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Abstract

We present a constructive proof, that there exists a decomposition of the 2-skeleton of the
k-dimensional cross polytope βk into closed surfaces of genus ¤ 1, each with a transitive
automorphism group given by the vertex transitive Z2k-action on βk. Furthermore we
show, that for each k � 1, 5p6q the 2-skeleton of the pk � 1q-simplex is a union of highly
symmetric tori and Möbius strips.

MSC 2010: 52B12; 52B70; 57Q15; 57M20; 05C10;
Keywords: cross polytope, simplicial complexes, triangulated surfaces, difference cycles.

1 Introduction
Surfaces as subcomplexes of polytopes have already been studied by Altshuler who dis-
covered triangulated tori in the 2-skeleton of the family of cyclic 4-polytopes C4pnq [1]
and surfaces in the 2-skeleton of stacked polytopes [2]. Later Betke, Schulz and Wills
proved that every orientable 2-manifold is contained in the 2-skeleton of infinitely many
4-polytopes [4].

A priori we can state, that every triangulated surface, i. e. every 2-dimensional sim-
plicial complex with closed circuits as vertex links, with k vertices is a sub-complex of the
pk � 1q-simplex ∆k�1 and that every centrally symmetric surface with 2k vertices lies in
the 2-skeleton of the k-dimensional cross polytope βk, i. e. the convex hull of 2k points
x�i � p0, . . . , 0,�1, 0, . . . , 0q P Rk, 1 ¤ i ¤ k. Hence, of particular interest are surfaces
which, in addition, contain the full edge graph of an ambient polytope P . These surfaces
are then referred to as 1-Hamiltonian in P .

On the other hand embeddings of certain graphs into triangulated surfaces (so-called
triangular embeddings) were extensively studied in the course of the proof of Heawood’s
Map Color Theorem in graph theory (cf. [12] or chapter 4 of [13]). If a Graph G is
embeddable into a surface of genus g but not into a surface of smaller genus, then g is
called the genus of G. Here, as well as in the prior case, we are interested in graph
embeddings that cover the full edge graph of an ambient triangulated surface. For the
complete graph or, equivalently, the n-simplex these are exactly the 2-neighborly surfaces.
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For the complete n-partite graph with two vertices in each partition or the k-dimensional
cross polytope respectively, Jungerman and Ringel were able to show the following:

Theorem 1.1 (Regular cases in [7]). For any orientable surface M and any k � 2p3q
satisfying the equality 2pk � 1qpk � 3q � 3p2 � χpMqq there exists a triangulation of M
whose 1-skeleton equals the 1-skeleton of βk.

There is a series of centrally symmetric 1-Hamiltonian surfaces Sn, n ¥ 0, with 12n� 8
vertices in β6n�4 and, thus, of genus gpSnq � 12n2 � 8n � 1 (cf. [7] and Example 3.6 in
[8] for a concrete list of triangles). In particular, S0 is the 8-vertex Altshuler torus in the
decomposition of β4 described below.

A closely related question is whether or not the i-skeleton skelipP q, 1 ¤ i ¤ pd� 2q, of
a d-polytope P is decomposable, i. e. if there exist two (possibly bounded) PL i-manifolds
M1 and M2 with M1 YM2 � skelipP q such that M1 XM2 � skeli�1pP q.

Grünbaum and Malkevitch [6] as well as Martin [11] treated the case i � 1. The case
i � 2 was settled in the case of simplicial polytopes by Betke, Schulz and Wills as follows:

Theorem 1.2 (Betke, Schulz, Wills, [4]). There are exactly 5 simplicial polytopes with
decomposable 2-skeletons:

1. The 2-skeleton of the 4-simplex ∆4 is decomposable into 2 Möbius strips with cyclic
symmetry, each with the minimum number of 5 vertices, 10 edges and 5 triangles,

2. the 18 triangles of the cyclic 4-polytope C4p6q with 6 vertices form the union of two
Möbius strips where the triangulations equal the 6-vertex real projective plane with
one triangle removed,

3. the triangles of the double pyramid over the 3-simplex can be partitioned into two
Möbius strips on 6 vertices and 8 triangles each,

4. the 2-skeleton of the 4-dimensional cross polytope (i. e. the double pyramid over the
octahedron) equals the union of two 8-vertex Altshuler tori and

5. the 20 triangles of the 5-simplex ∆5 decompose into two copies of the 6-vertex real
projective plane.

Note, that 1., 4. and 5. are highly symmetric. 1. and 4. occur as a part of the two series
of decompositions presented below.

The proof of Theorem 1.2 relies on the fact, that a decomposition of the 2-skeleton of
a d-Polytope P into two surfaces is only possible if each edge of P is contained in at most
4 triangles. Thus, 4 ¤ d ¤ 5 and the number of vertices has to be bounded.

