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TRIANGLE-FREE TRIANGULATIONS, HYPERPLANE

ARRANGEMENTS AND SHIFTED TABLEAUX

RON M. ADIN AND YUVAL ROICHMAN

Abstract. Flips of diagonals in colored triangle-free triangulations of a
convex polygon are interpreted as moves between two adjacent chambers
in a certain graphic hyperplane arrangement. Properties of geodesics in
the associated flip graph are deduced. In particular, it is shown that every
diagonal is flipped exactly once in a geodesic between distinguished pairs of
antipodes.

1. Introduction

It was shown in [1] that the diameter of the flip graph on the set of all colored
triangle-free triangulations of a convex n-gon (to be defined in Subsection 2.1) is
exactly n(n − 3)/2. Observing that this is the number of diagonals in a convex
n-gon, it was conjectured by Richard Stanley that all diagonals are flipped in a
geodesic between two antipodes.
In this paper Stanley’s conjecture is proved for distinguished pairs of antipodes

(Corollary 5.3 below). The proof applies a C̃n-action on arc permutations, which
yields an embedding of the flip graph in a graphic hyperplane arrangement.
Geodesics between distinguished antipodes in the flip graph are then interpreted
as minimal galleries from a given chamber c to the negative chamber −c, while
diagonals are interpreted as separating hyperplanes.
Furthermore, the number of geodesics between (distinguished) antipodes is

equal to twice the number of Young tableaux of a truncated shifted staircase
shape. Motivated by this result, formulas for this number were given by Greta
Panova [10] and Ronald C. King and the authors [2]; see Section 9.

2. Triangle-Free Triangulations

In this Section we recall basic concepts and main results from [1].

2.1. Basic Concepts.

Label the vertices of a convex n-gon Pn (n > 4) by the elements 0, . . . , n − 1
of the additive cyclic group Zn. Consider a triangulation (with no extra ver-
tices) of the polygon. Each edge of the polygon is called an external edge of the
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Figure 2.1. Γ7

triangulation; all other edges of the triangulation are called internal edges, or
chords.

Definition 2.1. A triangulation of a convex n-gon Pn is called triangle-free if
it contains no triangle with 3 internal edges. The set of all triangle-free triangu-
lations of Pn is denoted TFT (n).

A chord in Pn is called short if it connects the vertices labeled i− 1 and i+ 1,
for some i ∈ Zn. A triangulation is triangle-free if and only if it contains two
short chords [1, Claim 2.3].
A proper coloring of a triangulation T ∈ TFT (n) is a labeling of the chords

by 0, . . . , n− 4 in the following inductive way: Choose a short chord and label it
0. Inductively, a chord which was not yet labeled and is contained in a triangle
whose other chord has been labeled i, is labeled i + 1. It is easy to see that
this uniquely defines the coloring. The set of all properly colored triangle-free
triangulations is denoted CTFT (n).
Each chord in a triangulation is a diagonal of a unique quadrangle (the union

of two adjacent triangles). Replacing this chord by the other diagonal of that
quadrangle is a flip of the chord.

Definition 2.2. The colored flip graph Γn is defined as follows: the vertices are
all the colored triangle-free triangulations in CTFT (n). Two triangulations are
connected in Γn by an edge labeled i if one is obtained from the other by a flip of
the chord labeled i.

2.2. A C̃n−4-Action on Triangle-Free Triangulations.

Let C̃n be the affine Weyl group generated by

S = {s0, s1, . . . , sn−1, sn}
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subject to the Coxeter relations

(1) s2i = 1 (∀i),

(2) (sisj)
2 = 1 (|j − i| > 1),

(3) (sisi+1)
3 = 1 (1 ≤ i < n− 1),

and

(4) (sisi+1)
4 = 1 (i = 0, n− 1).

The group C̃n−4 acts naturally on CTFT (n) by flips: generator si flips the
chord labeled i in T ∈ CTFT (n), provided that the resulting colored triangula-
tion still belongs to CTFT (n). If this is not the case, T is unchanged by si.

Proposition 2.3. [1, Proposition 3.2] This operation determines a transitive

C̃n−4-action on CTFT (n).

This affine Weyl group action on CTFT (n) was used to calculate the diameter
of Γn.

Theorem 2.4. [1, Theorem 5.1] For n > 4 the diameter of Γn is exactly
n(n− 3)/2.

For any colored triangle-free triangulation T denote by TR the colored triangle-
free triangulation obtained by reversing the labels of the chords of T ; namely,
the chord labeled i in T is labeled n− 4− i in TR.

Theorem 2.5. [1, Proposition 5.6] For every n > 4 and T ∈ CTFT (n), the
distance between T and TR is exactly n(n− 3)/2.

