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CHRISTOPHER H. CASHEN

Abstract. There is a canonical JSJ-decomposition of a free group relative to
a line pattern.

This provides a characterization of virtually geometric multiwords. They

are the multiwords that are built from geometric pieces.

1. Introduction

Let F = Fn be a free group of finite rank n > 1. Let g and w be elements of F
with w non-trivial. The w–line through g is the coarse equivalence class of the set
{gwm}m∈Z.

If B = {b1, . . . , bn} is a free basis for F , the Cayley graph of F with respect to
B is a tree T . There is a unique geodesic coarsely equivalent to the set of vertices
{gwm}m∈Z, which we also call the w–line through g. This is simply the axis of the
hyperbolic gwḡ–action on T , and g is a point on this axis if w is cyclically reduced.

The collection of distinct w–lines is the line pattern generated by w. Similarly,
given a multiword w = {w1, . . . , wk} with each wi a non-trivial word, the line
pattern L = Lw generated by w is the set of distinct lines in the union of the line
patterns generated by the wi.

Another way to realize a line pattern is to consider a rose with n edges labeled
b1, . . . , bn. The fundamental group is Fn. Each wi corresponds to a loop in this
graph. The universal cover of the graph is the tree T , and the collection of lifts of
the loops is the line pattern.

Changing a multiword by conjugating an element or replacing an element with
a root or a power does not change the associated line pattern. Thus, we will as-
sume that elements of a multiword are indivisible and cyclically reduced, represent
distinct conjugacy classes, and are not inverses of one another. With these assump-
tions, a line pattern determines a generating multiword up to cyclic permutation,
inversion of the elements and adding or discarding duplicate elements.

There is a topological space, the decomposition space, DL associated to a line
pattern L obtained as a quotient of the boundary at infinity of the tree T by
identifying the two endpoints of a line l for each l ∈ L.

We will say that the multiword (or corresponding line pattern or decomposition
space) is rigid if the decomposition space is connected without cut points or cut
pairs. (Such a line pattern is quasi-isometrically rigid, see Cashen and Macura [4].)

It is an easy consequence of Whitehead’s Algorithm that the decomposition
space associated to a line pattern L is disconnected if and only if there exists a
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free splitting F ∼= F ′ ∗F ′′ such that each element of any multiword generating L is
conjugate into one of the free factors.

Otal observed [10] that if there is a splitting of F as an amalgamated free product
or HNN-extension over an infinite cyclic group such that all elements of a multiword
are conjugate into the factors, then the corresponding decomposition space contains
cut points or cut pairs. He speculates that the converse may be true and proves it
in the special case that the decomposition space is planar and each element of the
multiword is full width.

We will say F splits (freely or over Z) relative to L if each element of any
multiword generating L is conjugate into one of the factors of the splitting of F .

In Theorem 3.3 we show that the converse to Otal’s observation is true in general:
If L is a line pattern in F such that the corresponding decomposition space is
connected with cut points or cut pairs then there exists a splitting of F over Z
relative to L.

Moreover, there is a canonical graph of groups decomposition of F relative to L
that encodes all relative cyclic splittings:

Relative JSJ-Decomposition Theorem (Theorem 3.4). Let L be a line pattern
in F such that the corresponding decomposition space D is connected. There is
a canonical graph of groups decomposition of F relative to L with the following
properties:

(1) The vertex groups are free (possibly cyclic), and any edge groups are cyclic.
(2) In every non-cyclic vertex group G, the decomposition space of the line pat-

tern in G generated by stabilizers of the incident edge groups and generators
of L conjugate into G either is a circle or is rigid.

(3) Either D is rigid or a circle or the decomposition is nontrivial and the
vertex groups alternate between non-cyclic free groups and cyclic groups.

If F splits over a cyclic subgroup relative to L then the cyclic subgroup is contained
in either one of the cyclic vertex groups or one of the non-cyclic vertex groups with
circle decomposition space.

We will refer to the graph of groups provided by this theorem as the rJSJ .
In Section 4 the Relative JSJ-Decomposition Theorem is applied to characterize

virtually geometric multiwords.
A multiword in F is said to be geometric if it can be represented by an embeded

multicurve in the boundary of a (possibly non-orientable) handlebody with funda-
mental group F . A multiword is virtually geometric if it becomes geometric upon
passing to a finite index subgroup of F .

Otal’s main result in [10], suitable reinterpreted, is that in the case that the rJSJ
is a trivial decomposition, a single vertex stabilized by all of F , the multiword is
geometric if and only if the decomposition space is planar, and that planarity of the
decomposition space can be deduced from the Whitehead graph of the multiword.

The Relative JSJ-Decomposition Theorem provides a reduction of the virtual
geometricity question: a multiword is virtually geometric if and only if its decom-
position space is planar, and this is true if and only if for each non-cyclic vertex
group of the rJSJ, the induced multiword in the vertex group is geometric. Thus,
virtually geometric multiwords are exactly those that are built from geometric
pieces.
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I would like to thank Jason Manning for bringing Otal’s paper to my attention
and for helpful comments on an earlier version of this paper.