The idea of the proof of Theorem 1.2 shows that in general decompositions of a polytope
P with more than 2 components are not as restrictive towards the local combinatorial
structure of P . In this article we will focus on highly symmetric decompositions of the
2-skeleton of βk and ∆k�1 with arbitrary many components. Therefore we define
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Definition 1.3 (Difference cycle). Let ai P Nzt0u, 0 ¤ i ¤ d, n :�
°d
i�0 ai and Zn �

xp0, 1, . . . , n� 1qy. The set

pa0 : . . . : adq :� Zn � t0, a0, . . . ,Σd�1
i�0 aiu,

where � is the induced cyclic Zn-action on subsets of Zn, is called difference cycle of di-
mension d on n vertices. The number of its elements is referred to as the length of the
difference cycle. If C is a union of difference cycles of dimension d on n vertices and λ is
a unit of Zn such that the complex λC (obtained by multiplying all vertex labels modulo
n by λ) equals C, then λ is called a multiplier of C.

Note, that for any unit λ P Z�
n the complex λC is combinatorially isomorphic to C,

i. e. C and λC are equal up to a relabeling of the vertices. In particular all λ P Z�
n are

multipliers of the complex
�
λPZ�n λC.

The definition of a difference cycle above is similar to the one given in [9]. For a more
thorough introduction into the field of the more general difference sets and their multipliers
see Chapter VI and VII in [3].

Throughout this article we will look at difference cycles as simplicial complexes with a
transitive automorphism group given by the cyclic Zn-action on its elements: Every pd�1q-
tuple tx0, . . . , xdu is interpreted as a d-simplex ∆d � xx0, . . . , xdy. A simplicial complex C
is called transitive, if its group of automorphisms acts transitively on the set of vertices.
In particular any union of difference cycles is a transitive simplicial complex.

Remark 1.4. It follows from the definition that the set of difference cycles of dimension d
on k vertices defines a partition of the d-skeleton of the pk�1q-simplex. Two pd�1q-tuples
pa0, . . . , adq and pb0, . . . , bdq both of sum k define the same difference cycle if and only if
for a fixed j P Z we have api�jq mod pd�1q � bi for all 0 ¤ i ¤ d.

Proposition 1.5. Let pa0 : . . . : adq be a difference cycle of dimension d on n vertices and
1 ¤ k ¤ d� 1 the smallest integer such that k | pd� 1q and ai � ai�k, 0 ¤ i ¤ d� k. Then
pa0 : . . . : adq is of length

°k�1
i�0 ai �

nk
d�1

.

Proof. We set m :� nk
d�1

and compute
A

0 �m, a0 �m, . . . , pΣd�1
i�0 aiq �m

E
�

A
Σk�1
i�0 ai,Σ

k
i�0ai, . . . ,Σ

d�1
i�0 ai, 0, a1, . . . ,Σ

k�2
i�0 ai

E

�
A

0, a0, . . . ,Σ
d�1
i�0 ai

E

(all entries modulo n). Hence, the length of pa0 : . . . : adq is ¤ nk
d�1

and since k is minimal
with k | pd� 1q and ai � ai�k, the upper bound is attained.

2 The decomposition of skel2pβ
kq into closed surfaces

In the sequel we will look at the boundary of the k-dimensional cross polytope in terms of
the abstract simplicial complex
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Bβk � txa1, . . . , aky | ai P t0, . . . , 2k � 1u, ti, k � iu � ta1, . . . , aku, @ 0 ¤ i ¤ k � 1u. (2.1)

In particular, the diagonals of βk are precisely the edges xi, k� iy, 1 ¤ i ¤ k, and, thus,
coincide with the difference cycle pk :kq. We can now state our main result:

Theorem 2.1. The 2-skeleton of the k-dimensional cross polytope βk can be decomposed
into triangulated vertex transitive closed surfaces.

More precisely, if k � 1, 2p3q, skel2pβ
kq decomposes into pk�1qpk�2q

3
triangulated vertex

transitive closed surfaces of Euler characteristic 0 on 2k vertices and, if k � 0p3q, into k
3

disjoint copies of Bβ3 (on 6 vertices each) and kpk�3q
3

triangulated vertex transitive closed
surfaces of Euler characteristic 0 on 2k vertices otherwise.

In this section, we will explicitly construct the transitive surfaces and determine their
topological types for any given integer k ¥ 3. The proof will consist of a number of
consecutive lemmata.