3. A C̃n−2-Action on Arc Permutations

3.1. Arc Permutations.

Let Sn be the symmetric group on the letters 1, . . . , n. Denote a permutation
π ∈ Sn by the sequence [π(1), . . . , π(n)] and transpositions by (i, j).
Intervals in the cyclic group Zn are subsets of the form {i, i + 1, . . . , i + k},

where addition is modulo n.

Definition 3.1. A permutation π ∈ Sn is an arc permutation if, for every
1 ≤ k ≤ n, the first k letters in π form an interval in Zn (where n ≡ 0, namely,
the letter n is identified with zero).

Example. π = [1, 2, 5, 4, 3] is an arc permutation in S5, but π = [1, 2, 5, 4, 3, 6]
is not an arc permutation in S6, since {1, 2, 5} is an interval in Z5 but not in Z6.

The following claim is obvious.

Claim 3.2. The number of arc permutations in Sn is n2n−2.
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Proof. There are n options for π(1) and two options for every other letter except
the last one. �

Denote by Un the set of arc permutations in Sn.

Definition 3.3. Define φ : Un → Zn × Z
n−2
2 as follows:

φ(π)1 := π(1).

For every 1 < i ≤ n−1, if {π(1), . . . , π(i−1)} is the arc [k,m] then π(i) is either
k − 1 or m+ 1.

φ(π)i :=

{
0, if π(i) = k − 1;

1, if π(i) = m+ 1.

φ is clearly a bijection.

3.2. A C̃n−2-Action.

Let {σi : 1 ≤ i ≤ n− 1} be the Coxeter generating set of the symmetric group
Sn, where σi is identified with the adjacent transposition (i, i+ 1).

Definition 3.4. For every 0 ≤ i ≤ n− 2 define a map ρi : Un → Un as follows:

ρi(π) =

{
πσi+1, if πσi+1 ∈ Un;

π, otherwise.
(∀π ∈ Un)

Note that, for π ∈ Un, πσi+1 ∈ Un iff either i ∈ {0, n−2} or φ(π)i+1 6= φ(π)i+2.

Observation 3.5. For every π ∈ Un

(φ(ρ0π))j =





φ(π)0 − 1 (mod n), if j = 1 and φ(π)2 = 0;

φ(π)0 + 1 (mod n), if j = 1 and φ(π)2 = 1;

φ(π)1 + 1 (mod 2), if j = 2;

φ(π)j , if j 6= 1, 2,

(φ(ρiπ))j = φ(π)σi+1(j) (0 < i < n− 2, ∀j),

and

(φ(ρn−2π))j =

{
φ(π)j , if j 6= n− 1;

φ(π)n−1 + 1 (mod 2), if j = n− 1.

Proposition 3.6. The maps ρi, when extended multiplicatively, determine a well
defined transitive C̃n−2-action on the set of arc permutations Un.

Proof. To prove that the operation is a C̃n−2-action, it suffices to show that it is

consistent with the defining Coxeter relations of C̃n−2 (where the operator ρi is
interpreted as an action of the generator si). All relations may be easily verified
using Observation 3.5. We leave verification of the details to the reader.

To prove that the action is transitive, notice first that (ρ0π)(1) = π(2) =
π(1)± 1 (mod n). It thus suffices to prove that for every 1 ≤ k ≤ n, the maximal
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parabolic subgroup 〈s1, . . . , sn−2〉 of C̃n−2 acts transitively on the set U
(k)
n :=

{π ∈ Un : π(1) = k}. Indeed, this parabolic subgroup is isomorphic to the
classical Weyl group Bn−2. By Observation 3.5, the restricted Bn−2-action on

U
(k)
n may be identified with the natural Bn−2-action on all subsets of

{1, . . . , n− 2}, and is thus transitive.
�

4. A Graphic Hyperplane Arrangement

4.1. Real Hyperplane Arrangements.

Let A be an arrangement of finitely many linear hyperplanes in R
d that is

central and essential, meaning that ∩H∈AH = {0}. Let L = ⊔d
i=0Li be the cor-

responding graded poset of intersection subspaces, ordered by reverse inclusion.
L is a geometric lattice.
Define a graph structure G1(A) on the set C of chambers of A, in which two

chambers c, c′ are connected by an edge when they are separated by exactly
one hyperplane in A. It is well-known that the diameter of the graph G1(A) is
|L1| = |A|, that is, the number of hyperplanes.