2. Preliminaries

2.1. Free Groups, Line Patterns and Decomposition Spaces. Let F = Fn
be a free group of rank n > 1. Let ḡ denote g−1.

A nontrivial element g ∈ F is indivisible if is not a proper power of another ele-
ment. Equivalently, the cyclic subgroup 〈g〉 is maximal, it is not properly contained
in a cyclic subgroup of F .

The width of g is the rank of the smallest free factor of F containing g. An
element is full width if its width is equal to the rank of F . Full width is also known
as diskbusting, particularly in the context of 3–manifolds.

A basis or free basis or free generating set of F is a generating set consisting of
exactly n elements B = {b1, . . . , bn}.

A element g is basic if it is indivisible and width one, or, equivalently, if g belongs
to some basis of F . The term primitive is usually used for our basic elements, but
some authors use primitive to mean indivisible.

The degree of a homomorphism from the integers into a free group is index of
the image in the maximal cyclic subgroup containing the image.

The Cayley graph of F with respect to a basis B is a tree T whose vertices are
in bijection with elements of F . There is an edge from vertex g to vertex h if and
only if there exists a bi ∈ B such that gbi = h. We make this a metric space by
assigning each edge length one; F acts isometrically on T by left multiplication.

The tree T has a boundary at infinity ∂T that is homeomorphic to a Cantor
set. This compactifies the tree, T = T ∪ ∂T is a compact topological space whose
topology on T agrees with the metric topology.

Two subsets of T are coarsely equivalent, written
c
=, if they have bounded Haus-

dorff distance.
For any two points ξ, ξ′ ∈ T there exists a unique geodesic [ξ, ξ′] joining them.
For nontrivial h ∈ F , we denote by gh∞ the point in ∂T that is the limit of the

sequence of vertices (ghi) in T . In particular, if l is the w–line through g then l
has two endpoints in the boundary: l+ = gw∞ and l− = gw−∞.

Let L = Lw be the line pattern generated by a multiword. The decomposition
space D = Dw = DL is the quotient of ∂T obtained by identifying the two points
l+ and l− for each l ∈ L. Let q : ∂T → D be the quotient map.

By construction, distinct lines l and l′ in L never have a common endpoint in
∂T . Thus, the preimage of a point in the decomposition space is either a single
point in ∂T or the pair of endpoints of a line in the pattern.

Any homeomorphism of ∂T that preserves the collection of pairs of endpoints of
lines of L descends to a homeomorphism of the decomposition space. In particular,
any quasi-isometry of T that, up to coarse equivalence, preserves the line pattern
will induce a homeomorphism of the decomposition space.

We will primarily be interested in the case that the decomposition space is con-
nected. A cut set is a set whose complement is not connected. The cut set is
minimal if no proper subset is a cut set. A cut point is a point that is a cut set. A
two point cut set ought to be called a cut pair, but we will be interested in minimal
cut pairs, so the term cut pair will be reserved for a two point cut set, neither point
of which is a cut point.
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If {x0, x1} and {y0, y1} are cut pairs, we say {x0, x1} crosses {y0, y1} if x0 and
x1 are in different complementary component of D\{y0, y1}. Since we assume that
no point of a cut pair is a cut point, crossing is symmetric: {x0, x1} crosses {y0, y1}
if and only if {y0, y1} crosses {x0, x1}, so we just say {x0, x1} and {y0, y1} cross.

Note that in any connected topological space, a cut point can not be crossed by a
cut pair and a cut pair with more than two complementary connected components
can not be crossed by a cut pair.

2.2. A Line Pattern Restricted to a Finite Index Subgroup. Let G be a
finite index subgroup of F . Let 1 = f1, . . . , fk be right coset representatives, so that
F =

∐
i=1...kGfi. The map ῑ : F → G that sends gfi to g ∈ G is a quasi-isometry.

It is the coarse inverse to the inclusion ι : G→ F .
Let wj be an element of a multiword w. Let L be the line pattern generated by

w. For each i and j there exists a minimal positive integer a = a(i, j) such that
fiw

a
j f̄i ∈ G. Therefore, for any h = gfi, we have:

{hwmj }m∈Z
c
= {hwamj }m∈Z = {gfiwamj }m∈Z

c
= {g(fiw

a
j f̄i)

m}m∈Z ⊂ G

Thus, if h ∈ Gfi, the map ῑ sends the wj–line through h in F to a set of points
coarsely equivalent to the (fiw

a
j f̄i)–line through ῑ(h) in G.

Consider the set of conjugacy classes in G given by {[fiwa(i,j)j f̄i] | for all i, j}.
Pick a cyclically reduced representative from each distinct conjugacy class. This
gives a multiword w′ that generates a line pattern in G that is equivalent to the
image of L under ῑ. We call this the line pattern L restricted to G.

The restricted line pattern is independent of the choice of coset representatives
and choice of w′, and ῑ takes each line of L to a set coarsely equivalent to a line in
the restricted pattern, and similarly for ι. Therefore, ῑ extends to a G–equivariant
homeomorphism ∂F → ∂G that preserves pairs of endpoints of lines in the pattern.
This homeomorphism descends to a G–equivariant homeomorphism of decomposi-
tion spaces.