Lemma 2.2. The 2-skeleton of βk can be written as the following set of difference cycles:

pl : j : 2k � l � jq, pl : 2k � l � j : jq

for 0   l   j   2k � l � j, k R tl, j, l � ju, and

pj : j : 2pk � jqq

for 0   j   k with 2j � k. If k � 0p3q all of them are of length 2k, if k mod 3 � 0 the
difference cycle p2k

3
: 2k

3
: 2k

3
q has length 2k

3
.

Proof. Let βk be the k-dimensional cross polytope with vertices t0, . . . , 2k � 1u and diag-
onals tj, k � ju, 0 ¤ j ¤ k � 1 . It follows from the recursive construction of βk as the
double pyramid over βk�1 that it contains all 3-tuples of vertices as triangles except the
ones including a diagonal. Thus, a difference cycle of the form pa : b : cq lies in skel2pβ

kq if
and only if k R ta, b, a� bu . In particular skel2pβ

kq is a union of difference cycles.
Note, that each ordered 3-tuple 0   l   j   2k � l � j defines exactly two distinct

difference cycles on the set of 2k vertices, namely

pl : j : 2k � l � jq and pl : 2k � l � j : jq

and it follows immediately that there is no other difference cycle pa : b : cq, k R ta, b, a� bu
on 2k vertices with a, b, c pairwise distinct.

For any positive integer 0   j   k with 2j � k there is exactly one difference cycle

pj : j : 2k � 2jqq,

and since j must fulfill 0   2j   2k there are no further difference cycles without diagonals
with at most two different entries.

The length of the difference cycles follows directly from Proposition 1.5 with d � 2 and
n � 2k.
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Lemma 2.3. A closed 2-dimensional pseudomanifold S defined by m difference cycles of
full length on the set of n vertices has Euler characteristic χpSq � p1� m

2
qn.

Proof. Since all difference cycles are of full length, S consists of n vertices and m � n
triangles. Additionally, the pseudo manifold property asserts that S has 3

2
m � n edges and,

thus,

χpSq � n�
3

2
m � n�m � n � np1�

m

2
q.

Lemma 2.4. Let 0   l   j   2k � l � j, k R tl, j, l � ju and m :� gcdpl, j, 2kq. Then

Sl,j,2k :� tpl : j : 2k � l � jq, pl : 2k � l � j : jqu � t1, . . . ,mu � T2,

where all connected components of Sl,j,2k are combinatorially isomorphic to each other.

Proof. The link of vertex 0 in Sl,j,2k is equal to the cycle

lkSl,j,2k
(0) =

l

l + j

j

2k − l

2k − j − l

2k − j

Since 0   l   j   2k� l� j and k R tl, j, l� ju all vertices are distinct and lkSl,j,2k
p0q is

the boundary of a hexagon. By the vertex transitivity all other links are cycles and Sl,j,2k
is a surface.

Since l, j and 2k� l�j are pairwise distinct both pl : j : 2k� l�jq and pl : 2k� l�j : jq
have full length and by Lemma 2.3 the surface has Euler characteristic 0.

In order to see that Sl,j,2k is oriented we look at the (oriented) boundary of the triangles
in Sl,j,2k in terms of 1-dimensional difference cycles:

Bpl : j : 2k � l � jq � pj : 2k � jq � pl � j : 2k � l � jq � pl : 2k � lq

Bpl : 2k � l � j : jq � p2k � l � j : l � jq � p2k � j : jq � pl : 2k � lq

� pj : 2k � jq � pl � j : 2k � l � jq � pl : 2k � lq

and, thus Bpl : j : 2k � l � jq � Bpl : 2k � l � j : jq � 0 and Sl,j,2k is oriented.
Now consider

pl : j : 2k � l � jq � Z2k � x0, l, l � jy

Clearly xp0 � iqmod 2k, pl � iqmod 2k, pl � j � iqmod 2ky share at least one vertex if i P
t0, l, 2k � l, j, 2k � j, 2k � l � j, l � ju. For any other value of i   2k the intersection
of the triangles is empty. By iteration it follows, that pl : j : 2k � l � jq has exactly
gcdp0, l, 2k � l, j, 2k � j, 2k � l � j, l � jq � gcdpl, j, 2kq � m connected components. The
same holds for pl : 2k� l�j : jq and p0, . . . , p2k�1qqi � x0, l, l � jy is disjoint to x0, l, 2k � jy
for i R t0, l, 2k�l, j, 2k�j, 2k�l�j, l�ju. Together with the fact that starSl,j,2k

p0q consists
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of triangles of both pl : j : 2k � l � jq and pl : 2k � l � j : jq it follows that Sl,j,2k has m
connected components and by a shift of the indices one can see that all of them must be
combinatorially isomorphic.

As a consequence it follows that Sl,j,2k � t1, . . . ,mu � T2.