The reflection arrangement An−1 of type An−1, corresponding to the symmet-
ric group Sn, has ambient space Rn−1, identified with the quotient of Rn having
coordinates x1, . . . , xn by the subspace x1 = x2 = · · · = xn. Its hyperplanes
are Hij := {xi = xj} for 1 ≤ i < j ≤ n. The chambers may be identified with
permutations in Sn, via cπ := {x̄ ∈ R

n−1 : xπ(1) < xπ(2) < · · · < xπ(n−1)}.
The symmetric group Sn acts on the chambers via σi(cπ) := cπσi

, the unique
chamber which is separated from cπ by the hyperplane Hπ(i),π(i+1). Then, for
every π ∈ Sn, cπ and −cπ = cπw0

are antipodes in the graph G1(An−1), where
w0 = (n, n− 1, . . . , 1) is the longest element in Sn.

A (simple undirected) graph G = (V,E) of order n consists of a set V =
{v1, . . . , vn} of vertices and a set E of edges, which are unordered pairs of distinct
vertices. Given a (simple undirected) graph G = (V,E), the associated graphic
arrangement A(G) is the hyperplane arrangement in R

n−1 determined by the
hyperplanes

A(G) := {xi = xj : (vi, vj) ∈ E}.

For example, let Kn be the complete graph of order n, whose set of edges consists
of all unordered pairs of vertices. The associated graphic arrangement A(Kn) is
the reflection arrangement of type An−1. For more information see [7].

4.2. The Graph of Chambers G1(U
′
n).

For every graph G of order n, the associated graphic arrangement A(G) has
the reflection arrangement of type An−1 as a refinement. Thus, every graph G of
order n induces a G-equivalence relation on Sn: two permutations π, τ ∈ Sn are
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G-equivalent if the points (π(1), . . . , π(n)), (τ(1), . . . , τ(n)) ∈ R
n lie in the same

chamber of the associated graphic arrangement.

Let the vertices in the complete graph Kn be indexed by 1, . . . , n and consider
the graph K ′

n obtained by deleting the edges {(i, i + 1) : 1 ≤ i < n} ∪ {(1, n)}
from the complete graph Kn. Let A′

n−1 := A(K ′
n) be the associated graphic

arrangement. Two permutations π, τ ∈ Sn are K ′
n-equivalent if and only if there

exist 1 ≤ i < n, such that τ = πσi and πσiπ
−1 ∈ {σj : 1 ≤ j < n} ∪ {(1, n)},

i.e., if the letters j and j + 1 (or 1 and n) are adjacent in π, and τ is obtained
from π by switching their positions.
Let Un be the subset of arc permutations in Sn and let U ′

n be the set of K ′
n-

equivalence classes in Un.

Observation 4.1. For n ≥ 3 all K ′
n-equivalence classes in Un consist of four

permutations {π, πσ1, πσn−1, πσ1σn−1}.

Proof. For every π ∈ Un and 1 < i < n− 2, if π(i+1) = π(i)± 1 then πσi 6∈ Un.
On the other hand, for every π ∈ Un and i ∈ {1, n− 1}, πσi ∈ Un. �

Let G1(U
′
n) be the subgraph of G1(A

′
n−1) induced by the chambers in U ′

n.

5. Stanley’s Conjecture

It was conjectured by Richard Stanley that all diagonals are flipped in a geo-
desic between two antipodes in the flip graph Γn of colored triangle-free triangu-
lations. A bijection between the set of triangle-free triangulations in CTFT (n)
and the subset U ′

n of chambers in the graphic hyperplane arrangement A(K ′
n),

which preserves the underlying graph structure, is applied to prove Stanley’s
conjecture.

Theorem 5.1. The flip graph Γn (without edge labeling) is isomorphic to the
graph of chambers G1(U

′
n).

Furthermore,

Theorem 5.2. There exists an edge-orientation of the flip graph Γn, such that
for any oriented edge of adjacent triangulations (T, S), S is obtained from T by
flipping the diagonal [i, j] if and only if the corresponding chambers are separated
by the hyperplane xi = xj .

An affirmative answer to Stanley’s conjecture follows.

Corollary 5.3. For every colored triangle-free triangulation T ∈ CTFT (n),
every diagonal is flipped exactly once along the shortest path from T to same
triangulation with reversed coloring TR.



TRIANGULATIONS, ARRANGEMENTS AND TABLEAUX 7

6. Proof of Theorem 5.1

6.1. A C̃n−4-Action on U ′
n.

For every π ∈ Un denote the K ′
n-class of π in Un by π̄. By Observation 4.1,

for every π ∈ Un, π̄ ∈ U ′
n may be represented by a series of n − 2 subsets:

