l: 2(k-l)),(k-l: k-l: 2 l)\}
$$

for certain parameters $j$ and $l$. Lemma 2.4 determines the topological type of the first and Theorem 2.8 together with Lemma 2.7 and 2.9 verifies the type of the second series.

Since $\left|\operatorname{skel}_{2}\left(\beta^{k}\right)\right|=\binom{2 k}{3}-k(2 k-2)$ and for $k \not \equiv 0(3)$ all surfaces have exactly $4 k$ triangles we get an overall number of $\frac{(k-1)(k-2)}{3}$ surfaces. If $k=0(3)$ all surfaces but one have $4 k$ triangles, the last one has $\frac{8 k}{3}$ triangles. All together this implies that there are $\frac{k(k-3)}{3}$ of Euler characteristic 0 and $\frac{k}{3}$ copies of $\partial \beta^{3}$.

Table 1 shows the decomposition of $\operatorname{skel}_{2}\left(\beta^{k}\right)$ for $3 \leqslant k \leqslant 10$. The table was computed using the GAP package simpcomp [5]. For a complete list of the decomposition for $k \leqslant 90$ see [14].

## 3 The decomposition of $\operatorname{skel}_{2}\left(\Delta^{k-1}\right)$

First note, that $\operatorname{skel}_{2}\left(\Delta^{k-1}\right), k \geqslant 3$, equals the set of all triangles on $k$ vertices. By looking at its vertex links we can see that in the case of $2 k$ vertices the complex $\{(l: k-l: k)\}$ can not be part of a triangulated surface for any $0<l<k$. Thus, the decomposition of $\operatorname{skel}_{2}\left(\beta^{k}\right)$ can not be extended to a decomposition of $\operatorname{skel}_{2}\left(\Delta^{2 k-1}\right)$ in an obvious manner. However, for other numbers of vertices the situation is different:

Theorem 3.1. Let $k>1, k \equiv 1,5(6)$. Then the 2 -skeleton of $\Delta^{k-1}$ decomposes into $\frac{k-1}{2}$ collections of Möbius strips

$$
M_{l, k}:=\{(l: l: k-2 l)\},
$$

$1 \leqslant l \leqslant \frac{k-1}{2}$ each with $n:=\operatorname{gcd}(l, k)$ isomorphic connected components on $\frac{k}{n}$ vertices and $\frac{k^{2}-6 k+5}{12}$ collections of tori

$$
S_{l, j, k}:=\{(l: j: k-l-j),(l: k-l-j: j)\},
$$

$1 \leqslant l<j<k-l-j$, with $m:=\operatorname{gcd}(l, j, k)$ connected components on $\frac{k}{m}$ vertices each.
We first prove the following
Lemma 3.2. $M_{l, k}$ with $k \geqslant 5, k \not \equiv 0(3)$ and $k \not \equiv 0(4)$ is a triangulation of $n:=\operatorname{gcd}(l, k)$ cylinders $[0,1] \times \partial \Delta^{2}$ if $\frac{k}{n}$ is even and of $n$ Möbius strips if $\frac{k}{n}$ is odd.

Proof. We first look at

$$
M_{1, k}=\{\langle 0,1,2\rangle,\langle 1,2,3\rangle, \ldots,\langle k-2, k-1,0\rangle,\langle k-1,0,1\rangle\}
$$

for $k \geqslant 5$ (see Figure 3.1). Every triangle has exactly two neighbors. Thus, the alternating sum

$$
+\langle 0,1,2\rangle-\langle 1,2,3\rangle+\ldots-+(-1)^{k-1}\langle k-1,0,1\rangle
$$

induces an orientation if and only if $k$ is even and for any $l \in \mathbb{Z}_{k}^{\times}$the complex $M_{l, k}$ is a cylinder if $k$ is even and a Möbius strip if $k$ is odd. Now suppose that $n=\operatorname{gcd}(l, k)>1$. Since $k \not \equiv 0(3)$ and $k \not \equiv 0(4)$ we have $\frac{k}{n} \geqslant 5$ and by a relabeling we see, that the connected components of $M_{l, k}$ are combinatorially isomorphic to $M_{\frac{l}{n}, \frac{k}{n}} \cong M_{1, \frac{k}{n}}$.