Remark 2.5. Some of the connected components of the surfaces presented above are com-
binatorially isomorphic to the so-called Altshuler tori

tp1 : n� 3 : 2q, p1 : 2 : n� 3qu

with n � 2k
m
¥ 7 vertices mentioned above (cf. proof of Theorem 4 in [2]). However, other

triangulations of transitive tori are part of the decomposition as well: in the case k � 6
there are four different combinatorial types of tori. This is in fact the total number of
combinatorial types of transitive tori on 12 vertices (cf. Table 1).

Lemma 2.6. Let

M :�

"
pj : j : 2pk � jqq | 0   j   k; 2j � k

*
,

M1 :�

"
pl : l : 2pk � lqq | 1 ¤ l ¤

Z
k � 1

2

^*
and

M2 :�

"
pk � l : k � l : 2lqq | 1 ¤ l ¤

Z
k � 1

2

^*
.

For all k ¥ 3 the triple pM,M1,M2q defines a partition

M �M1 9YM2

into two sets of equal order. In particular we have |M | mod 2 � 0.

Proof. From 1 ¤ l ¤ tk�1
2

u it follows that k�l ¡ l and 2l   k   2pk�lq, thusM1XM2 � H
and M1 YM2 �M .

On the other hand let tk�1
2

u   j   k � tk�1
2

u. If k is odd then k�1
2
  j   k�1

2
which is

impossible for j P N. If k is even, then k
2
� 1   j   k

2
� 1, hence j � k which is excluded

in the definition of M . All together M1 YM2 �M holds and

|M | � 2

Z
k � 1

2

^
�

"
k � 1 if k is odd
k � 2 else.

Lemma 2.7. The complex

Sl,2k :� tpl : l : 2pk � lqq, pk � l : k � l : 2lqu,

1 ¤ l ¤ tk�1
2

u, is a disjoint union of k
3
copies of Bβ3 if 3 | k and l � k

3
and a surface of

Euler characteristic 0 otherwise.

6



Proof. We proof that Sl,2k is a surface by looking at the link of vertex 0:

lkSj,2k
(0) =

l

2l

k + l

k − l

2k − 2l

2k − l

where 2l � k � l and 2k � 2l � k � l if and only if l � k
3
. Thus, lkSl,j,2k

p0q is either the
boundary of a hexagon or, in the case l � k

3
, the boundary of a quadrilateral and Sl,2k is a

surface.
Furthermore, if l � k

3
the surface Sl,2k is a union of two difference cycles of full length

and by Lemma 2.3 we have χpSl,2kq � 0. If l � k
3
, pk

3
: k
3

: k
3
q is of length 2k

3
and it follows

χpS k
3
,2kq � 2k �

8

2
k �

8

3
k �

2

3
k.

By a calculation analogue to the one in the proof of Lemma 2.4 one obtains that S k
3
,2k

consists of gcdpl, 2kq � k
3
isomorphic connected components of type t3, 4u. Hence, S k

3
,2k is

a disjoint union of k
3
copies of Bβ3.

Theorem 2.8 (Lutz [10]). Let n � 8� 2m for m ¥ 0. Then the complex

A6pnq :� tp1 : 1 : pn� 2qq, p2 : p
n

2
� 1q : p

n

2
� 1qu

is a torus for m even and a Klein bottle for m odd.

Lemma 2.9. Let k ¥ 3, 1 ¤ l ¤ tk�1
2

u, l � k
3
and n :� gcdpl, kq. Then Sl,2k is isomorphic

to n copies of A6p
2k
n
q.

Proof. Since n � gcdpl, kq � gcdpl, k � lq we have n � mintgcdpl, 2pk � lqq, gcdp2l, k � lqu
and either l

n
P Z�

2k
n

or k�l
n
P Z�

2k
n

holds. It follows by mulitplying with l or k� l that A6p
2k
n
q

is isomorphic to S l
n
, 2k
n
� S k�l

n
, 2k
n
. By the monomorphism

Z 2k
n
Ñ Z2k j ÞÑ plj mod 2kq

we have a relabeling of S l
n
, 2k
n
and a small computation shows that the relabeled complex

is equal to the connected component of Sl,2k containing 0. By a shift of the vertex labels
we see that all other connected components of Sl,2k are isomoprhic to the one containing 0
what states the result.

Proof of Theorem 2.1. Lemma 2.2 and Lemma 2.6 describe skel2pβ
kq in terms of 2 series

of pairs of difference cycles

tpl : j : 2k � l � jq, pl : 2k � l � j : jqu and tpl : l : 2pk � lqq, pk � l : k � l : 2lqu

7



for certain parameters j and l. Lemma 2.4 determines the topological type of the first and
Theorem 2.8 together with Lemma 2.7 and 2.9 verifies the type of the second series.