{π(1), π(2)}, {π(3)}, . . . , {π(n− 2)}, {π(n− 1), π(n)}, where all subsets except of
the first and the last are singletons.
For every simple reflection σi ∈ Sn−2, 1 < i < n − 3, let π̄σi be the series

of subsets obtained from π̄ by replacing the letters in the i-th and i + 1-st sub-
sets. Let π̄σ1 be obtained from π̄ by replacing letters in the first two subsets
as follows: if {π(1), π(2)} = {π(3) − 2, π(3) − 1} then the first two subsets in
π̄σ1 are {π(3), π(3) − 1}, {π(3) − 2}; {π(1), π(2)} = {π(3) + 1, π(3) + 2} then
the first two subsets in π̄σ1 are {π(3), π(3) + 1}, {π(3) + 2}. Similarly, π̄σn−3 is
obtained from π̄ by replacing the letter in the n− 3-rd subset with π(n− 2)− 2
if {π(n− 1), π(n)} = {π(n− 2)− 2, π(n− 2)− 1} and with π(n+ 2) otherwise.
For every 0 ≤ i ≤ n let θi : U

′
n 7→ U ′

n be

θi(π̄) =

{
π̄σi+1, if π̄σi+1 ∈ U ′

n,

π̄, if π̄σi+1 6∈ U ′
n.

(∀π̄ ∈ U ′
n)

Observation 6.1. The maps θi, (0 ≤ i ≤ n−4), when extended multiplicatively,

determine a well defined transitive C̃n−4-action on U ′
n.

Proof is similar to the proof of Observation 3.6 and is omitted.

Observation 6.2. Two chambers in π̄, τ̄ ∈ U ′
n are adjacent in G1(U

′
n) if and

only if there exist 0 ≤ i ≤ n− 4, such that θi(π̄) = τ̄ .

6.2. A Graph Isomorphism.

Let f : CTFT (n) 7→ U ′
n be defined as follows: if [a, a + 2] is the short chord

labeled 0 then let {π(1), π(2)} = {a, a+ 1}. For 0 < i < n− 4, assume that the
chord labeled i − 1 in T is [a− k, a+m] for some k,m ≥ 1, k +m = i + 1. The
chord labeled i is then either [a− k− 1, a+m] or [a− k, a+m+ 1]. Let i+ 1-st
subset be {a− k − 1} in the former case and {a+m} in the latter. Finally, let
the last subset consist of the remaining two letters.

Claim 6.3. The map f : CTFT (n) 7→ U ′
n is a bijection.

Proof. The map f is invertible. �

Recall the definition of TR from Section 2.

Observation 6.4. For every T ∈ CTFT (n), f(TR) is obtained from f(T ) by
reversing the order of the subsets.

Recall from Subsection 2.2 the affine Weyl group C̃n−4-action on CTFT (n).

To complete the proof of Theorem 5.1 it suffices to show that
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Proposition 6.5. For every Coxeter generator si of C̃n−4 (0 ≤ i ≤ n− 4) and
T ∈ CTFT (n)

f(siT ) = sif(T ),

where sif(T ) := θi(f(T )).

Proof. For i = 0, let [a, a+2] be the short chord labeled 0 in T . Then the chord
labeled 1 is either [a, a + 3] or [a − 1, a + 2]. In the first case the short chord
labeled 0 in s0T is [a+1, a+3] and all other chords are unchanged, in particular,
the chord labeled 1 in s0T is [a, a + 3]. By definition of the map f , the first
two subsets in f(T ) are {a, a + 1}, {a + 2} and the first two subsets in f(s0T )
are {a + 1, a + 2}, {a} and the rest are not changed. On the other hand, by
definition of θ0, the first two subsets in s0f(T ) are {a+1, a+2}, {a} and the rest
are unchanged. A similar analysis shows that f(s0T ) = s0f(T ) when the chord
labeled 1 is [a− 1, a+ 2].
For 0 < i < n − 4 let the chord labeled i − 1 in T be [a − k, a + m] for

some k,m ≥ 1, k + m = i + 1. The chords labeled i and i + 1 are then either
[a−k−1, a+m], [a−k−2, a+m] respectively, or [a−k, a+m+1], [a−k, a+m+2]
or [a−k−1, a+m], [a−k−1, a+m+1] or [a−k, a+m+1], [a−k−1, a+m+1].
In the first two cases siT = T , so f(siT ) = f(T ). On the other hand, in these
cases f(T )σi 6∈ U ′

n, so sif(T ) = f(T ).
If the chords labeled i and i+1 in T are [a−k− 1, a+m], [a−k− 1, a+m+1]

respectively, then the chords labeled i and i+1 in siT are [a− k, a+m+1], [a−
k−1, a+m+1]. So, the i-th and i+1-st subsets in f(T ) are {a−k−1}, {a+m},
and they are switched in sif(T ), so same as the corresponding subsets in f(siT ).
The proof of the forth case is similar.
Finally, by Observation 6.4, f(s0T ) = s0f(T ) implies that f(sn−4T ) = sn−4f(T ).