2.3. Whitehead Graphs. The primary tool for understanding the topology of
the decomposition space associated to a line pattern is the generalized Whitehead
graph of a generating multiword. This machinery was developed in [4]. In this
section we will recall the relevant definitions and results, but see [4] for details.

The Whitehead graph Wh(∗) of a cyclically reduced word w with respect to a
basis B of F is a graph with 2n vertices labeled with the elements of B and their
inverses. One edge joins vertex x to vertex y for each occurrence of x̄y in the word
w as a cyclic word.

Similarly, the Whitehead graph of a line pattern is obtained by adding edges for
each of the generators of the line pattern.

The number of edges is therefore equal to the sum of the word lengths of the
generators with respect to B.

Lemma 2.1. If for some choice of basis Wh(∗) is disconnected, then D is discon-
nected.

Lemma 2.2. Suppose there exists a free basis B of F such that WhB(∗) is connected
without cut vertices. Let T be the Cayley graph of F corresponding to B. Pick any
edge e in T . Let ∗ and v be the endpoints of e. Let Â be the collection of points
ξ ∈ ∂T such that v is on [∗, ξ]. The set A = q(Â) is connected in D.
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Let {l1, . . . , lk} ⊂ L be the set of lines that cross e. For each i, the two endpoints
l+i and l−i are identified in the decomposition space. Thus:

q(Â) ∩ q(Âc) = ∪i=1..kq(l
+
i )

So, if Wh(∗) is connected without cut vertices, then for any edge e in T the
boundaries at infinity of the two connected components of T \ e correspond to
connected sets in the decomposition space. Since Wh(∗) is connected there is also
at least one line in L crossing e, so these connected sets have a point in common.

Corollary 2.3. Suppose Wh(∗) has no cut vertices. The decomposition space is
connected if and only if Wh(∗) is connected. Furthermore, if D is connected it is
also locally connected.

Moreover, if none of the q(l+i ) is a cut point of D then, in fact,

q(Â) \ ∪i=1..kq(l
+
i )

is a connected subset of D.
If a Whitehead graph is connected and contains a cut point then there is another

choice of basis that will give a Whitehead graph with fewer edges. Thus, by choosing
a B for which the graph has the minimal possible number of edges, we may assume
that the Whitehead graph is either disconnected or connected with no cut vertices.
For many purposes, however, we do not actually need a minimal Whitehead graph,
just a Whitehead graph with no cut vertices.

The decomposition space of a line pattern is disconnected if and only if every
Whitehead graph with no cut vertices is disconnected, and this is true if and only
if the line pattern splits freely. Thus, we will always assume that we have a line
pattern L and a basis B such that the Whitehead graph of L is connected without
cut vertices.

The classical Whitehead graph generalizes: if L is a line pattern in F and X is a
connected subset of T we define the Whitehead graph WhB(X ){L} to be the graph
with vertices in bijection with connected components of T \X and one edge joining
v and v′ for each line of L that has one endpoint in the component corresponding
to v and the other in the component corresponding to v′. We will omit B and L
when they are clear and just write Wh(X ). The notation Wh(∗) for the classical
Whitehead graph just means the Whitehead graph at a vertex ∗, and because the
line pattern is equivariant we get the same graph for any vertex.

Let X ⊂ Y ⊂ T . Let e be an edge of T incident to exactly one vertex of X .
The edge e corresponds to a vertex in Wh(X ). The graph Wh(X )\ e is obtained

from Wh(X ) by deleting this vertex, but retaining the incident edges as loose ends
at e.

If v is a vertex of T that is distance 1 from X , then there is a unique edge e with
one endpoint equal to v and the other in X . Define Wh(X ) \ v = Wh(X ) \ e.

Similarly, Wh(X )\Y is obtained from Wh(X ) by deleting each vertex of Wh(X )
that corresponds to an edge in Y. Visualizing Whitehead graphs in the tree,
Wh(X ) \ Y is the portion of Wh(Y) that passes through the set X .

Lemma 2.4. Let S be a nonempty, finite subset of D whose preimage in ∂T is
more than one point. Let H be the convex hull of q−1(S). There is a bijection
between connected components of Wh(H) and connected components of D \ S.



6 CHRISTOPHER H. CASHEN

Let S be a finite cut set whose preimage in ∂T is a pair of points, so that H is
a line. The fact that Wh(∗) is connected without cut vertices implies that every
vertex of Wh(H) belongs to a component that limits to both boundary points of H.
It follows that if {x, y} is a cut pair in D, then for any small connected neighborhood
N of x in D the number of components of N\x is equal to the number of components
of D \ {x, y}, which is the number of components of Wh(H).

3. Splittings

3.1. First Splitting Argument.

Proposition 3.1. Suppose L is a line pattern in the free group F such that the
decomposition space is connected and q({ḡ∞, g∞}) is a cut set that is not crossed
by any translates of itself. Then F splits over 〈g〉 relative to L.

Otal [10] proved a similar statement in the case that q({ḡ∞, g∞}) is a cut point.
The proof is virtually unchanged. For the reader’s convenience we provide a sketch:

Suppose g is an indivisible element of F such that S = q({ḡ∞, g∞}) is a cut set
that is not crossed by any translates of itself.