Since | skel2pβ
kq| �

�
2k
3

�
� kp2k � 2q and for k � 0p3q all surfaces have exactly 4k

triangles we get an overall number of pk�1qpk�2q
3

surfaces. If k � 0p3q all surfaces but one
have 4k triangles, the last one has 8k

3
triangles. All together this implies that there are

kpk�3q
3

of Euler characteristic 0 and k
3
copies of Bβ3.

Table 1 shows the decomposition of skel2pβ
kq for 3 ¤ k ¤ 10. The table was computed

using the GAP package simpcomp [5]. For a complete list of the decomposition for k ¤ 90
see [14].

3 The decomposition of skel2p∆
k�1q

First note, that skel2p∆
k�1q, k ¥ 3, equals the set of all triangles on k vertices. By looking

at its vertex links we can see that in the case of 2k vertices the complex tpl : k � l : kqu
can not be part of a triangulated surface for any 0   l   k. Thus, the decomposition of
skel2pβ

kq can not be extended to a decomposition of skel2p∆
2k�1q in an obvious manner.

However, for other numbers of vertices the situation is different:

Theorem 3.1. Let k ¡ 1, k � 1, 5p6q. Then the 2-skeleton of ∆k�1 decomposes into k�1
2

collections of Möbius strips
Ml,k :� tpl : l : k � 2lqu,

1 ¤ l ¤ k�1
2

each with n :� gcdpl, kq isomorphic connected components on k
n
vertices and

k2�6k�5
12

collections of tori

Sl,j,k :� tpl : j : k � l � jq, pl : k � l � j : jqu,

1 ¤ l   j   k � l � j, with m :� gcdpl, j, kq connected components on k
m

vertices each.

We first prove the following

Lemma 3.2. Ml,k with k ¥ 5, k � 0p3q and k � 0p4q is a triangulation of n :� gcdpl, kq
cylinders r0, 1s � B∆2 if k

n
is even and of n Möbius strips if k

n
is odd.

Proof. We first look at

M1,k � tx0, 1, 2y, x1, 2, 3y, . . . , xk � 2, k � 1, 0y, xk � 1, 0, 1yu

for k ¥ 5 (see Figure 3.1). Every triangle has exactly two neighbors. Thus, the alternating
sum

�x0, 1, 2y � x1, 2, 3y � . . .��p�1qk�1xk � 1, 0, 1y

induces an orientation if and only if k is even and for any l P Z�
k the complex Ml,k is a

cylinder if k is even and a Möbius strip if k is odd. Now suppose that n � gcdpl, kq ¡ 1.
Since k � 0p3q and k � 0p4q we have k

n
¥ 5 and by a relabeling we see, that the connected

components of Ml,k are combinatorially isomorphic to M l
n
, k
n
�M1, k

n
.

8



0

1

2

3

4

2l − 1

2l

0

1

. . .

. . .

0

1

2

3

4

2l − 3

2l − 2

2l − 1

0

1

. . .

. . .

Cylinder

Möbius strip

Figure 3.1: The cylinder p1 : 1 : 2l � 2q and the Möbius strip p1 : 1 : 2l � 3q. The vertical
boundary components (x0, 1y)are identified.

Remark 3.3. If k � 0p4q the connected components of M k
4
,k � tpk

4
: k

4
: k

2
qu equal tp1 : 1 :

2qu which is the boundary of ∆3. If k � 0p3q then M k
3
,k is a collection of disjoint triangles

(isomorphic to tp1 : 1 : 1qu).

Lemma 3.4. Sl,j,k, 0   l   j   k, k � 0p2q, is a triangulation of m :� gcdpl, j, kq
connected components of isomorphic tori on k

m
vertices.

Proof. The link of vertex 0 equals

lkSl,j,k
(0) =

l

l + j

j

k − l

k − j − l

k − j

(cf. proof of Lemma 2.4). Since 0   l   j   k � l � j and k � 0p2q the link is the
boundary of a hexagon, k

m
¥ 7 and Sl,j,k is a surface. By Lemma 2.3 Sl,j,k is of Euler

characteristic 0. The proof of the orientability and the number of connected components
is analogue to the one given in the proof of Lemma 2.4. It follows that

Sl,j,k � t1, . . . ,mu � T2.

Together with Lemma 3.2 and Lemma 3.4 it suffices to show that the two series pre-
sented above contain all triangles of ∆k�1 in order to proof Theorem 3.1:

Proof. Let xa, b, cy P skel2p∆
k�1q, a   b   c. Then xa, b, cy P pb � a : c � b : k � pc � aqq.