�

7. Proof of Theorem 5.2

7.1. Coloring the Colored Flip Graph.

The goal of this subsection is to equip the colored flip graph Γn with an edge
orientation that will be used to encode the location of the flipped diagonals. It
will be proved later that this orientation satisfies the conditions of Theorem 5.2.
Our starting point is the edge labeling, mentioned in Section 2, which encodes
the order of the chords.

Recall from [1] the bijection

ϕ : CTFT (n) → Zn × Z
n−4
2

defined as follows: Let T ∈ CTFT (n). If the (short) chord labeled 0 in T is
[a− 1, a+1] for a ∈ Zn, let ϕ(T )0 := a. For 1 ≤ i ≤ n− 4, assume that the chord
labeled i− 1 in T is [a− k, a+m] for some k,m ≥ 1, k +m = i+ 1. The chord
labeled i is then either [a− k− 1, a+m] or [a− k, a+m+ 1]. Let ϕ(T )i be 0 in
the former case and 1 in the latter.
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By definition of the map ϕ,

Claim 7.1. For every vector v = (v0, . . . , vn−4) ∈ Zn × Z
n−4
2 and every 0 ≤

i ≤ n− 4, the diagonal labeled i in the triangulation T = ϕ−1(v) is [k,m] where

k := (v0 − 1− i+
i∑

j=1

vi) (mod n) and m := (v0 + 1 +
i∑

j=1

vi) (mod n).

It follows that

Corollary 7.2. [1, Lemma 5.7] For every T ∈ CTFT (n), if ϕ(T ) = (v0, . . . , vn)

then ϕ(TR)0 = (2 +
n−4∑
i=0

vi) (mod n) and ϕ(TR)i = 1− vn−3−i (1 ≤ i ≤ n− 4).

Observation 7.3. [1, Observation 3.1] For every T ∈ CTFT (n) and a Coxeter

generator si of C̃n−4

(ϕ(s0T ))j =





ϕ(T )j , if j 6= 0, 1,

ϕ(T )0 + 1 (mod n), if j = 0 and ϕ(T )1 = 0,

ϕ(T )0 − 1 (mod n), if j = 0 and ϕ(T )1 = 1,

ϕ(T )1 + 1 (mod 2), if j = 1 and ϕ(T )1 = 0;

(ϕ(sn−4T ))j =

{
ϕ(T )j , if j 6= n,

ϕ(T )n + 1 (mod 2), if j = n;

and

(ϕ(siT ))j = ϕ(T )σi(j) (0 < i < n− 4);

where σi := (i, i+ 1) the adjacent transposition.

We use this observation to orient the edges in Γn.

Definition 7.4. Orient the edges in Γn as follows: If the last diagonal labeled
n − 4 is flipped orient the corresponding edge from the triangulation encoded by
last entry 0 to the one with last entry 1. If the flip is of the diagonal labeled
0 < i < n − 4 orient the edge from T with ϕ(T )i = 0, ϕ(T )i+1 = 1 to the one
with these two entries switched; if it flips the diagonal labeled 0 orient it by the
first entry from j to j + 1; .

Lemma 7.5. For every T ∈ CTFT (n), the orientation of the edges along any
geodesic from T to TR is coherent with the orientation of Γn described in Def-
inition 7.4; namely, all edges in a geodesic have the same orientation as in the
oriented Γn or all have an opposite orientation.

Proof. Consider the dominance order on vectors in Zn × Z
n−4
2 ; namely,

(v0, . . . , vn−4) ≤ (u0, . . . , un−4)

if and only if
k∑

i=0

vi ≤
k∑

i=0

ui for all 0 ≤ k ≤ n− 4.
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The resulting poset is ranked by

ℓ(v0, . . . , vn−4) :=

n−4∑

i=0

(n− 3− i)vi.

Using Corollary 7.2, the reader can verify that for every T ∈ CTFT (n)

ℓ(ϕ(TR))− ℓ(ϕ(T )) ≡
n(n− 3)

2
mod n(n− 3),

which is the distance between T and TR (Theorem 2.5).
Finally, notice that for every edge e = (S1, S2) in Γn, the edge e is oriented

from S1 to S2 if and only if

ℓ(ϕ(S2))− ℓ(ϕ(S1)) ≡ 1 mod n(n− 3)

One concludes that either all steps in a geodesic increase the rank function by
one modulo n(n− 3) or all steps decrease it by one. Hence the lemma holds.

�

We note that this proof essentially appears (implicitly) in [1], where an alge-

braic interpretation of the rank function as a length function on C̃n−4 is given;
see, in particular, [1, Sections 3.3 and 5.2].

Now color each edge (S1, S2) of Γn, oriented from S1 to S2, by the chord [i, j]

which is erased from S1. Ignore the edge-orientation and let Γ̂n be the resulting
edge-labeled flip graph.