Figure 3.1: The cylinder ( $1: 1: 2 l-2$ ) and the Möbius strip ( $1: 1: 2 l-3$ ). The vertical boundary components $(\langle 0,1\rangle)$ are identified.

Remark 3.3. If $k \equiv 0(4)$ the connected components of $M_{\frac{k}{4}, k}=\left\{\left(\frac{k}{4}: \frac{k}{4}: \frac{k}{2}\right)\right\}$ equal $\{(1: 1:$ $2)\}$ which is the boundary of $\Delta^{3}$. If $k \equiv 0(3)$ then $M_{\frac{k}{3}, k}$ is a collection of disjoint triangles (isomorphic to $\{(1: 1: 1)\}$ ).

Lemma 3.4. $S_{l, j, k}, 0<l<j<k, k \not \equiv 0(2)$, is a triangulation of $m:=\operatorname{gcd}(l, j, k)$ connected components of isomorphic tori on $\frac{k}{m}$ vertices.

Proof. The link of vertex 0 equals

(cf. proof of Lemma 2.4). Since $0<l<j<k-l-j$ and $k \not \equiv 0(2)$ the link is the boundary of a hexagon, $\frac{k}{m} \geqslant 7$ and $S_{l, j, k}$ is a surface. By Lemma $2.3 S_{l, j, k}$ is of Euler characteristic 0 . The proof of the orientability and the number of connected components is analogue to the one given in the proof of Lemma 2.4. It follows that

$$
S_{l, j, k} \cong\{1, \ldots, m\} \times \mathbb{T}^{2}
$$

Together with Lemma 3.2 and Lemma 3.4 it suffices to show that the two series presented above contain all triangles of $\Delta^{k-1}$ in order to proof Theorem 3.1.

Proof. Let $\langle a, b, c\rangle \in \operatorname{skel}_{2}\left(\Delta^{k-1}\right), a<b<c$. Then $\langle a, b, c\rangle \in(b-a: c-b: k-(c-a))$. Now if $b-a, c-b$ and $k-(c-a)$ are pairwise distinct we have

- $\langle a, b, c\rangle \in S_{b-a, c-b, k}=S_{b-a, k-(c-a), k}$ if $b-a<c-b, k-(c-a)$,
- $\langle a, b, c\rangle \in S_{c-b, b-a, k}=S_{c-b, k-(c-a), k}$ if $c-b<b-a, k-(c-a)$ or
- $\langle a, b, c\rangle \in S_{k-(c-a), b-a, k}=S_{k-(c-a), c-b, k}$ if $k-(c-a)<c-b, b-a$.

If on the other hand at least two of the entries are equal, then $(b-a: c-b: k-(c-a))=$ $(l: l: k-2 l)$ for $1 \leqslant l \leqslant \frac{k-1}{2}$. Thus, the decomposition of $\operatorname{skel}_{2}\left(\Delta^{k-1}\right)$ is complete.

Table 2 shows the decomposition of $\operatorname{skel}_{2}\left(\Delta^{k-1}\right)$ for $k \in\{5,7,11,13,35\}$.
A complete list of the decomposition of $\operatorname{skel}_{2}\left(\beta^{k}\right)$ and $\operatorname{skel}_{2}\left(\Delta^{k-1}\right)$ for $k \leqslant 100$ can be found in (14.