Now if b� a, c� b and k � pc� aq are pairwise distinct we have

• xa, b, cy P Sb�a,c�b,k � Sb�a,k�pc�aq,k if b� a   c� b, k � pc� aq,
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• xa, b, cy P Sc�b,b�a,k � Sc�b,k�pc�aq,k if c� b   b� a, k � pc� aq or

• xa, b, cy P Sk�pc�aq,b�a,k � Sk�pc�aq,c�b,k if k � pc� aq   c� b, b� a.

If on the other hand at least two of the entries are equal, then pb� a : c� b : k�pc� aqq �
pl : l : k � 2lq for 1 ¤ l ¤ k�1

2
. Thus, the decomposition of skel2p∆

k�1q is complete.

Table 2 shows the decomposition of skel2p∆
k�1q for k P t5, 7, 11, 13, 35u.

A complete list of the decomposition of skel2pβ
kq and skel2p∆

k�1q for k ¤ 100 can be
found in [14].

Table 1: The decomposition of the 2-skeleton of βk (k ¤ 10) into transitive surfaces.

k f2pβkq topological type difference cycles
3 8 S2 tp1:1 :4q, p2:2 :2qu

4 32 T2 tp1:2 :5q, p1:5 :2qu, tp1:1 :6q, p3:3 :2qu

5 80 T2 tp1:2 :7q, p1:7 :2qu, tp1:3 :6q, p1:6 :3qu
K2 tp1:1 :8q, p4:4 :2qu, tp2:2 :6q, p3:3 :4qu

6 160 t1, 2u � S2 tp2:2 :8q, p4:4 :4qu
T2 tp1:2 :9q, p1:9 :2qu, tp1:3 :8q, p1:8 :3qu, tp1:4 :7q, p1:7 :4qu,

tp2:3 :7q, p2:7 :3qu, tp3:4 :5q, p3:5 :4qu, tp1:1 :10q, p5:5 :2qu

7 280 T2 tp1:2 :11q, p1:11:2qu,tp1:3 :10q, p1:10:3qu,tp1:4 :9q, p1:9 :4qu,
tp1:5 :8q, p1:8 :5qu, tp2:3 :9q, p2:9 :3qu, tp3:5 :6q, p3:6 :5qu

t1, 2u � T2 tp2:4 :8q, p2:8 :4qu
K2 tp1:1 :12q, p6:6 :2qu, tp2:2 :10q, p5:5 :4qu, tp3:3 :8q, p4:4 :6qu

8 448 T2 tp1:2 :13q, p1:13:2qu,tp1:3 :12q, p1:12:3qu,tp1:4 :11q, p1:11:4qu,
tp1:5 :10q, p1:10:5qu,tp1:6 :9q, p1:9 :6qu, tp2:3 :11q, p2:11:3qu,
tp2:5 :9q, p2:9 :5qu, tp3:4 :9q, p3:9 :4qu, tp3:6 :7q, p3:7 :6qu,
tp4:5 :7q, p4:7 :5qu, tp1:1 :14q, p7:7 :2qu, tp3:3 :10q, p5:5 :6qu

t1, 2u � T2 tp2:4 :10q, p2:10:4qu,tp2:2 :12q, p6:6 :4qu

9 672 t1, 2, 3u � S2 tp3:3 :12q, p6:6 :6qu
T2 tp1:2 :15q, p1:15:2qu,tp1:3 :14q, p1:14:3qu,tp1:4 :13q, p1:13:4qu,

tp1:5 :12q, p1:12:5qu,tp1:6 :11q, p1:11:6qu,tp1:7 :10q, p1:10:7qu,
tp2:3 :13q, p2:13:3qu,tp2:5 :11q, p2:11:5qu,tp3:4 :11q, p3:11:4qu,
tp3:5 :10q, p3:10:5qu,tp3:7 :8q, p3:8 :7qu, tp5:6 :7q, p5:7 :6qu

t1, 2u � T2 tp2:4 :12q, p2:12:4qu,tp2:6 :10q, p2:10:6qu,tp4:6 :8q, p4:8 :6qu
K2 tp1:1 :16q, p8:8 :2qu, tp2:2 :14q, p7:7 :4qu, tp4:4 :10q, p5:5 :8qu