Consider translates hS of S by the group action. None of these cross each other,
so the orbit of S has a partial ordering relative to S defined by h′S < hS if h′S
separates S from hS, that is, if S and hS are in different components of D \ h′S.

For any translate hS, there are only finitely many other translates of S that
separate hS from S. (To see this, note that for h′S to separate hS from S, it is
necessary that the axis of h′gh̄′ in T intersects the finite geodesic segment joining
the axis of g to the axis of hgh̄.) Therefore, there are minimal translates hS that
are not separated from S by any translate of S.

Define a simplicial tree on which F acts without inversions as follows. The
tree has two classes of vertices. The first class of vertices is in bijection with the
orbit of S. Given a vertex in the first class, there is a corresponding cut set hS.
This has finitely many complementary connected components. For each of these
components, consider the subset of the orbit consisting of hS and all h′S in the
component such that h′S is minimal with respect to hS. This subset forms a vertex
of class two adjacent to the vertex hS.

The quotient of this tree by the F–action contains a single vertex of class one,
and some finite number of adjacent vertices of class two, and the stabilizer of the
class one vertex is 〈g〉. Thus, we have finite graph of groups decomposition of F ,
and all edge stabilizers are subgroups of 〈g〉.

The generators of the line pattern must be conjugate into the vertex groups,
otherwise we would have a line in the pattern crossing from one component of
Wh([ḡ∞, g∞]) to another, which is absurd.

Also note that since the group is free and the element g was assumed to be
indivisible, each edge injection into a vertex group other than 〈g〉 must be degree
one. It follows that the vertex groups other than 〈g〉 are non-cyclic free groups.

3.2. Proof of the Decomposition Theorem. In Section 3.3 and Section 3.4 we
will prove the following proposition:

Proposition 3.2. If L is a line pattern in F such that the decomposition space is
connected and not rigid, then either:

(1) the decomposition space is a circle, or
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(2) there is an indivisible element g ∈ F such that q({ḡ∞, g∞}) is a cut set
that is not crossed by any cut pair.

Combining Proposition 3.1 and Proposition 3.2 proves:

Theorem 3.3. If L is a line pattern in F such that the corresponding decomposition
space is connected with cut points or cut pairs then there exists a splitting of F over
Z relative to L.

In case (1) of Proposition 3.2 there are many incompatible splittings, as every
pair is a cut pair.

The condition in case (2) is stronger than the hypothesis of Proposition 3.1. The
cut set q({ḡ∞, g∞}) is not crossed by any other cut pairs. This means that two
splittings of this type are compatible, and we may split over all such g, distinct up
to inversion and conjugacy, to get a graph of groups decomposition of F relative
to the line pattern. By accessibility of splittings over Z, as in Bestvina-Feighn [2],
there can be only finitely many compatible splittings, so we get a finite graph of
groups decomposition of F .

For every cut point or uncrossed cut pair, the stabilizer is conjugate to one of
the cyclic vertex groups of this decomposition. Any remaining cut pair occurs in
the image of the boundary of one of the vertex groups. The rigid vertices have no
cut pairs in their decomposition spaces, so this must be one of the vertex groups
whose decomposition space is a circle. This proves:

Theorem 3.4 (Relative JSJ-Decomposition). Let L be a line pattern in F such
that the corresponding decomposition space D is connected. There is a canonical
graph of groups decomposition of F relative to L with the following properties:

(1) The vertex groups are free (possibly cyclic), and any edge groups are cyclic.
(2) In every non-cyclic vertex group G, the decomposition space of the line pat-

tern in G generated by stabilizers of the incident edge groups and generators
of L conjugate into G either is a circle or is rigid.

(3) Either D is rigid or a circle or the decomposition is nontrivial and the
vertex groups alternate between non-cyclic free groups and cyclic groups.

If F splits over a cyclic subgroup relative to L then the cyclic subgroup is contained
in either one of the cyclic vertex groups or one of the non-cyclic vertex groups with
circle decomposition space.

3.3. Crossing Pairs and the Circle. In this subsection we give criteria for the
decomposition space to be a circle.

In a circle, the only minimal cut sets are cut pairs, and every cut pair is crossed
by a cut pair.

Lemma 3.5. Suppose {x0, x1} and {y0, y1} are crossing cut pairs in D. Let A0

and A1 be the two connected components of D \ {x0, x1}, and assume y0 ∈ A0 and
y1 ∈ A1. Similarly, let B0 and B1 be the connected components of D \ {y0, y1},
and assume x0 ∈ A0 and x1 ∈ A1. Then {x0, y0} is a cut pair with connected
components C0 = A0 ∩B0 and C1 = A1 ∪B1 ∪ {x1} ∪ {y1}.