7.2. Edge-Colored Graph Isomorphism.

Consider an edge-labeled version of the graph G1(U
′
n), denoted by Ĝ1(U

′
n),

where the edge between two adjacent chambers is labeled by the separating hy-
perplane.

Theorem 7.6. The edge-labeled graphs Ĝ1(U
′
n) and Γ̂n are isomorphic.

Note that this theorem implies Theorem 5.2.

Proof. By Observation 6.2, two chambers π̄, τ̄ ∈ U ′
n are adjacent in G1(U

′
n) if and

only if there exist corresponding arc permutations π, τ ∈ Un and 1 < i < n− 1,
such that πσi = τ . The separating hyperplane is then xk = xm if and only if
(k,m)π = τ , or equivalently πσiπ

−1 = (k,m), for the transposition (k,m) ∈ Sn.

Recall the bijection f : CTFT (n) 7→ U ′
n, defined in Subsection 6.2. Since f

induces a graph isomorphism, for every 1 < i < n − 1, if π, πσi are two arc
permutations then f−1(π̄), f−1(πσi)) forms an edge in Γn. In order to prove
Theorem 5.2, it suffices to show that f−1(π̄σi)) is obtained from f−1(π̄) by
flipping the diagonal [k,m], when the edge is oriented from f−1(π̄) to f−1(π̄σi).
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Indeed, an edge is oriented from f−1(π̄) to f−1(πσ1) if and only if the latter
triangulation is obtained from the first by flipping the short chord labeled 0
[a− 1, a+ 1]; namely, by replacing the diagonal [a− 1, a+ 1] by [a, a+ 2], where
the diagonal labeled 1 is [a − 1, a+ 2]. By definition of the map f the first two
subsets in π̄ are {a − 1, a}, {a + 1} and in πσ1: {a, a + 1}, {a − 1}. Letting
π = [a, a − 1, a + 1, . . . ] one gets πσ1π

−1 = (a − 1, a + 1), so the separating
hyperplane is xa−1 = xa+1.
For 1 < i < n− 3, an edge is oriented from f−1(π̄) to f−1(πσi) if and only if

the chord labeled i − 1 is [a− k, a+m] and the latter triangulation is obtained
from the first by flipping a diagonal [a− k − 1, a+m]; namely, by replacing the
diagonal [a−k−1, a+m] by [a−k, a+m+1]. Then the i-th and i+1-st subsets
in π̄, which are {a− k − 1}, {a+m}, are switched in πσi+1. So π(i) = a− k − 1
and π(i + 1) = a+m+ 1, and πσi+1π

−1 = (a− k − 1, a+m).
Finally, an edge is oriented from f−1(π̄) to f−1(πσn−3) if and only if the chord

labeled n − 5 is [b − 2, b + 1] and the latter triangulation is obtained from the
first by flipping the short chord labeled n− 4 [b− 1, b+ 1]; namely, by replacing
the diagonal [b − 1, b + 1] by [b, b + 2]. Then the last two subsets in π̄ are
{b − 1}, {b, b+ 1} and in πσn−3: {b}, {b− 1, b}. So π = [. . . , b − 1, b + 1, b] one
gets πσn−3π

−1 = [b− 1, b+ 1].
�

8. Proof of Corollary 5.3

Recall that T and TR are antipodes (Theorem 2.5).

Proposition 8.1. For every colored triangle-free triangulation T ∈ CTFT (n),
the corresponding chambers in A(K ′

n) satisfy

cf(TR) = −cf(T ).

Proof. Let w0 := [n, n − 1, n − 2, . . . .1] be the longest permutation in Sn. It
follows from Observation 6.4 that for every π ∈ Un

(f−1(π̄))R = f−1(πw0).

Noticing that the points π and πw0 in R
n belong to negative chambers complete

the proof.
�

Proof of Corollary 5.3. By Proposition 8.1, the set of hyperplanes, which
separate the chamber cf(T ) from the chamber cf(TR) is the set of all hyperplanes
in A(K ′

n). By Theorem 7.6 together with Lemma 7.5 one deduces that all di-
agonals have to be flipped at least once in a geodesic from T to TR. Finally,
by Theorems 2.4 and 2.5, the distance between T and TR in Γn is equal to the
number of diagonals in a convex n-gon. Hence, each diagonal is flipped exactly
once.

�
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9. Geodesics and Shifted Tableaux

Let T0 be the canonical colored star triangle-free triangulation; that is the trian-
gulation, which consists of the chords [0, 2], [0, 3], . . . , [0, n−2] labeled 0, . . . , n−4
respectively.

9.1. Order on the Diagonals.

By Corollary 5.3, every geodesic from the canonical colored star traingle-free
triangulation T0 to TR

0 determines a linear order on the diagonals. The following
theorem characterizes these linear orders.