10 960 T2 tp1:2 :17q, p1:17:2qu,tp1:3 :16q, p1:16:3qu,tp1:4 :15q, p1:15:4qu,
tp1:5 :14q, p1:14:5qu,tp1:6 :13q, p1:13:6qu,tp1:7 :12q, p1:12:7qu,
tp1:8 :11q, p1:11:8qu,tp2:3 :15q, p2:15:3qu,tp2:5 :13q, p2:13:5qu,
tp2:7 :11q, p2:11:7qu,tp3:4 :13q, p3:13:4qu,tp3:5 :12q, p3:12:5qu,
tp3:6 :11q, p3:11:6qu,tp3:8 :9q, p3:9 :8qu, tp4:5 :11q, p4:11:5qu,
tp4:7 :9q, p4:9 :7qu, tp5:6 :9q, p5:9 :6qu, tp5:7 :8q, p5:8 :7qu,
tp1:1 :18q, p9:9 :2qu, tp3:3 :14q, p7:7 :6qu

t1, 2u � T2 tp2:4 :14q, p2:14:4qu,tp2:6 :12q, p2:12:6qu
t1, 2u � K2 tp2:2 :16q, p8:8 :4qu, tp4:4 :12q, p6:6 :8qu
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Table 2: The decomposition of the 2-skeleton of ∆k�1 (k P t5, 7, 11, 13, 35u) by topological
types.

k topological type difference cycles
5 M2 tp1:1 :3qu, tp2:2 :1qu

7 M2 tp1:1 :5qu, tp2:2 :3qu, tp3:3 :1qu
T2 tp1:2 :4q, p1:4 :2qu

11 M2 tp1:1 :9qu, tp2:2 :7qu, tp3:3 :5qu,
tp4:4 :3qu, tp5:5 :1qu

T2 tp1:2 :8q, p1:8 :2qu, tp1:3 :7q, p1:7 :3qu, tp1:4 :6q, p1:6 :4qu,
tp2:3 :6q, p2:6 :3qu, tp2:4 :5q, p2:5 :4qu

13 M2 tp1:1 :11qu, tp2:2 :9qu, tp3:3 :7qu,
tp4:4 :5qu, tp5:5 :3qu, tp6:6 :1qu

T2 tp1:2 :10q, p1:10:2qu, tp1:3 :9q, p1:9 :3qu, tp1:4 :8q, p1:8 :4qu,
tp1:5 :7q, p1:7 :5qu, tp2:3 :8q, p2:8 :3qu, tp2:4 :7q, p2:7 :4qu,
tp2:5 :6q, p2:6 :5qu, tp3:4 :6q, p3:6 :4qu

35 M2 tp1:1 :33qu, tp2:2 :31qu, tp3:3 :29qu,
tp4:4 :27qu, tp6:6 :23qu, tp8:8 :19qu,
tp9:9 :17qu, tp11:11:13qu, tp12:12:11qu,
tp13:13:9qu, tp16:16:3qu, tp17:17:1qu

t1, . . . , 5u �M2 tp5:5 :25qu, tp10:10:15qu, tp15:15:5qu
t1, . . . , 7u �M2 tp7:7 :21qu, tp14:14:7qu
T2 tp1:2 :32q, p1:32:2qu, tp1:3 :31q, p1:31:3qu, tp1:4 :30q, p1:30:4qu,

tp1:5 :29q, p1:29:5qu, tp1:6 :28q, p1:28:6qu, tp1:7 :27q, p1:27:7qu,
tp1:8 :26q, p1:26:8qu, tp1:9 :25q, p1:25:9qu, tp1:10:24q, p1:24:10qu,
tp1:11:23q, p1:23:11qu,tp1:12:22q, p1:22:12qu, tp1:13:21q, p1:21:13qu,
tp1:14:20q, p1:20:14qu,tp1:15:19q, p1:19:15qu, tp1:16:18q, p1:18:16qu,
tp2:3 :30q, p2:30:3qu, tp2:4 :29q, p2:29:4qu, tp2:5 :28q, p2:28:5qu,
tp2:6 :27q, p2:27:6qu, tp2:7 :26q, p2:26:7qu, tp2:8 :25q, p2:25:8qu,
tp2:9 :24q, p2:24:9qu, tp2:10:23q, p2:23:10qu, tp2:11:22q, p2:22:11qu,
tp2:12:21q, p2:21:12qu,tp2:13:20q, p2:20:13qu, tp2:14:19q, p2:19:14qu,
tp2:15:18q, p2:18:15qu,tp2:16:17q, p2:17:16qu, tp3:4 :28q, p3:28:4qu,
tp3:5 :27q, p3:27:5qu, tp3:6 :26q, p3:26:6qu, tp3:7 :25q, p3:25:7qu,
tp3:8 :24q, p3:24:8qu, tp3:9 :23q, p3:23:9qu, tp3:10:22q, p3:22:10qu,
tp3:11:21q, p3:21:11qu,tp3:12:20q, p3:20:12qu, tp3:13:19q, p3:19:13qu,
tp3:14:18q, p3:18:14qu,tp3:15:17q, p3:17:15qu, tp4:5 :26q, p4:26:5qu,
tp4:6 :25q, p4:25:6qu, tp4:7 :24q, p4:24:7qu, tp4:8 :23q, p4:23:8qu,
tp4:9 :22q, p4:22:9qu, tp4:10:21q, p4:21:10qu, tp4:11:20q, p4:20:11qu,
tp4:12:19q, p4:19:12qu,tp4:13:18q, p4:18:13qu, tp4:14:17q, p4:17:14qu,
tp4:15:16q, p4:16:15qu,tp5:6 :24q, p5:24:6qu, tp5:7 :23q, p5:23:7qu,
tp5:8 :22q, p5:22:8qu, tp5:9 :21q, p5:21:9qu, tp5:11:19q, p5:19:11qu,
tp5:12:18q, p5:18:12qu,tp5:13:17q, p5:17:13qu, tp5:14:16q, p5:16:14qu,
tp6:7 :22q, p6:22:7qu, tp6:8 :21q, p6:21:8qu, tp6:9 :20q, p6:20:9qu,
tp6:10:19q, p6:19:10qu,tp6:11:18q, p6:18:11qu, tp6:12:17q, p6:17:12qu,
tp6:13:16q, p6:16:13qu,tp6:14:15q, p6:15:14qu, tp7:8 :20q, p7:20:8qu,
tp7:9 :19q, p7:19:9qu, tp7:10:18q, p7:18:10qu, tp7:11:17q, p7:17:11qu,
tp7:12:16q, p7:16:12qu,tp7:13:15q, p7:15:13qu, tp8:9 :18q, p8:18:9qu,
tp8:10:17q, p8:17:10qu,tp8:11:16q, p8:16:11qu, tp8:12:15q, p8:15:12qu,
tp8:13:14q, p8:14:13qu,tp9:10:16q, p9:16:10qu, tp9:11:15q, p9:15:11qu,
tp9:12:14q, p9:14:12qu,tp10:11:14q, p10:14:11qu,tp10:12:13q, p10:13:12qu

