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1 Introduction

Six years after William Rowan Hamilton’s discovery of quaternions, in 1849 James Cockle
introduced the algebra of split quaternions [Co]. (He called them “coquaternions.”) One way
to define the split quaternions HR is by taking the standard generators for the algebra of
quaternions H = R1⊕Ri⊕Rj ⊕Rk and replacing the i and j with ι̃ =

√
−1i and ̃ = −

√
−1j

respectively, so that HR = R1 ⊕ Rι̃ ⊕ R̃⊕ Rk. Another way to realize split quaternions is as
real 2× 2 matrices. And yet another realization is

HR =

{(
z11 z12
z21 z22

)
; z11, z12, z21, z22 ∈ C, z22 = z11, z21 = z12

}
.

I. Frenkel initiated development of quaternionic analysis from the point of view of repre-
sentation theory of the conformal group SL(2,H) and its Lie algebra sl(2,H). This approach
has already been proven very fruitful and in our joint work [FL1] we push further the parallel
with complex analysis and develop a rich theory. In particular we show that the quaternionic
analogue of the Cauchy integral formula for the second order pole

f ′(w) =
1

2πi

∮
f(z) dz

(z − w)2

are the differential operator
Mx f = ∇f∇−�f+

defined on all holomorphic functions of four complex variables f : HC → HC and its integral
presentation (note the square of the Fueter kernel)

(Mx f)(W ) =

∫

C4

(Z −W )−1

det(Z −W )
· f(Z) · (Z −W )−1

det(Z −W )
dZ4,

where dZ4 is the volume form, C4 is a four cycle homologous to U(2) = {Z ∈ HC; Z
∗Z = 1}

sitting in the complexified quaternionic space HC = C⊗H. Since the constant functions on C are
the holomorphic functions annihilated by the operator d/dz : f(z) 7→ f ′(z), their quaternionic
analogue is the kernel of the operator Mx, which turns out to be the space of solutions of a
Euclidean version of the Maxwell equation for the gauge potential.

We also identify the Feynman integrals associated to the diagrams

Feynman diagrams
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with the intertwining operators projecting certain natural unitary representations of su(2, 2)
onto their first irreducible components. Then we conjecture that the other Feynman integrals
also admit an interpretation via quaternionic analysis and representation theory as the projec-
tors onto the other irreducible components.

With this representation theoretic approach it quickly becomes evident that one has to
consider the complexifications HC = C⊗H and sl(4,C) of H and sl(2,H) and their real forms,
such as the Minkowski space M and su(2, 2) or the split quaternions HR and sl(4,R). An
important aspect of quaternionic analysis is its ability to compare representation theories of
various real forms, and thus produce new results and make previously known results more
explicit.

Just as (classical) quaternionic analysis is intimately related to the representation theory
of SU(2), split quaternionic analysis is related to the representation theory of SL(2,R). The
representation theory of SL(2,R) is much richer than that of SU(2) and exhibits most aspects
of representations of higher rank real semisimple Lie groups. In particular, the group SL(2,R)
exhibits a subtle aspect of representation theory such as the separation of the discrete and
continuous series of unitary representations:

L2
(
SL(2,R)

)
≃ L2

discr

(
SL(2,R)

)
⊕ L2

cont

(
SL(2,R)

)
. (1)

We study this decomposition from the quaternionic point of view. The denominator of the
Cauchy-Fueter kernel det(X −X0) determines a region in HC = C⊗H

Ω =
{
X0 ∈ HC; det(X −X0) 6= 0 ∀X ∈ HR with det(X) = 1

}
.

Loosely speaking, this region can be broken into several connected components, two of which are

open Ol’shanskii semigroups of GL(2,C). Then the Cauchy-Fueter kernel (X−X0)−1

det(X−X0)
on HR can

be expanded in terms of the K-types of the discrete or continuous series of SL(2,R) depending
on the choice of connected component of Ω containing X0. It follows that the projectors onto
the discrete and continuous series of SL(2,R) can be expressed as

(Pdiscr)f(X0) =
1

2π2

∫

Cdiscr

(X −X0)
−1

det(X −X0)
·Dz · f(X),

(Pcont)f(X0) =
1

2π2

∫

Ccont

(X −X0)
−1

det(X −X0)
·Dz · f(X),

where Cdiscr and Ccont are certain three cycles in Ω. Note that these two integrals are identical
to the Cauchy-Fueter formula, except for the choice of contours of integration Cdiscr and Ccont.
Moreover, by choosing appropriate cycles we can even get projectors onto the holomorphic
discrete series and antiholomorphic discrete series. Such a geometric description of the decom-
position (1) fits well into the Gelfand-Gindikin program initiated in [GG]. This relationship
between quaternionic analysis and the separation of the series for SL(2,R) will be the subject
of our upcoming paper [FL2].

In view of how many connections to mathematical physics (classical) quaternionic analysis
has (see, for example, [GT]), it is almost guaranteed that split quaternionic analysis will have
them as well. At this point it is worth mentioning two very recent physics papers [ACCK] and
[MS] stressing the importance of the (2, 2) signature of the split quaternions HR as opposed to
the traditional Lorentzian signature of the Minkowski space M.

Once split quaternionic analysis is sufficiently developed, it can be generalized in many
different ways. Perhaps the most obvious direction is to extend the new results to higher
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dimensions. There is a generalization of quaternionic analysis known as Clifford analysis. Let
Cl(V ) be a Clifford algebra over a real finite-dimensional vector space V with a nondegenerate
quadratic form Q(x). Then on R ⊕ V we can introduce Dirac operators D and D+ with
coefficients in Cl(V ) so that DD+ = D+D is the wave operator on R⊕V with symbol x2−Q. We
define a differentiable function f : R⊕ V → Cl(V ) to be (left) Clifford analytic (or monogenic)
if D+f = 0. (We think of it as an analogue of the Cauchy-Riemann equations.) Slightly
more generally, we can define Clifford analytic functions with values in a Cl(V )-module. When
the quadratic form Q is negative definite there is a well developed theory of Clifford analytic
functions called Clifford analysis (see, for example, [BDS], [DSS] and [GM]). This theory
generalizes (classical) quaternionic analysis. Note that in this case DD+ is the Laplacian on
R⊕ V , hence the components of Clifford analytic functions are harmonic. Clifford analysis has
deep connections with harmonic analysis, representations of spin groups and index theory of
Dirac operators.