Theorem 9.1. An order on the set of diagonals {[i, j] : 1 ≤ i < j−1 ≤ n−1} of
a convex n-gon appears in geodesics in Γn from T0 to its reverse TR

0 if and only
if it is a linear extension of the coordinate-wise order with respect to the natural
order

0 < 1 < 2 < · · · < n− 1,

or its reverse

0 ≡ n < n− 1 < n− 2 < · · · < 1.

Proof. Clearly, every geodesic from T0 to TR
0 starts with either flipping [0, 2] or

[0, n− 2]. By symmetry, exactly half start by flipping [0, 2].

First, we will prove that an order on the set of diagonals of a convex n-gon
corresponding to geodesics from T0 to TR

0 , which start by flipping [0, 2], is a
linear extension of the coordinate-wise order with respect to the natural order
0 < 1 < 2 < · · · < n− 1.

Recall that by Corollary 5.3, every hyperplane is not crossed more than once.
Thus, in order to prove this, it suffices to show that in every gallery from the iden-
tity chamber c[0,1,2,...,n−1] to its negative, that start by crossing the hyperplane
H0,2, the hyperplaneHk,l is crossed after the hyperplane Hi,j , whenever i+1 < j,
k + 1 < l, and (i, j) < (k, l) in point-wise coordinate order. In other words, it
suffices to prove that for every arc permutation π ∈ Un, if π̄ ∈ U ′

n corresponds
to a chamber in such a gallery then π−1(i) < π−1(j) =⇒ π−1(k) < π−1(l).
Clearly, this holds for the arc permutations which correspond to the identity

chamber c[0,1,...,n−1] and to its negative −c[0,1,...,n−1] = c[n−1,n−2,...,0]. With
regard to all other chambers in these galleries, notice first, that all geodesics from
T0 to TR

0 must end by flipping either [n − 3, n− 1] or [1, 3]. Let S ∈ CTFT (n)
be the triangulation, which consists of the chords [1, 3], [0, 3], [0, 4], . . . , [0, n− 2]
labeled 0, 1, . . . , n − 4 respectively. Then TR

0 is obtained from SR by flipping
[1, 3] and S is obtained from T0 by flipping [0, 2]. Since S and SR are antipodes,
it follows that S does not appear in a geodesic from T0 to TR

0 which start by
flipping [0, 2]. Thus every geodesic from T0 to TR

0 , which start by flipping [0, 2]
must end by flipping [n−3, n−1]. One concludes that for every π ∈ Un, if π̄ ∈ U ′

n

is a chamber in such a gallery which is not first or last, then π−1(2) < π−1(0)
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and π−1(n− 3) < π−1(n− 1). Thus the first letter in π, π(0), is not 0 or n− 1.
There are three cases to analyze:
If π(0) = 1 then, since π−1(n− 3) < π−1(n− 1) and π is an arc permutation,

0 = π−1(1) < π−1(2) < · · · < π−1(n− 3) < π−1(n− 1)).
If π(0) = n − 2 then, since π−1(2) < π−1(0) and π is an arc permutation,

0 = π−1(n− 2) < π−1(n− 3) < · · · < π−1(2) < π−1(0).
Finally, if 2 ≤ π(0) ≤ n − 3 then, since π−1(n − 3) < π−1(n − 1), π−1(2) <

π−1(0) and π is an arc permutation, letting π(0) := i the following holds: 0 =
π−1(i) < π−1(i − 1) · · · < π−1(2) < π−1(0) and 0 = π−1(i) < π−1(i+ 1) < · · · <
π−1(n− 3) < π−1(n− 1).

It follows that for every π ∈ Un, such that π̄ is a chamber in a gallery from
the identity chamber to its negative that start by flipping [0, 2], there is no
(i, j) < (k, l) in point-wise coordinate order, with i + 1 < j and k + 1 < l, such
that π−1(i) < π−1(j) but π−1(k) > π−1(l). One concludes that there is no
(i, j) < (k, l) in point-wise coordinate order, with i + 1 < j and k + 1 < l, such
that [i, j] is flipped after [k, l].

It remains to prove the opposite direction, namely, to show that every linear
extension of the coordinate-wise order appears as a geodesic. To prove this, first,
notice that the lexicographic order does appear. Then observe that if i < j <
k < l and [i, l] and [j, k] are consequent flipped diagonals in the geodesic then
it is possible to switch their order in the geodesic. This completes the proof for
geodesics from T0 to TR

0 , which start by flipping [0, 2].

Finally, to prove that geodesics from T0 to TR
0 , which start by flipping [0, n−2],

are characterized by linear extensions with respect to the order 0 ≡ n < n− 1 <
n − 2 < · · · < 1, observe that these geodesics may be obtained from geodesics
that start by flipping [0, 2] via the reflection which maps every 0 ≤ i ≤ n− 1 to
n− i.