t1, . . . , 5u � T2 tp5:10:20q, p5:20:10qu

11



References
[1] A. Altshuler. Manifolds in stacked 4-polytopes. J. Combinatorial Theory Ser. A, 10:198–239, 1971.

[2] A. Altshuler. Polyhedral realization in R3 of triangulations of the torus and 2-manifolds in cyclic
4-polytopes. Discrete Math., 1(3):211–238, 1971/1972.

[3] T. Beth, D. Jungnickel, and H. Lenz. Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, second edition, 1999.

[4] U. Betke, C. Schulz, and J. M. Wills. Zur Zerlegbarkeit von Skeletten. Geometriae Dedicata, 5(4):435–
451, 1976.

[5] F. Effenberger and J. Spreer. simpcomp - A GAP package, Version 1.3.3. http://www.igt.
uni-stuttgart.de/LstDiffgeo/simpcomp, 2010. Submitted to the GAP Group.

[6] B. Grünbaum and J. Malkevitch. Pairs of edge-disjoint Hamiltonian circuits. Aequationes Math.,
14(1/2):191–196, 1976.

[7] M. Jungerman and G. Ringel. The genus of the n-octahedron: regular cases. J. Graph Theory,
2(1):69–75, 1978.

[8] W. Kühnel. Centrally-symmetric tight surfaces and graph embeddings. Beiträge Algebra Geom.,
37(2):347–354, 1996.

[9] W. Kühnel and G. Lassmann. Permuted difference cycles and triangulated sphere bundles. Discrete
Math., 162(1-3):215–227, 1996.

[10] F. H. Lutz. Equivelar and d-Covered Triangulations of Surfaces. II. Cyclic Triangulations and Tes-
sellations. arXiv:1001.2779v1 [math.CO], preprint 27 pages, 18 figures, January 2010.

[11] P. Martin. Cycles hamiltoniens dans les graphes 4-réguliers 4-connexes. Aequationes Math.,
14(1/2):37–40, 1976.

[12] G. Ringel. Triangular embeddings of graphs. In Graph theory and applications (Proc. Conf., Western
Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pages 269–
281. Lecture Notes in Math., Vol. 303. Springer, Berlin, 1972.

[13] G. Ringel. Map color theorem. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen
Wissenschaften, Band 209.

[14] J. Spreer. Supplemental material to the article “Partitions of the triangles of the cross polytope into
surfaces”, 2010.

Institut für Geometrie und Topologie
Universität Stuttgart
70550 Stuttgart
Germany

12

http://www.igt.uni-stuttgart.de/LstDiffgeo/simpcomp
http://www.igt.uni-stuttgart.de/LstDiffgeo/simpcomp

	1 Introduction
	2 The decomposition of skel2 (k) into closed surfaces
	3 The decomposition of skel2 (k-1)
	Bibliography