Methods developed in split quaternionic analysis will extend to analysis of Clifford analytic
functions associated with quadratic forms of arbitrary signature. Thus we can consider split
Clifford analysis as a “real form” of complexified Clifford analysis, which in turn was introduced
by Ryan in [R]. On the other hand, the use of the wave equation for the study of harmonic
analysis on a hyperboloid goes back to Strichartz [St]. More recently, Kobayashi and Ørsted
[KoØ] study representations of O(p + 1, q + 1) in the space of solutions of the wave equation
�p,qϕ = 0 on R

p+q. In this light it is natural to expect that this split Clifford analysis will yield
new results relating solutions of the wave equation, representation theory and index theory of
Dirac operators. In particular, we expect to obtain concrete realizations of representations of
O(p+1, q +1) in the space of solutions of Clifford analytic functions. Since Clifford analysis is
widely used by mathematical physicists, it is very likely that they will find the split version at
least as useful as the classical one.

In this article we approach the split quaternions HR as a real form of HC, introduce the
notion of regular functions and give two different analogues of the Cauchy-Fueter formula valid
for different classes of functions. This is done in parallel with (classical) quaternionic analysis.
We conclude the paper with an outline of our derivation of the projectors Pdiscr and Pcont onto
the discrete and continuous series of SL(2,R). Some contemporary reviews of quaternionic
analysis are given in [Su] and [CSSS].

2 The Quaternionic Spaces HC, HR and M

In this article we use notations established in [FL1]. In particular, e0, e1, e2, e3 denote the
units of the classical quaternions H corresponding to the more familiar 1, i, j, k (we reserve
the symbol i for

√
−1 ∈ C). Thus H is an algebra over R generated by e0, e1, e2, e3, and the

multiplicative structure is determined by the rules

e0ei = eie0 = ei, (ei)
2 = −e0, eiej = −eiej, 1 ≤ i < j ≤ 3,

and the fact that H is a division ring. Next we consider the algebra of complexified quaternions
HC = C ⊗ H (also known as biquaternions). We define a complex conjugation on HC with
respect to H:

Z = z0e0 + z1e1 + z2e2 + z3e3 7→ Zc = z0e0 + z1e1 + z2e2 + z3e3, z0, z1, z2, z3 ∈ C,

so that H = {Z ∈ HC; Z
c = Z}. The quaternionic conjugation on HC is defined by:

Z = z0e0 + z1e1 + z2e2 + z3e3 7→ Z+ = z0e0 − z1e1 − z2e2 − z3e3, z0, z1, z2, z3 ∈ C;
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it is an anti-involution:
(ZW )+ =W+Z+, ∀Z,W ∈ HC.

We will also use an involution

Z 7→ Z− = −e3Ze3 (conjugation by e3).

Then the complex conjugation, the quaternionic conjugation and the involution Z 7→ Z− com-
mute with each other.

In this article we will be primarily interested in the space of split quaternions HR which is
a real form of HC defined by

HR = {Z ∈ HC; Z
c− = Z} = {R -span of e0, ẽ1 = ie1, ẽ2 = −ie2, e3}.

We will also consider the Minkowski space M which we regard as another real form of HC:

M = {Z ∈ HC; Z
c+ = −Z},

M is spanned over R by ẽ0 = −ie0, e1, e2, e3.
On HC we have a quadratic form N defined by

N(Z) = ZZ+ = Z+Z = (z0)2 + (z1)2 + (z2)2 + (z3)2,

hence

Z−1 =
Z+

N(Z)
.

The corresponding symmetric bilinear form on HC is

〈Z,W 〉 = 1

2
Tr(Z+W ) =

1

2
Tr(ZW+), Z,W ∈ HC, (2)

where TrZ = 2z0 = Z + Z+. When this quadratic form is restricted to H, HR and M, it has
signature (4, 0), (2, 2) and (3, 1) respectively. The real forms H and M have been studied in
[FL1], and the signature (1, 3) is equivalent to (3, 1). In this article we study the real form HR

realizing the only remaining signature (2, 2).
We will use the standard matrix realization of H so that

e0 =

(
1 0
0 1

)
, e1 =

(
0 −i
−i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
−i 0
0 i

)
,

and

H = {Z ∈ HC; Z
c = Z} =

{
Z =

(
z11 z12
z21 z22

)
∈ HC; z22 = z11, z21 = −z12

}
.

Then HC can be identified with the algebra of all complex 2× 2 matrices:

HC =

{
Z =

(
z11 z12
z21 z22

)
; zij ∈ C

}
,

the quadratic form N(Z) becomes detZ and the involution Z 7→ Z− becomes

Z =

(
z11 z12
z21 z22

)
7→ Z− =

(
1 0
0 −1

)
Z

(
1 0
0 −1

)
=

(
z11 −z12
−z21 z22

)
.
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The split quaternions HR and the Minkowski space M have matrix realizations

HR =

{
Z =

(
z11 z12
z21 z22

)
∈ HC; z22 = z11, z21 = z12

}

and

M =

{
Z =

(
z11 z12
z21 z22

)
∈ HC; z11, z22 ∈ iR, z21 = −z12

}
.

From this realization it is easy to see that the split quaternions form an algebra over R isomor-
phic to gl(2,R), the invertible elements in HR, denoted by H

×
R
, are nothing else but GL(2,R).

We regard SL(2,C) as a quadric {N(Z) = 1} in HC, and we also regard SU(1, 1) ≃ SL(2,R)
as the set of real points of this quadric:

SU(1, 1) = {Z ∈ HR; N(Z) = 1}

=

{
Z =

(
z11 z12
z12 z11

)
∈ HR; detZ = |z11|2 − |z12|2 = 1

}
. (3)

The algebra of split quaternions HR is spanned over R by the four matrices

e0 =

(
1 0
0 1

)
, ẽ1 =

(
0 1
1 0

)
, ẽ2 =

(
0 i
−i 0

)
, e3 =

(
−i 0
0 i

)
,

so

HR =

{
x0e0 + x1ẽ1 + x2ẽ2 + x3e3 =

(
x0 − ix3 x1 + ix2

x1 − ix2 x0 + ix3

)
; x0, x1, x2, x3 ∈ R

}
.