Proof. Since {x0, x1} and {y0, y1} cross, y0 is a cut point of the connected set A0.
Any neighborhood of y0 contains a connected open set N such that N \ y0 has
exactly two connected components. Therefore, A0 \ y0 has exactly two connected
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components, which are A0∩B0 and A0∩B1. Similarly, the sets A1∩B0 and A1∩B1

are connected.
It follows that C1 is a connected set and C1 \ C1 = {x0, y0}.
Now:

{x0, y0} ⊂ C0 \ C0 ⊂ {x0, x1, y0, y1}
We are done if x1 and y1 are not limit points of C0. Suppose, without loss

of generality, that x1 is a limit point of C0 = A0 ∩ B0. Since x1 is also a limit
point of A0 ∩ B1 and A1 ∩ B1, this implies that for any small neighborhood N of
x1, the complement N \ x1 has at least three connected components, which is a
contradiction. �

Proposition 3.6. The decomposition space D is a circle if and only if all of the
following conditions are satisfied:

(1) D is connected.
(2) D has no cut points.
(3) D has cut pairs.
(4) Every cut pair in D is crossed by a cut pair.

Proof. A circle satisfies these conditions, so one direction is clear.
Define a relation on D by x ∼ y if x = y or if {x, y} is a cut pair.

Claim 3.6.1. ∼ is an equivalence relation.

Proof of Claim. We must show transitivity.
Suppose x, y and z are distinct points with x ∼ y and y ∼ z, so that {x, y}

and {y, z} are cut pairs. By hypothesis, every cut pair is crossed by a cut pair.
Therefore, every cut pair has exactly two complementary connected components.
Let A0 and A1 be the connected components of D \ {x, y}. Let B0 and B1 be the
connected components of D \ {y, z}. Assume that z ∈ A0 and x ∈ B0. Arguing as
in the proof of Lemma 3.5, D \ {x, z} has two connected components, A0 ∩B0 and
A1 ∪B1 ∪ {y}. ♦

Claim 3.6.2. Equivalence classes are closed.

Proof of Claim. If an equivalence class consists of a single point it is closed, so
suppose [x] is not a single point.

Let (yi) → y for yi ∈ [x]. Choose points ξ ∈ q−1(y) and ξi ∈ q−1(yi). After
passing to a subsequence, (ξi)→ ξ in ∂T .

Pick η ∈ q−1(x). For each i, Wh([η, ξi]) has two components.
Now consider [η, ξ]. Number the vertices vj along this geodesic with consecutive

integers, increasing in the ξ direction, where v0 may be any vertex on [η, ξ]. Since
(ξi)→ ξ, for every j there is an Ij such that for all i > Ij , we have [η, vj+1] ⊂ [η, ξi].
Therefore, Wh([η, vj ]) \ [η, ξ] = Wh([η, vj ]) \ [η, ξi].

Thus, for all j, the Whitehead graph Wh([η, vj ]) \ [η, ξ] has two components,
which implies q({η, ξ}) = {x, y} is a cut pair. Hence, y ∈ [x], and [x] is closed. ♦

Claim 3.6.3. All of D is in one equivalence class.

Proof of Claim. We have assumed that a cut pair exists, so there is an equivalence
class [x] consisting of more than one point. Suppose that [x] is not all of D.
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Let U be a connected component of D \ [x]. Since D is locally connected and
[x] is closed, U is open in D. Since D is connected without cut points, U has at
least two limit points in [x]. Pick distinct points y0 and y1 in U ∩ [x]. These points
are a cut pair, and D \ {y0, y1} has exactly two connected components, A0 and A1.
Assume U ⊂ A0.

Let {z0, z1} be a cut pair crossing {y0, y1} with complementary connected com-
ponents B0 and B1. Assume z0 ∈ A0, z1 ∈ A1, y0 ∈ B0 and y1 ∈ B1.

By Lemma 3.5, y0 and y1 are in [x] ⊂ D \U . Thus, U is contained in Bε, where
ε is either 0 or 1. Since U ⊂ A0, we have U ⊂ A0 ∩Bε.

Now, {yε, z0} is a cut pair whose connected components are C0 = A0 ∩ Bε and
C1 = A1 ∪B1+ε ∪{y1+ε}∪ {z1} (subscripts modulo 2). However, U , and hence C0,
has y1+ε ∈ C1 as a limit point, which is a contradiction. Thus, [x] = D. ♦

Since [x] = D, every point of D is a member of a cut pair, and the only minimal
cut sets are of size two. It then follows from [4, Theorem 6.1] that D is a circle. �

The cut pair equivalence relation in the preceding proof is inspired by a similar
construction of Bowditch for boundaries of hyperbolic groups [3].

3.4. Uncrossed Cut Pairs. If the decomposition space is connected, not rigid
and not a circle, then by Proposition 3.6 there is either a cut point or a cut pair
that is not crossed by any other cut pair. To complete the proof of Proposition 3.2,
we will show that there is such a cut pair of the form q({ḡ∞, g∞}).

First, a lemma.

Lemma 3.7 (cf [4, Lemma 4.12]). Let ξ0 and ξ1 be a pair of points in ∂T such
that q({ξ0, ξ1}) is a cut pair in D and for each i we have ξi = q−1(q(ξi)). There
exist elements g, h ∈ F and a ∈ B ∪ B̄ such that:

(1) the oriented edges [h, ha] and [hg, hga] belong to [ξ0, ξ1] ∩ [hḡ∞, hg∞],
(2) components of Wh([ha, hg]) \ {h, hga} that are in different components of

Wh([ξ0, ξ1]) are in different components of Wh([hḡ∞, hg∞]), and
(3) for each line l ∈ L crossing the edge [h, ha], the lines l and hgh̄l (which

crosses [hg, hga]) belong to the same component of Wh([ξ0, ξ1]).