Table 1: The decomposition of the 2 -skeleton of $\beta^{k}(k \leqslant 10)$ into transitive surfaces.

| $k$ | $f_{2}\left(\beta^{k}\right)$ | topological type | difference cycles |
| :---: | :---: | :---: | :---: |
| 3 | 8 | $\mathbb{S}^{2}$ | $\{(1: 1: 4),(2: 2: 2)\}$ |
| 4 | 32 | $\mathbb{T}^{2}$ | $\{(1: 2: 5),(1: 5: 2)\}, \quad\{(1: 1: 6),(3: 3: 2)\}$ |
| 5 | 80 | $\mathbb{T}^{2}$ | $\{(1: 2: 7),(1: 7: 2)\}, \quad\{(1: 3: 6),(1: 6: 3)\}$ |
|  |  | $\mathbb{K}^{2}$ | $\{(1: 1: 8),(4: 4: 2)\}, \quad\{(2: 2: 6),(3: 3: 4)\}$ |
| 6 | 160 | $\{1,2\} \times \mathbb{S}^{2}$ | $\{(2: 2: 8),(4: 4: 4)\}$ |
|  |  | $\mathbb{T}^{2}$ | $\{(1: 2: 9),(1: 9: 2)\}$, $\{(1: 3: 8),(1: 8: 3)\}$, $\{(1: 4: 7),(1: 7: 4)\}$, <br> $\{(2: 3: 7),(2: 7: 3)\}$, $\{(3: 4: 5),(3: 5: 4)\}$, $\{(1: 1: 10),(5: 5: 2)\}$ |
| 7 | 280 | $\mathbb{T}^{2}$ | $\begin{aligned} & \hline \hline\{(1: 2: 11),(1: 11: 2)\},\{(1: 3: 10),(1: 10: 3)\},\{(1: 4: 9),(1: 9: 4)\}, \\ & \{(1: 5: 8),(1: 8: 5)\}, \quad\{(2: 3: 9),(2: 9: 3)\}, \quad\{(3: 5: 6),(3: 6: 5)\} \end{aligned}$ |
|  |  | $\{1,2\} \times \mathbb{T}^{2}$ | $\{(2: 4: 8),(2: 8: 4)\}$ |
|  |  | $\mathbb{K}^{2}$ | $\{(1: 1: 12),(6: 6: 2)\},\{(2: 2: 10),(5: 5: 4)\},\{(3: 3: 8),(4: 4: 6)\}$ |
| 8 | 448 | $\mathbb{T}^{2}$ |  |
|  |  | $\{1,2\} \times \mathbb{T}^{2}$ | $\{(2: 4: 10),(2: 10: 4)\},\{(2: 2: 12),(6: 6: 4)\}$ |
| 9 | 672 | $\{1,2,3\} \times \mathbb{S}^{2}$ | $\{(3: 3: 12),(6: 6: 6)\}$ |
|  |  | $\mathbb{T}^{2}$ | $\{(1: 2: 15),(1: 15: 2)\},\{(1: 3: 14),(1: 14: 3)\},\{(1: 4: 13),(1: 13: 4)\}$, $\{(1: 5: 12),(1: 12: 5)\},\{(1: 6: 11),(1: 11: 6)\},\{(1: 7: 10),(1: 10: 7)\}$, $\{(2: 3: 13),(2: 13: 3)\},\{(2: 5: 11),(2: 11: 5)\},\{(3: 4: 11),(3: 11: 4)\}$, $\{(3: 5: 10),(3: 10: 5)\},\{(3: 7: 8),(3: 8: 7)\}, \quad\{(5: 6: 7),(5: 7: 6)\}$ |
|  |  | $\{1,2\} \times \mathbb{T}^{2}$ | $\{(2: 4: 12),(2: 12: 4)\},\{(2: 6: 10),(2: 10: 6)\},\{(4: 6: 8),(4: 8: 6)\}$ |
|  |  | $\mathbb{K}^{2}$ | $\{(1: 1: 16),(8: 8: 2)\},\{(2: 2: 14),(7: 7: 4)\},\{(4: 4: 10),(5: 5: 8)\}$ |
| 10 | 960 | $\mathbb{T}^{2}$ |  $\{(1: 2: 17),(1: 17: 2)\},\{(1: 3: 16),(1: 16: 3)\},\{(1: 4: 15),(1: 15: 4)\}$, <br>  $\{(1: 5: 14),(1: 14: 5)\},\{(1: 6: 13),(1: 13: 6)\},\{(1: 7: 12),(1: 12: 7)\}$, <br>  $\{(1: 8: 11),(1: 11: 8)\},\{(2: 3: 15),(2: 15: 3)\},\{(2: 5: 13),(2: 13: 5)\}$, <br>  $\{(2: 7: 11),(2: 11: 7)\},\{(3: 4: 13),(3: 13: 4)\},\{(3: 5: 12),(3: 12: 5)\}$, <br>  $\{(3: 6: 11),(3: 11: 6)\},\{(3: 8: 9),(3: 9: 8)\}, \quad\{(4: 5: 11),(4: 11: 5)\}$, <br> $\{(4: 7: 9),(4: 9: 7)\}, \quad\{(5: 6: 9),(5: 9: 6)\}, \quad\{(5: 7: 8),(5: 8: 7)\}$,  <br>  $\{(1: 1: 18),(9: 9: 2)\},\{(3: 3: 14),(7: 7: 6)\}$ |
|  |  | $\{1,2\} \times \mathbb{T}^{2}$ | $\{(2: 4: 14),(2: 14: 4)\},\{(2: 6: 12),(2: 12: 6)\}$ |
|  |  | $\{1,2\} \times \mathbb{K}^{2}$ | $\{(2: 2: 16),(8: 8: 4)\},\{(4: 4: 12),(6: 6: 8)\}$ |