The quaternionic conjugation in this basis becomes

e+0 = e0, ẽ+1 = −ẽ1, ẽ+2 = −ẽ2, e+3 = −e3.

The multiplication rules for HR are:

e0 commutes with all elements of HR,
ẽ1, ẽ2, e3 anti-commute,

e20 = ẽ21 = ẽ22 = e0, e23 = −e0,
ẽ1ẽ2 = e3, ẽ2e3 = −ẽ1, e3ẽ1 = −ẽ2.

The elements e0, ẽ1, ẽ2, e3 are orthogonal with respect to the bilinear form (2) and 〈e0, e0〉 =
〈e3, e3〉 = 1, 〈ẽ1, ẽ1〉 = 〈ẽ2, ẽ2〉 = −1.

The (classical) quaternions H are oriented so that {e0, e1, e2, e3} is a positive basis. Let
dV = dz0∧dz1∧dz2∧dz3 be the holomorphic 4-form on HC determined by dV (e0, e1, e2, e3) = 1,
then the restriction dV

∣∣
H

is the Euclidean volume form corresponding to {e0, e1, e2, e3}. On

the other hand, the restriction dV
∣∣
HR

is also real-valued and hence determines an orientation

on HR so that {e0, ẽ1, ẽ2, e3} becomes a positively oriented basis. Define a norm on HC by

‖Z‖ =
1√
2

√
|z11|2 + |z12|2 + |z21|2 + |z22|2, Z =

(
z11 z12
z21 z22

)
∈ HC,

so that ‖ei‖ = 1, 0 ≤ i ≤ 3.
In [FL1] we defined a holomorphic 3-form on HC with values in HC

Dz = e0dz
1 ∧ dz2 ∧ dz3 − e1dz

0 ∧ dz2 ∧ dz3 + e2dz
0 ∧ dz1 ∧ dz3 − e3dz

0 ∧ dz1 ∧ dz2
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characterized by the property

〈Z1,Dz(Z2, Z3, Z4)〉 =
1

2
Tr(Z+

1 ,Dz(Z2, Z3, Z4)) = dV (Z1, Z2, Z3, Z4),

∀Z1, Z2, Z3, Z4 ∈ HC.

Let Dx = Dz
∣∣
HR

and Dx̃ = Dz
∣∣
H
.

Proposition 1 The 3-form Dx takes values in HR. If we write X = x0e0+x
1ẽ1+x

2ẽ2+x
3e3 ∈

HR, x
0, x1, x2, x3 ∈ R, then Dx is given explicitly by

Dx = e0dx
1 ∧ dx2 ∧ dx3 + ẽ1dx

0 ∧ dx2 ∧ dx3 − ẽ2dx
0 ∧ dx1 ∧ dx3 − e3dx

0 ∧ dx1 ∧ dx2. (4)

Remark 2 Clearly, the form Dx satisfies the property

〈X1,Dx(X2,X3,X4)〉 =
1

2
Tr(X+

1 ,Dx(X2,X3,X4)) = dV (X1,X2,X3,X4),

∀X1,X2,X3,X4 ∈ HR,

which could be used to define it.

It is also worth mentioning that in terms of the coordinates Z =

(
z11 z12
z21 z22

)
on HC, zij ∈ C,

Dz =
1

2

(
−dz11 ∧ dz12 ∧ dz21 −dz11 ∧ dz12 ∧ dz22
dz11 ∧ dz21 ∧ dz22 dz12 ∧ dz21 ∧ dz22

)
,

where we write zij = xij + iyij , xij , yij ∈ R, and dzij = dxij + idyij .

Let U ⊂ HR be an open region with piecewise smooth boundary ∂U . We give a canonical
orientation to ∂U as follows. The positive orientation of U is determined by {e0, ẽ1, ẽ2, e3}.
Pick a smooth point p ∈ ∂U and let −→np be a non-zero vector in TpHR perpendicular to Tp∂U
and pointing outside of U . Then {−→τ1 ,−→τ2 ,−→τ3} ⊂ Tp∂U is positively oriented in ∂U if and only if
{−→np,−→τ1 ,−→τ2 ,−→τ3} is positively oriented in HR.

Lemma 3 Let R ∈ R be a constant, then we have the following restriction formulas:

Dx
∣∣∣
{X∈HR;N(X)=R}

= X
‖X‖ dS, Dx

∣∣∣
{X∈HR; ‖X‖=R}

= X−

‖X‖ dS = X−

R dS,

where the sets {X ∈ HR; N(X) = R} and {X ∈ HR; ‖X‖ = R} are oriented as boundaries of
the open sets {X ∈ HR; N(X) < R} and {X ∈ HR; ‖X‖ < R} respectively, and dS denotes the
respective restrictions of the Euclidean measure on HR.

3 Regular Functions on H and HC

Recall that regular functions on H are defined using an analogue of the Cauchy-Riemann equa-
tions. Write X̃ ∈ H as X̃ = x̃0e0 + x̃1e1 + x̃2e2 + x̃3e3, x̃

0, x̃1, x̃2, x̃3 ∈ R, and factor the
four-dimensional Laplacian operator � on H as a product of two Dirac operators

� =
∂2

(∂x̃0)2
+

∂2

(∂x̃1)2
+

∂2

(∂x̃2)2
+

∂2

(∂x̃3)2
= ∇∇+ = ∇+∇,
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where

∇+ = e0
∂

∂x̃0
+ e1

∂

∂x̃1
+ e2

∂

∂x̃2
+ e3

∂

∂x̃3
and

∇ = e0
∂

∂x̃0
− e1

∂

∂x̃1
− e2

∂

∂x̃2
− e3

∂

∂x̃3
.

The operators ∇+, ∇ can be applied to functions on the left and on the right. For an open
subset U ⊂ H and a differentiable function f on U with values in H or HC, we say f is left-regular
if (∇+f)(X̃) = 0 for all X̃ ∈ U , and f is right-regular if (f∇+)(X̃) = 0 for all X̃ ∈ U .

Proposition 4 For any C1-function f on U ⊂ H with values in H or HC,

d(f ·Dx̃) = df ∧Dx̃ = (f∇+) dV
∣∣
H
, d(Dx̃ · f) = −Dx̃ ∧ df = (∇+f) dV

∣∣
H
.