Proof. Assume [ξ0, ξ1] is oriented from ξ0 to ξ1.
Pick any a ∈ B∪B̄ such that there are infinitely many directed a–edges in [ξ0, ξ1].

Fix one of these, e = [g0, g0a].
There are finitely many lines of L that cross e. Fix a numbering of them 1, . . . , k.

Partition them into subsets according to the component of Wh([ξ0, ξ1]) to which
they belong.

Consider an element g′ ∈ F such that the oriented edge g′e is in [ξ0, ξ1]. There
is a bijection l 7→ g′l between lines of L crossing e and lines of L crossing g′e, so
the numbering of the lines crossing e can be pushed forward to a numbering of
the lines crossing g′e. We can also partition the lines crossing g′e according to the
component of Wh([ξ0, ξ1]) to which they belong.

There are infinitely many such g′, but only finitely many partitions of k numbers,
so for some of these g′ the partitions are the same. Thus, there exist g1 and g2 such
that the oriented edges g1e and g2e are edges of [ξ0, ξ1] (with g2e between g1e and
ξ1) and for each line l ∈ L crossing g1e, the corresponding line g2ḡ1l crossing g2e is
in the same component of Wh([ξ0, ξ1]).

The desired elements are h = g1g0 and g = ḡ0ḡ1g2g0. �
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Corollary 3.8. With notation as in the previous lemma, q({hḡ∞, hg∞}) and
q({ξ0, hg∞}) and q({hḡ∞, ξ1}) are cut pairs.

Proposition 3.9. Suppose the decomposition space is connected, has no cut points,
is not a circle, and is not rigid. There is an element g ∈ F such that q({ḡ∞, g∞})
is a cut pair in D that is not crossed by any other cut pair.

Proof. The remarks at the beginning of this subsection show that the decomposition
space has a cut pair {x0, x1} that is not crossed by any other cut pair.

Claim 3.9.1. For each i, the preimage q−1(xi) in ∂T is a single point.

Proof of Claim. Suppose q−1(x0) = {l−, l+} for some w–line l ∈ L.
By an argument similar to the proof of Lemma 3.5, for some i and j, the pair

{w−ix1, wjx1} is a cut pair crossing {x0, x1}, contrary to hypothesis. ♦

Let ξi = q−1(xi). Let h, g ∈ F be the elements provided by Lemma 3.7. We may
assume h is trivial by replacing xi with h̄xi.

If D \ q({ḡ∞, g∞}) has more than two components then q({ḡ∞, g∞}) can not be
crossed by a cut pair. Thus, g is the desired element.

Now assume D\q({ḡ∞, g∞}) has exactly two components, and suppose g∞ 6= ξ1.

Claim 3.9.2. {x0, x1} has exactly two complementary connected components.

Proof of Claim. Components of D \ {x0, x1} are in bijection with components of
Wh([ξ0, ξ1]). Only one of these contains g∞, which means the rest belong to a com-
mon component of Wh([ḡ∞, g∞]). However, separate components of Wh([ξ0, ξ1]) re-
main separate in Wh([ḡ∞, g∞]), so there can be only one component of Wh([ξ0, ξ1])
not containing g∞. Thus, {x0, x1} has exactly two complementary connected com-
ponents, the one that contains q(g∞) and the one that does not. ♦

Claim 3.9.3. The action of g fixes the two components of D \ q({ḡ∞, g∞}).

Proof of Claim. Since D\ q({ḡ∞, g∞}) has only two components this follows from
property (3) of Lemma 3.7. ♦

Since g∞ 6= ξ1, we have ḡξ1 6= ξ1.

Claim 3.9.4. q({ḡξ1, g∞}) is a cut pair.

Proof of Claim. q({ḡ∞, ḡξ1}) and q({ḡ∞, g∞}) are cut pairs with two components
each, so q({ḡξ1, g∞}) is a cut pair by the argument of Claim 3.6.1. ♦

Claim 3.9.3 implies that ḡξ1 and ξ1 are in the same component of Wh([ḡ∞, g∞]),
which implies that ḡξ1 and g∞ are in different components of Wh([ξ0, ξ1]). However,
q({ḡξ1, g∞}) is a cut pair by Claim 3.9.4. Therefore, q({ḡξ1, g∞}) is a cut pair
crossing {x0, x1}, which is a contradiction. Thus, g∞ = ξ1.

A similar argument shows that ḡ∞ = ξ0, so g is the desired element. �

3.5. Another Splitting Argument. Suppose g ∈ F is an element such that
q({g−∞, g∞}) is a cut set in the decomposition space. In this subsection we show
that there is a finite index subgroup G of F such that G splits over G∩ 〈g〉 relative
to the line pattern. The argument is not as elegant as that of Section 3.1, but
produces the non-cyclic vertex groups explicitly, which will be useful in Section 4.
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Since q({g−∞, g∞}) is a cut set we know that Wh([g−∞, g∞]) has at least two
components, and there is some minimal k such that the gk–action preserves the
components. Let G be a finite index subgroup of F such that u = gk is a basic
element of G. Such a group can be constructed by the Schreier Method, see Hall
[7, Section 7.2].