Table 2: The decomposition of the 2-skeleton of $\Delta^{k-1}(k \in\{5,7,11,13,35\})$ by topological types.


## References

[1] A. Altshuler. Manifolds in stacked 4-polytopes. J. Combinatorial Theory Ser. A, 10:198-239, 1971.
[2] A. Altshuler. Polyhedral realization in $R^{3}$ of triangulations of the torus and 2-manifolds in cyclic 4-polytopes. Discrete Math., 1(3):211-238, 1971/1972.
[3] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999.
[4] U. Betke, C. Schulz, and J. M. Wills. Zur Zerlegbarkeit von Skeletten. Geometriae Dedicata, 5(4):435451, 1976.
[5] F. Effenberger and J. Spreer. simpcomp - A GAP package, Version 1.3.3. http://www.igt. uni-stuttgart.de/LstDiffgeo/simpcomp, 2010. Submitted to the GAP Group.
[6] B. Grünbaum and J. Malkevitch. Pairs of edge-disjoint Hamiltonian circuits. Aequationes Math., 14(1/2):191-196, 1976.
[7] M. Jungerman and G. Ringel. The genus of the n-octahedron: regular cases. J. Graph Theory, 2(1):69-75, 1978.
[8] W. Kühnel. Centrally-symmetric tight surfaces and graph embeddings. Beiträge Algebra Geom., 37(2):347-354, 1996.
[9] W. Kühnel and G. Lassmann. Permuted difference cycles and triangulated sphere bundles. Discrete Math., 162(1-3):215-227, 1996.
[10] F. H. Lutz. Equivelar and $d$-Covered Triangulations of Surfaces. II. Cyclic Triangulations and Tessellations. arXiv:1001.2779v1 [math.CO], preprint 27 pages, 18 figures, January 2010.
[11] P. Martin. Cycles hamiltoniens dans les graphes 4-réguliers 4-connexes. Aequationes Math., 14(1/2):37-40, 1976.
[12] G. Ringel. Triangular embeddings of graphs. In Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pages 269281. Lecture Notes in Math., Vol. 303. Springer, Berlin, 1972.
[13] G. Ringel. Map color theorem. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 209.
[14] J. Spreer. Supplemental material to the article "Partitions of the triangles of the cross polytope into surfaces", 2010.

Institut für Geometrie und Topologie
Universität Stuttgart
70550 Stuttgart
Germany