In particular,

∇+f = 0 ⇐⇒ Dx̃ ∧ df = 0, f∇+ = 0 ⇐⇒ df ∧Dx̃ = 0.

Following [FL1], we say that a differential function fC : UC → HC defined on an open set
UC ⊂ HC is holomorphic if it is holomorphic with respect to the complex variables z0, z1, z2, z3.
Then we define fC to be holomorphic left-regular if it is holomorphic and ∇+fC = 0. Similarly,
fC is defined to be holomorphic right-regular if it is holomorphic and fC∇+ = 0.

If we identify HC with complex 2 × 2 matrices

(
z11 z12
z21 z22

)
, zij ∈ C, then a function fC :

UC → HC is holomorphic if and only if it is holomorphic with respect to the complex variables
zij , 1 ≤ i, j ≤ 2. Let us introduce holomorphic analogues of ∇+ and ∇:

∇+
C
= e0

∂

∂z0
+ e1

∂

∂z1
+ e2

∂

∂z2
+ e3

∂

∂z3
and

∇C = e0
∂

∂z0
− e1

∂

∂z1
− e2

∂

∂z2
− e3

∂

∂z3
.

Then for a holomorphic function fC : UC → HC, the following derivatives are equal:

∇+fC = ∇+
C
fC = 2

(
∂

∂z22
− ∂
∂z21

− ∂
∂z12

∂
∂z11

)
fC, fC∇+ = fC∇+

C
= 2fC

(
∂

∂z22
− ∂
∂z21

− ∂
∂z12

∂
∂z11

)
,

∇fC = ∇Cf
C = 2

(
∂

∂z11
∂

∂z21
∂

∂z12
∂

∂z22

)
fC, fC∇ = fC∇C = 2fC

(
∂

∂z11
∂

∂z21
∂

∂z12
∂

∂z22

)
.

Proposition 5 For any holomorphic function fC : UC → HC,

∇+
C
fC = 0 ⇐⇒ Dz ∧ dfC = 0, fC∇+

C
= 0 ⇐⇒ dfC ∧Dz = 0.

Lemma 6 We have:

1. �
1

N(Z) = 0;

2. ∇C
1

N(Z) =
1

N(Z)∇C = −2 Z−1

N(Z) = −2 Z+

N(Z)2
;

7



3. Z−1

N(Z) =
Z+

N(Z)2 is a holomorphic left- and right-regular function defined wherever N(Z) 6= 0;

4. The form Z−1

N(Z) · Dz = Z+

N(Z)2
· Dz is a closed holomorphic HC-valued 3-form defined

wherever N(Z) 6= 0.

Lemma 7 Let UC ⊂ HC be an open subset. For any differentiable function F : UC → C, we
have:

∇
(
F (Z+)

)
= (∇+F )(Z+), ∇+

(
F (Z+)

)
= (∇F )(Z+),

∇
(
F (Z−1)

)
= −Z−1 · (∇F )(Z−1) · Z−1.

4 Regular Functions on HR

We introduce linear differential operators on HR

∇+
R
= e0

∂

∂x0
− ẽ1

∂

∂x1
− ẽ2

∂

∂x2
+ e3

∂

∂x3
and

∇R = e0
∂

∂x0
+ ẽ1

∂

∂x1
+ ẽ2

∂

∂x2
− e3

∂

∂x3

which may be applied to functions on the left and on the right.
Fix an open subset U ⊂ HR and let f be a differentiable function on U with values in HR

or HC.

Definition 8 The function f is left-regular if it satisfies

(∇+
R
f)(X) = e0

∂f

∂x0
(X)− ẽ1

∂f

∂x1
(X) − ẽ2

∂f

∂x2
(X) + e3

∂f

∂x3
(X) = 0, ∀X ∈ U.

Similarly, f is right-regular if

(f∇+
R
)(X) =

∂f

∂x0
(X)e0 −

∂f

∂x1
(X)ẽ1 −

∂f

∂x2
(X)ẽ2 +

∂f

∂x3
(X)e3 = 0, ∀X ∈ U.

We denote by �2,2 the ultrahyperbolic wave operator on HR which can be factored as follows:

�2,2 =
∂2

(∂x0)2
− ∂2

(∂x1)2
− ∂2

(∂x2)2
+

∂2

(∂x3)2
= ∇R∇+

R
= ∇+

R
∇R.

Proposition 9 For any C1-function f : U → HR (or f : U → HC),

d(f ·Dx) = df ∧Dx = (f∇+
R
) dV, d(Dx · f) = −Dx ∧ df = (∇+

R
f) dV.

In particular,

∇+
R
f = 0 ⇐⇒ Dx ∧ df = 0, f∇+

R
= 0 ⇐⇒ df ∧Dx = 0.

Let UC ⊂ HC be an open set. The restriction relations

Dz
∣∣
HR

= Dx, Dz
∣∣
H
= Dx̃

imply that the restriction of a holomorphic left- or right-regular function to UR = UC∩HR pro-
duces a left- or right-regular function on UR respectively. And the restriction of a holomorphic
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left- or right-regular function to UH = UC ∩ H also produces a left- or right-regular function
on UH respectively. Conversely, if one starts with, say, a left-regular function on HR, extends
it holomorphically to a left-regular function on HC and then restricts the extension to H, the
resulting function is left-regular on H.

These properties of Dirac operators ∇+
R
and ∇R and the notion of regular functions on HR

are in complete parallel with the Dirac operators ∇+
M

and ∇M and the corresponding notion of
regular functions on M introduced in Section 3.2 in [FL1].

Proposition 10 Let fC : UC → HC be a holomorphic function. Then

∇+fC = ∇+
R
fC = ∇+

M
fC = ∇+fC, fC∇+ = fC∇+

R
= fC∇+

M
= fC∇+,

∇fC = ∇Rf
C = ∇Mf

C = ∇fC, fC∇ = fC∇R = fC∇M = fC∇.

Thus, essentially by design, the Dirac operators ∇+, ∇+
R
, ∇+

M
, ∇+

C
and ∇, ∇R, ∇M, ∇C

(and hence the notions of regular functions on H, HR, M and holomorphic regular functions on
HC) are all compatible.