�

9.2. Skew Shifted Young Lattice.

Definition 9.2. For a positive integer n let Λ(n) be the set of all partitions with
largest part ≤ n and with all parts distinct, except possibly the first two parts
when they are equal to n. Namely,

Λ(n) := {λ = (λ1, . . . , λk) : k ≥ 0, n ≥ λ1 ≥ λ2 > λ3 > · · · > λk > 0 and

[either λ1 > λ2 or λ1 = λ2 = n]}.

Let (Λ(n),⊆) the poset of partitions in Λ(n) ordered by inclusion of the corre-
sponding Young diagrams.

Example 9.3.

Λ(3) = { (3, 3, 2, 1), (3, 3, 2), (3, 3, 1), (3, 3),

(3, 2, 1), (3, 2), (3, 1), (3), (2, 1), (2), (1), () }.
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Consider the standard tableaux of truncated shifted staircase shape (n−1, n−
1, n− 2, n− 3, . . . , 2, 1). Denote this set by Y (n).

Example 9.4. The truncated shifted staircase shape (3, 3, 2, 1) is drawn in the
following way:

X X X ∗
X X X

X X
X

There are four standard tableaux of this shape

1 2 3 ∗
4 5 6

7 8
9

,

1 2 4 ∗
3 5 6

7 8
9

,

1 2 3 ∗
4 5 7

6 8
9

,

1 2 4 ∗
3 5 7

6 8
9

Observation 9.5. 1. The maximal chains in (Λ(n),⊆) are parameterized
by the set of standard tableaux of truncated shifted staircase shape (n −
1, n− 1, n− 2, . . . , 1).

2. The linear extensions of the coordinate-wise order on the set

{(i, j) : 0 ≤ i+ 1 < j ≤ n} \ {(0, n)}

are parameterized by the set of standard tableaux of truncated shifted
staircase shape (n− 1, n− 1, n− 2, . . . , 1).

With any standard tableau of truncated shifted staircase shape T associate
two words of size

(
n
2

)
− 1, r(T ) and c(T ), where r(T )i (c(T )i), (1 ≤ i ≤

(
n
2

)
− 1),

is the row (respectively, column) where entry i is located.

Example 9.6. Let P,Q be the first two tableaux in Example 9.4. Then r(P ) =
(1, 1, 1, 2, 2, 2, 3, 3, 4), c(P ) = (1, 2, 3, 2, 3, 4, 3, 4, 4), r(Q) = (1, 1, 2, 1, 2, 2, 3, 3, 4)
and c(Q) = (1, 2, 2, 3, 3, 4, 3, 4, 4),

9.3. Geodesics and Tableaux.

Denote the set of geodesics from T0 ∈ CTFT (n) to TR
0 starting by flipping

[0, 2] by D(T0)
+.

Proposition 9.7. 1. There is a bijection from the set of standard tableaux
on truncated shifted staircase partition (n−3, n−3, n−4, . . . , 1), Y (n−3),
to the set of geodesics D(T0)

+

φ : Y (n− 3) → D(T0)
+.

2. For every geodesic u ∈ D(T0)
+, the diagonal flipped at the i-th step is

[r(φ−1(u))i − 1, c(φ−1(u))i + 1].
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Example 9.8. The bijection φ maps the tableau

1 2 4 ∗
3 5 6

7 8
9

to the series of diagonals: [0, 2], [0, 3], [1, 3], [0, 4], [1, 4], [1, 5], [2, 4], [2, 5], [3, 5].

Proof. Combining Theorem 9.1 with Observation 9.5(2). �

Let dn denote the number of geodesics from the canonical star triangulation T0

of an n-gon to its reverse TR
0 . By Proposition 9.7, dn/2 is equal to the number of

standard tableaux of truncated shifted staircase shape (n−3, n−3, , n−4, . . . , 1).
Partial results regarding dn were stated in an early version of this preprint.
Subsequently, an explicit multiplicative formula was proved by Greta Panova [10]
and Ronald C. King and the authors [2].

Theorem 9.9. The number of geodesics from the canonical star triangulation
T0 of a convex n-gon to its reverse TR

0 is

dn = g[n−6] ·

(
N

4n− 15

)
·
8(2n− 9)

n− 3
=

N ! · 8(2n− 9)

(4n− 15)! · (n− 3)
·

n−7∏

i=0

i!

(2i+ 1)!
,

where g[n−6] := g(n−6,n−7,...,1) is the number of standard Young tableaux of shifted
staircase shape (n− 6, n− 7, . . . , 1) and N := n(n− 3)/2.
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