Let B be a free basis for G containing u, and let L be the induced line pattern in
G. It is not hard to see that there is always such a basis such that the Whitehead
graph of L with respect to B is connected without cut vertices (but it is not true
that there is always a basis containing u for which the Whitehead graph is minimal).

Number the finitely many components of Wh([ū∞, u∞]). Let Ci denote the
elements of B∪B̄ corresponding to vertices in the i-th component of Wh([ū∞, u∞]).
Let

B ∪ B̄ = {ū, u}
∐
i

{ai,j}j=1...αi

∐
i

{āi,j}j=1...αi

∐
i

{bi,j}j=1...βi

where for any j, ai,j , āi,j and bi,j are in Ci. In other words, the a–type generators
are those whose inverses belong to the same Ci, whereas b̄i,j = bk,h ∈ Ck for some
k 6= i.

Make a graph with vertices corresponding to the C’s and an edge joining Ci to
Ck if there is a bi,j ∈ Ci such that b̄i,j = bk,h ∈ Ck. Let D1, . . . ,Dm be the subsets of
B∪B̄ corresponding to connected components of this graph. Each Di is closed under
inversion, so if m > 1 then G splits non-trivially as G ∼= 〈D1, u〉∗〈u〉 〈D2, . . . ,Dm, u〉.
We will show that this is a splitting relative to the line pattern by showing that
any generator of the line pattern that involves generators in D1 does not involve
generators from the other D’s.

The assumption that the u–action preserves components of Wh([u−∞, u∞]) means
that each component of Wh([u−∞, u∞]) consists of vertices in ∪n∈ZunCi for some
fixed i. For a word w that is a generator of the line pattern, w may or may not
involve the b–type generators. If not, then for some i and j we have:

w ∈ 〈ai,1, . . . ai,αi , u〉 ⊂ Ci ∪ {ū, u} ⊂ 〈Dj , u〉
On the other hand, suppose (possibly after inversion or cyclic permutation) that

w begins with b̄1,1. In the Whitehead graph this gives an edge that begins at
b1,1 ∈ C1 and must end at an element of some unCi. Now, w can not just be
w = b̄1,1u

n because the edge would then end at unb̄1,1 /∈ unC1. Suppose the edge
ends at an element una1,j . There must be more to w, because if w = b̄1,1u

na1,j
we would get an edge from ā1,j ∈ C1 to b̄1,1 /∈ C1. So, w may be b̄1,1 followed by
some element of 〈u, a1,1, . . . a1,α1

〉, but it must eventually have another b1,j1 . This
means w contributes a series of edges in Wh([u−∞, u∞]) joining various unCi. The
next edge that w contributes begins at b̄1,j1 ∈ Cσ(1,j1) 6= C1. Repeating the previous
argument, w is of the following form:

w = b̄1,1 〈u, a1,1, . . . , a1,α1
〉b1,j1

〈
u, aσ(1,j1),1, . . . , aσ(1,j1),ασ(1,j1)

〉
· bσ(1,j1),j2

〈
u, aσ(σ(1,j1),j2),1, . . . , aσ(σ(1,j1),j2),ασ(σ(1,j1),j2)

〉
· · ·

· bx,jy
〈
u, aσ(x,jy),1, . . . , aσ(x,jy),ασ(x,jy)

〉
such that x = σ(· · ·σ(σ(1, j1), j2) . . . jy−1) = σ(1, 1).
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Each subword of the form 〈u, ax,1, . . . , ax,αx〉 bx,y
〈
u, aσ(x,y),1, . . . , aσ(x,y),ασ(x,y)

〉
indicates that there is a bx,y ∈ Cx with b̄x,y ∈ Cσ(x,y), so Cx and Cσ(x,y) belong to a
common component Di in the graph of C’s, which implies w ∈ 〈Di, u〉.

Thus, when there is more than one component D the line pattern splits as an
amalgamated product over 〈u〉.

Of course, there was nothing special about D1, and if there are more than two
D’s then there are further splittings available. G decomposes as a graph of groups
with one cyclic vertex group 〈u〉 and m free vertex groups 〈Di, u〉, all amalgamated
over 〈u〉. For every generator w of the line pattern there is some i such that w is
conjugate into the 〈Di, u〉 vertex group.

Now consider a D that contains multiple C’s, which must be the case, in partic-
ular, if there is only one D. Let us assume that D1 contains C1, . . . , Cδ, and that
b̄1,1 ∈ C2. To simplify notation let c = b1,1.

Consider the Whitehead automorphism of G that pushes all the C1 generators
through c:

c 7→ c

b1,j 7→ cb1,j for j > 1

a1,j 7→ ca1,j c̄ for all j

x 7→ x for all generators not determined by the above

Pattern generators w that do not involve generators or inverses of generators in C1
are unchanged by this automorphism. If there is a generator w ∈ 〈u, a1,1, . . . , a1,α1

〉,
the automorphism changes this to a word in 〈u, ca1,1c̄, . . . , ca1,α1 c̄〉, which is conju-
gate to 〈c̄uc, a1,1, . . . , a1,α1〉.