5 Fueter Formula for Holomorphic Regular Functions on HR

We are interested in extensions of the Cauchy-Fueter formula to functions on HR. First we
recall the classical version of the integral formula due to Fueter:

Theorem 11 (Cauchy-Fueter Formula [F1, F2]) Let UH ⊂ H be an open bounded subset
with piecewise C1 boundary ∂UH. Suppose that f(X̃) is left-regular on a neighborhood of the
closure UH, then

1

2π2

∫

∂UH

(X̃ − X̃0)
−1

N(X̃ − X̃0)
·Dx̃ · f(X̃) =

{
f(X̃0) if X̃0 ∈ UH;

0 if X̃0 /∈ UH.

If g(X̃) is right-regular on a neighborhood of the closure UH, then

1

2π2

∫

∂UH

g(X̃) ·Dx̃ · (X̃ − X̃0)
−1

N(X̃ − X̃0)
=

{
g(X̃0) if X̃0 ∈ UH;

0 if X̃0 /∈ UH.

Let U ⊂ HR be an open subset, and let f be a C1-function defined on a neighborhood of U
such that ∇+

R
f = 0. In this subsection we extend the Cauchy-Fueter integral formula to left-

regular functions which can be extended holomorphically to a neighborhood of U in HC. (In
other words, we assume that f is a real-analytic function on U .) Observe that the expression in

the integral formula (X̃−X̃0)−1

N(X̃−X̃0)
·Dx̃ is nothing else but the restriction to H of the holomorphic

3-form (Z−X̃0)−1

N(Z−X̃0)
· Dz which is the form from Lemma 6 translated by X̃0. For this reason we

expect an integral formula of the kind

f(X0) =
1

2π2

∫

∂U

(
(Z −X0)

−1

N(Z −X0)
·Dz

)∣∣∣∣
HR

·f(X), ∀X0 ∈ U.

However, the integrand is singular wherever N(Z − X0) = 0. We resolve this difficulty by
deforming the contour of integration ∂U in such a way that the integral is no longer singular.

Fix an ε ∈ R and define an ε-deformation hε : HC → HC, Z 7→ Zε, by:

9



z11 7→ z11 + iεz11, z12 7→ z12 − iεz12,
z21 7→ z21 − iεz21, z22 7→ z22 + iεz22.

Define a quadratic form on HC

S(Z) = z11z22 + z12z21.

Lemma 12 We have the following identities:

Zε = Z + iεZ−, (Zε)
+ = Z+ + iεZ+−,

N(Zε) = (1− ε2)N(Z) + 2iεS(Z), S(X) = ‖X‖2, ∀X ∈ HR.

For Z0 ∈ HC fixed, we use a notation

hε,Z0
(Z) = Z0 + hε(Z − Z0) = Z + iε(Z − Z0)

−.

Theorem 13 Let U ⊂ HR be an open bounded subset with piecewise C1 boundary ∂U , and let
f(X) be a C1-function defined on a neighborhood of the closure U such that ∇+

R
f = 0. Suppose

that f extends to a holomorphic left-regular function fC : V C → HC with V C ⊂ HC an open
subset containing U , then

− 1

2π2

∫

(hε,X0
)∗(∂U)

(Z −X0)
−1

N(Z −X0)
·Dz · fC(Z) =

{
f(X0) if X0 ∈ U ;

0 if X0 /∈ U ,

for all ε 6= 0 sufficiently close to 0.

Remark 14 For all ε 6= 0 sufficiently close to 0 the contour of integration (hε,X0
)∗(∂U) lies

inside V C and the integrand is non-singular, thus the integrals are well-defined. Moreover, we
will see that the value of the integral becomes constant when the parameter ε is sufficiently close
to 0. Of course, there is a similar formula for right-regular functions on HR as well.

Proof. Let M = supX∈∂U ‖X − X0‖. Without loss of generality we may assume that V C is
the δ-neighborhood of U for some δ > 0. We will show that the integral formula holds for
0 < |ε| < δ/M . Clearly, for this choice of ε the contour of integration (hε,X0

)∗(∂U) lies inside
V C and, since the integrand is a closed form, the integral stays constant for −δ/M < ε < 0 and
0 < ε < δ/M (a priori the values of the integral may be different on these two intervals).

Let Sr = {X ∈ HR; ‖X −X0‖2 = r2} and Br = {X ∈ HR; ‖X −X0‖2 ≤ r2} be the sphere
and the closed ball of radius r centered at X0, and choose r > 0 sufficiently small so that
Br ⊂ U and r < δ.

Lemma 15 Let S̃r = {X̃ ∈ H+X0; ‖X̃ −X0‖2 = r2} be the sphere oriented as the boundary
of the open ball, then

(hε,X0
)∗(∂U) ∼

{
−S̃r if X0 ∈ U ;

0 if X0 /∈ U

as homology 3-cycles inside {Z ∈ V C; N(Z −X0) 6= 0}.

Proof. We give a proof for ε > 0; the case ε < 0 is similar. As homology cycles in {Z ∈
V C; N(Z −X0) 6= 0},

(hε,X0
)∗(∂U) ∼ (hε,X0

)∗(Sr) ∼ (h1,X0
)∗(Sr).

10



If X0 /∈ U , the cycle (h1,X0
)∗(Sr) is homologous to zero.

Assume now X0 ∈ U . Let PH be the projection HC ։ H defined by

Z = (x̃0 + iỹ0)e0 + (x̃1 + iỹ1)e1 + (x̃2 + iỹ2)e2 + (x̃3 + iỹ3)e3

7→ X̃ = x̃0e0 + x̃1e1 + x̃2e2 + x̃3e3, x̃0, x̃1, x̃2, x̃3, ỹ0, ỹ1, ỹ2, ỹ3 ∈ R,

and let PH+X0
: HC ։ H+X0, be the projection PH+X0

(Z) = PH(Z −X0) +X0. We describe
the supports of the cycles involved:

|Sr| = {X0 + ae0 + bẽ1 + cẽ2 + de3; a
2 + b2 + c2 + d2 = r2},

|(h1,X0
)∗(Sr)| = {X0 + (1 + i)ae0 + (1− i)bẽ1 + (1− i)cẽ2 + (1 + i)de3;

a2 + b2 + c2 + d2 = r2},
|(PH+X0

◦h1,X0
)∗(Sr)| = {X0 + ae0 + be1 − ce2 + de3; a

2 + b2 + c2 + d2 = r2} = |S̃r|.

Moreover,
(PH+X0

◦h1,X0
)∗(Sr) = −S̃r

as homology cycles. It is easy to see that this projection provides a homotopy between
(h1,X0

)∗(Sr) and −Sr, hence the lemma. �

By Stokes’

∫

(hε,X0
)∗(∂U)

(Z −X0)
−1

N(Z −X0)
·Dz · fC(Z) =

∫

−S̃r

(Z −X0)
−1

N(Z −X0)
·Dz · fC(Z) if X0 ∈ U ,

and zero if X0 /∈ U . Finally, by the Fueter formula for the usual quaternions (Theorem 11),
the last integral is −2π2f(X0). (Alternatively, one can let r → 0+ and show directly that the
integral remains unchanged and at the same time approaches −2π2f(X0) in the same way the
Cauchy and Cauchy-Fueter formulas are proved.) �

For a Cauchy-Fueter formula for regular functions on M that extend to holomorphic regular
functions on HC see Section 3.3 in [FL1].

6 Fueter Formula for Regular Functions on HR

In this section we prove an analogue of the Cauchy-Fueter formula for smooth left-regular
functions on HR which are not necessarily real analytic and do not necessarily have holomorphic
extensions. As a “trade-off” for working with “bad” functions the proofs become much more
involved.

Theorem 16 Let U ⊂ HR be a bounded open region with smooth boundary ∂U . Let f : U → HC

be a function which extends to a real-differentiable function on an open neighborhood V ⊂ HR

of the closure U such that ∇+
R
f = 0. Then, for any point X0 ∈ HR such that ∂U intersects the

cone {X ∈ HR; N(X −X0) = 0} transversally, we have:

lim
ε→0

−1

2π2

∫

∂U

(X −X0)
+

(
N(X −X0) + iε‖X −X0‖2

)2 ·Dz · f(X) =

{
f(X0) if X0 ∈ U ;

0 if X0 /∈ U .

11



Proof. The case X0 /∈ U is easier, so we assume X0 ∈ U . Using Proposition 9, we get

d

(
(X −X0)

+

(
N(X −X0) + iε‖X −X0‖2

)2 ·Dz · f(X)

)

=

(
(X −X0)

+

(
N(X −X0) + iε‖X −X0‖2

)2∇
+
R

)
f(X) dV

= 4iε
‖X −X0‖2 − (X −X0)

+(X −X0)
−

(
N(X −X0) + iε‖X −X0‖2

)3 f(X) dV. (5)

In particular, expression (5) tends to zero pointwise when ε → 0 except for those X which lie
on the cone {X ∈ HR; N(X −X0) = 0}, and we need to be very careful there. By translation
we can assume that X0 = 0. Let Sr = {X ∈ HR; ‖X‖2 = r2} and Br = {X ∈ HR; ‖X‖2 ≤ r2}
be the sphere and the closed ball of radius r. By Stokes’

∫

∂U

X+

(
N(X) + iε‖X‖2

)2 ·Dz · f(X) =

∫

U\Br

d

(
X+

(
N(X) + iε‖X‖2

)2 ·Dz · f(X)

)

+

∫

Sr

X+

(
N(X) + iεr2

)2 ·Dz · f(X).

We will show that, as ε→ 0, the first integral on the right hand side tends to zero (this part is
non-trivial and uses that the cone {N(X−X0) = 0} intersects ∂U transversally). On the other
hand, as ε → 0 and r → 0+, the second integral tends to −2π2f(0). The proof is essentially
a series of integration by parts computations. In regular coordinates (x0, x1, x2, x3) we have
X = x0e0 + x1ẽ1 + x2ẽ2 + x3e3, and N(X) = (x0)2 − (x1)2 − (x2)2 + (x3)2. For computing
purposes we replace (x0, x1, x2, x3) with spherical coordinates (ρ, θ, ϕ, ψ) so that

x0 = ρ cos θ cosϕ
x1 = ρ sin θ sinψ
x2 = ρ sin θ cosψ
x3 = ρ cos θ sinϕ

ρ ≥ 0,
0 ≤ θ ≤ π/2,
0 ≤ ϕ ≤ 2π,
0 ≤ ψ ≤ 2π.

(6)

This is an orientation-preserving change of coordinates, and the vector fields { ∂
∂θ ,

∂
∂ϕ ,

∂
∂ψ} form

a positively-oriented frame on Sr. Then

N(X) = ρ2 cos(2θ), N(X) + iε‖X‖2 = ρ2
(
cos(2θ) + iε

)
,

and the equation N(X) = 0 becomes θ = π/4.
Recall that the function 1

xn which is singular at x = 0 can be regularized as a distribu-
tion in two different ways, 1

(x+i0)n and 1
(x−i0)n , so that a test function g(x) is being sent into

〈
1

(x+i0)n , g(x)
〉
= limε→0+

∫ g(x) dx
(x+iε)n or

〈
1

(x−i0)n , g(x)
〉
= limε→0−

∫ g(x) dx
(x+iε)n . By a similar fashion

we have the following lemma:

Lemma 17 Fix a θ0 ∈ (0, π4 ), and let n be a positive integer, then we have two distributions
which send a test function g(θ) into the limits

lim
ε→0+

∫ π
4
+θ0

π
4
−θ0

g(θ) dθ(
cos(2θ) + iε

)n and lim
ε→0−

∫ π
4
+θ0

π
4
−θ0

g(θ) dθ(
cos(2θ) + iε

)n .
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Proof. We need to show that the limits exist and depend continuously on the test function g(θ).
We do it by induction on n using integration by parts. If n = 1,

∫ π
4
+θ0

π
4
−θ0

g(θ) dθ

cos(2θ) + iε
=

∫ π
4
+θ0

π
4
−θ0

2 sin(2θ)

cos(2θ) + iε
· g(θ)

2 sin(2θ)
dθ

=

∫ π
4
+θ0

π
4
−θ0

log
(
cos(2θ) + iε

)
· d
dθ

(
g(θ)

2 sin(2θ)

)
dθ − log

(
cos(2θ) + iε

)
· g(θ)

2 sin(2θ)

∣∣∣∣

π
4
+θ0

π
4
−θ0

.

For the purpose of this integration, the complex logarithm function is defined on the complex
plane C minus the negative real axis, and the values of the logarithm lie in the strip {z ∈
C; −π < Im z < π}. The function log

(
cos(2θ) + iε

)
is integrable for all values of ε, including

ε = 0, hence the limits as ε→ 0± exist and depend continuously on g(θ).
Now suppose that n > 1, then

∫ π
4
+θ0

π
4
−θ0

g(θ) dθ(
cos(2θ) + iε

)n =

∫ π
4
+θ0

π
4
−θ0

2 sin(2θ)(
cos(2θ) + iε

)n · g(θ)

2 sin(2θ)
dθ

=
1

n− 1

1
(
cos(2θ) + iε

)n−1 · g(θ)

2 sin(2θ)

∣∣∣∣

π
4
+θ0

π
4
−θ0

− 1

n− 1

∫ π
4
+θ0

π
4
−θ0

1
(
cos(2θ) + iε

)n−1 · d
dθ

(
g(θ)

2 sin(2θ)

)
dθ,

and the result follows by induction in n. �

Lemma 18

lim
ε→0

∫

U\Br

d

(
X+

(
N(X) + iε‖X‖2

)2 ·Dz · f(X)

)
= 0.

Proof. We have seen that

∫

U\Br

d

(
X+

(
N(X) + iε‖X‖2

)2 ·Dz · f(X)

)

= 4iε

∫

U\Br

‖X −X0‖2 − (X −X0)
+(X −X0)

−

(
N(X) + iε‖X‖2

)3 f(X) dV.

Writing the right hand side integral in the spherical coordinates (6) and integrating out the
variables ρ, ϕ, ψ we obtain an integral of the type

4iε

∫ π
2

0

g(θ) dθ
(
cos(2θ) + iε

)3 , (7)

for some function g(θ). By assumption, the boundary ∂U is smooth, compact and intersects
the cone {N(X) = 0} = {θ = π/4} transversally, hence the function g(θ) is smooth at least for
θ lying in some interval [π4 − θ0,

π
4 + θ0] with θ0 ∈ (0, π4 ). It follows from Lemma 17 that the

limit of (7) as ε→ 0 is zero. �

Lemma 19
∫

Sr

X+

(
N(X) + iεr2

)2 ·Dz = r

∫

Sr

dS
(
N(X) + iεr2

)2 = − 2π2

1 + ε2
.
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Proof. From Lemma 3 we see that

X+

(
N(X) + iεr2

)2 ·Dz
∣∣∣∣
Sr

=
X+X−

(
N(X) + iεr2

)2 · dS
r
.

Notice that the involution X 7→ X− preserves the sphere, its orientation, its volume form
dS and replaces X+X−

(N(X)+iεr2)2
with X+−X

(N(X)+iεr2)2
. Therefore, using X+X− + X+−X = 2‖X‖2,

spherical coordinates (6) and dS = r3 sin θ cos θ dψdϕdθ,

∫

Sr

X+X−

(
N(X) + iεr2

)2 · dS
r

=
1

2

∫

Sr

X+X− +X+−X
(
N(X) + iεr2

)2 · dS
r

=

∫

Sr

r dS
(
N(X) + iεr2

)2

=

∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

∫ ψ=2π

ψ=0

sin θ cos θ dψdϕdθ
(
cos(2θ) + iε

)2 = 2π2
∫ θ=π/2

θ=0

sin(2θ) dθ
(
cos(2θ) + iε

)2

=
π2

cos(2θ) + iε

∣∣∣∣
θ=π/2

θ=0

=
π2

−1 + iε
− π2

1 + iε
= − 2π2

1 + ε2
.

�

Lemma 20

lim
r→0+

(
lim
ε→0

∫

Sr

X+ ·Dz · f(X)
(
N(X) + iεr2

)2
)

= −2π2f(0).

Proof. By Lemma 3 we have:

lim
ε→0

∫

Sr

X+ ·Dz · f(X)
(
N(X) + iεr2

)2 = lim
ε→0

∫

Sr

X+X− · f(X)
(
N(X) + iεr2

)2
dS

r
(8)

If the function f(X) were constant we would be done by previous lemma. However, we cannot
argue that since r → 0+, f(X) is close to f(0) and so may be treated like a constant because
there can be derivatives of f(X) involved. So an integration by parts argument will be needed.

First we compute (writing X = x0e0 + x1ẽ1 + x2ẽ2 + x3e3)

X+X− =

(
(x0)2 + (x1)2 + (x2)2 + (x3)2 2(x2x3 − x0x1)− 2i(x0x2 + x1x3)

2(x2x3 − x0x1) + 2i(x0x2 + x1x3) (x0)2 + (x1)2 + (x2)2 + (x3)2

)
,

and using the spherical coordinates (6) we can rewrite

X+X− = ρ2
(
1 0
0 1

)
+ ρ2 sin(2θ) sin(ψ − ϕ)

(
0 1
1 0

)
+ ρ2 sin(2θ) cos(ψ − ϕ)

(
0 −i
i 0

)
.

Thus (8) can be rewritten as

lim
ε→0

(
r

∫

Sr

f(X) dS
(
N(X) + iεr2

)2 + r

∫

Sr

sin(ψ − ϕ)

(
0 1
1 0

)
+ cos(ψ − ϕ)

(
0 −i
i 0

)

(
N(X) + iεr2

)2 · sin(2θ)f dS
)
.

We have:

r

∫

Sr

f(X) dS
(
N(X) + iεr2

)2 =
1

2

∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

∫ ψ=2π

ψ=0

sin(2θ)f dψdϕdθ
(
cos(2θ) + iε

)2

=
1

4

(∫ ϕ=2π

ϕ=0

∫ ψ=2π

ψ=0

f

cos(2θ) + iε

∣∣∣∣
θ=π/2

θ=0

dψdϕ −
∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

∫ ψ=2π

ψ=0

∂f
∂θ dψdϕdθ

cos(2θ) + iε

)
.
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By the chain rule ∂f
∂θ can be written as ρ ·g(X) for some smooth function g(X), thus the second

integral is r times an expression from Lemma 17. Taking limits ε → 0 and then r → 0+, the
first integral tends to −2π2f(0) and the second tends to zero. The second term inside the limit
is

r

∫

Sr

sin(ψ − ϕ)

(
0 1
1 0

)
+ cos(ψ − ϕ)

(
0 −i
i 0

)

(
N(X) + iεr2

)2 · sin(2θ)f dS

=
1

2

∫ θ=π/2

θ=0

∫ ϕ=2π

ϕ=0

∫ ψ=2π

ψ=0

sin(ψ − ϕ)

(
0 1
1 0

)
+ cos(ψ − ϕ)

(
0 −i
i 0

)

(
cos(2θ) + iε

)2 · sin2(2θ)f dψdϕdθ.

(9)

But

∫ ψ=2π

ψ=0
sin(ψ − ϕ)f dψ =

∫ ψ=2π

ψ=0
cos(ψ − ϕ)

∂f

∂ψ
f dψ,

∫ ψ=2π

ψ=0
cos(ψ − ϕ)f dψ = −

∫ ψ=2π

ψ=0
sin(ψ − ϕ)

∂f

∂ψ
f dψ.

By the chain rule ∂f
∂ψ can be written as ρ · h(X) for some smooth function h(X), thus the right

hand side of (9) is r times an expression from Lemma 17. When we take limits first as ε → 0
and then as r → 0+, integral (9) tends to zero. �

This concludes our proof of Theorem 16. �

7 Separation of the Series for SL(2,R)

What makes the representation theory of SL(2,R) more interesting than that of SU(2) is having
the separation of the series into discrete and continuous components. Instead of SL(2,R) we
prefer to work with SU(1, 1) sitting inside HR, as in (3). In this section we outline a relationship
between split quaternionic analysis and the decomposition

L2
(
SU(1, 1)

)
≃ L2

discr

(
SU(1, 1)

)
⊕ L2

cont

(
SU(1, 1)

)
.

The denominator of the Cauchy-Fueter kernel N(X −X0) determines a region in HC

Ω =
{
X0 ∈ HC; N(X −X0) 6= 0 ∀X ∈ HR with N(X) = 1

}
.

This region contains two open Ol’shanskii semigroups of GL(2,C)

Γ0 = {Z ∈ HC; Z
∗ẽ3Z − ẽ3 is positive definite},

Γ0 = (Γ0)−1 = {Z ∈ HC; Z
∗ẽ3Z − ẽ3 is negative definite},

where ẽ3 = ie3 =

(
1 0
0 −1

)
∈ HC. Following [KuØ] we can show that over Γ0 and Γ0 the

Cauchy-Fueter kernel (Z−X0)−1

N(Z−X0)
can be expanded in terms of the K-types of the discrete series
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of SU(1, 1). Thus we obtain the following integral formula for the projector onto the discrete
series of SU(1, 1)):

(Pdiscr)f(X0) =
1

2π2

∫

Cdiscr

(Z −X0)
−1

N(Z −X0)
·Dz · f(Z), (10)

where Cdiscr is a certain three cycle in Γ0 ∪ Γ0. (Strictly speaking, this operator is not a
projector because it has eigenvalues ±1 on the discrete series subspace, but its square does
give a projection onto the discrete series.) Furthermore, we can decompose the cycle Cdiscr
into a sum of two cycles C+

discr + C−
discr with C+

discr and C−
discr lying in Γ0 and Γ0 respectively.

Then integration over C+
discr (respectively C

−
discr) produces a “projector” onto the holomorphic

(respectively antiholomorphic) discrete series.
Our next goal is to obtain a projector onto the continuous series component Pcont. We

expect that Pcont will be given by the same formula (10) but with a different choice of the cycle
of integration, quite possibly supported in Ω \ (Γ0 ∪ Γ0). To get Pcont we use a conformal map
γ : HC → HC which sends

HR →̃M and SU(1, 1) →̃ H̃3 (with singularities),

where H̃3 is the unit hyperboloid of one sheet in M; we call γ the “Cayley transform”. The
hyperboloid H̃3 can be identified with SL(2,C)/SU(1, 1) and is usually called the imaginary
Lobachevski space. The group SL(2,C) acts naturally on L2(H̃3) and decomposes into the
discrete and continuous components:

L2(H̃3) ≃ L2
discr(H̃

3)⊕ L2
cont(H̃

3)

as representations of SL(2,C) (see, for example, [GGV]). Then the map γ switches the discrete
and continuous components:

L2
cont

(
SU(1, 1)

)
≃ L2

discr(H̃
3), L2

discr

(
SU(1, 1)

)
≃ L2

cont(H̃
3).

This explains the purpose of the Cayley transform – it is easier to find the projector onto the
discrete component than onto the continuous one! Once the projector onto L2

discr(H̃
3) is found

we can pull it back to HR to get Pcont. We expect it to have the form

(Pcont)f(X0) =
1

2π2

∫

Ccont

(Z −X0)
−1

N(Z −X0)
·Dz · f(Z),

where Ccont is a certain three cycle in Ω.
The integral formulas for Pdiscr and Pcont strongly suggest that the separation of the series

is a topological phenomenon! Thus there is some underlying homology theory still waiting to
be developed. We hope that this geometric analytic realization of the separation of the series
will extend to higher rank groups. Such a picture fits well into the Gelfand-Gindikin program
initiated in [GG] which realizes representations of reductive groups G in function spaces of
open domains in GC (complexification of G). This geometric relationship between quaternionic
analysis and the separation of the series for SL(2,R) will be the subject of our upcoming paper
[FL2].
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Gel’fand-Gindikin program, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 3, 689-722.

[MS] L. Mason, D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space,
arXiv:0903.2083 (2009).

[R] J. Ryan, Complexified Clifford Analysis, Complex Variables Theory Appl. 1
(1982/83), no. 1, 119-149.

17

http://arxiv.org/abs/0903.2110
http://arxiv.org/abs/0711.2699
http://arxiv.org/abs/0903.2083


[St] R. S. Strichartz, Harmonic analysis on hyperboloids, J. Functional Analysis 12
(1973), 341-383.

[Su] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Math. Soc. 85 (1979), 199-
225.

E-mail address: mlibine@indiana.edu
Department of Mathematics, Indiana University, Rawles Hall, 831 East 3rd St, Bloomington,
IN 47405

18


	1 Introduction
	2 The Quaternionic Spaces HC, HR and M
	3 Regular Functions on H and HC
	4 Regular Functions on HR
	5 Fueter Formula for Holomorphic Regular Functions on HR
	6 Fueter Formula for Regular Functions on HR
	7 Separation of the Series for SL(2,R)