Similarly, for the more complicated words involving b’s as above, we have:

w =c̄ 〈u, a1,1, . . . , a1,α1
〉 b1,j1 . . .

7→ c̄ 〈u, ca1,1c̄, . . . , ca1,α1 c̄〉 cb1,j1 . . .
= 〈c̄uc, a1,1, . . . , a1,α1〉 b1,j1 . . .

This shows that 〈u,D1〉 splits as an HNN–extension over 〈u〉 as

〈u,D1〉 ∼= 〈ai,j , bi,j , c, u, v | 1 ≤ i ≤ δ1, c̄uc = v〉 ∼= 〈ai,j , bi,j , u, v | 1 ≤ i ≤ δ1〉 ∗Z
with all generators of the line pattern that involve generators of D1 conjugate into
〈ai,j , bi,j , u, v | 1 ≤ i ≤ δ1〉.

The effect of this in the line pattern in 〈ai,j , bi,j , u, v | 1 ≤ i ≤ δ1〉 is to combine
C1 and C2. The argument may then be repeated δ1 − 2 more times, after which D1

consists of a single component and all the generators are of the a-type.

4. Virtually Geometric Multiwords

A multiword w = {w1, . . . , wk} in F = Fn is geometric if there exits a (possibly
non-orientable) handlebody H with fundamental group F such that the conjugacy
classes of the wi can be represented by an embedded multicurve in the boundary
of H. The multiword is virtually geometric if it becomes geometric upon passing
to a finite index subgroup of F .

Geometricity is understood to the extent that given a multiword there is an
algorithm to determine whether or not it is geometric. If a multiword is geometric
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then any minimal Whitehead graph must be planar. Furthermore, if the vertices
of the Whitehead graph are blown up into discs then there is a way to embed the
Whitehead graph in the plane in such a way that the cyclic orderings of edges
incident to a vertex and the inverse vertex are preserved by the action of the
appropriate generator. This version of the Whitehead graph is an example of a
Heegaard diagram. These claims follow from work of Zieschang [5], who gives a
geometric version of Whitehead’s Algorithm [11] (see also Berge’s Documentation
for the program Heegaard [1]).

The Whitehead graph is finite, so it is possible to check every distinct embedding
to see if there exists one that is planar and respects cyclic ordering around the
vertices.

In contrast, until recently the only method of checking virtual geometricity was to
enumerate finite index subgroups of F and check whether the multiword becomes
geometric, hoping for success. Gordon and Wilton [6] asked whether every one
element multiword is virtually geometric. Manning [8] answered in the negative
by constructing an example for which every finite index subgroup has non-planar
Whitehead graph.

Otal [10] did not consider the question of virtual geometricity. We will see
in Section 4.1 that it follows fairly easily from his work that a rigid multiword
is virtually geometric if and only if it is geometric. However, the fact that the
existence of cut pairs, hence rigidity, is algorithmically detectable was not known
until Cashen and Macura [4].

4.1. Rigid Multiwords and Geometricity.

Lemma 4.1 ([10, Proposition 0]). The decomposition space of a geometric multi-
word is planar.

Proof. By definition, a geometric multiword can be realized by an embedded multi-
curve on the surface of a handlebody. The multicurve lifts to a collection of disjoint
curves on the boundary surface of the universal cover of the handlebody. This uni-
versal cover is a thickened tree, and may be compactified by including the Cantor
set boundary of the tree. The resulting space is a 3–ball with a collection of disjoint
arcs in the bounding 2–sphere. By Moore’s Decomposition Theorem [9], the quo-
tient of the 2–sphere obtained by collapsing each of the curves to a point is still a
2–sphere. The image of the Cantor set in this quotient is exactly the decomposition
space. Thus, the decomposition space embedds into S2. �

Passing to a finite index subgroup induces a homeomorphism of decomposition
spaces, so we also have:

Corollary 4.2. The decomposition space of a virtually geometric multiword is pla-
nar.

Theorem 4.3 (cf [10, Theorem 1]). Let w be a multiword that generates a rigid
line pattern. The following are equivalent:

(1) The multiword w is geometric.
(2) The decomposition space Dw is planar.
(3) Any minimal Whitehead graph for w is planar with consistent cyclic order-

ings of edges incident to inverse vertices.
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Proof. Lemma 4.1 shows (1) implies (2).
(2) implies (3) is the content of [10, Lemma 4.4]. The hypotheses for this lemma

are that every element of the multiword is indecomposable and that the decom-
position space embeds into S2 in such a way that closures of the complementary
regions intersect pairwise in at most one point. The first hypothesis is too strong.
Indecomposability of each element of the multiword is only used to prove that the
decomposition space has no cut points. The second hypothesis is satisfied if the
decomposition space has no cut pairs. Therefore, rigidity is a sufficient hypothesis.

Suppose there exists a Whitehead graph that is planar with consistent cyclic
orderings of edges incident to inverse vertices. Embed this Whitehead graph on
the surface of a 3–ball and attach 1–handles joining inverse vertices. The result is
a (possibly non-orientable) handlebody with embedded multicurve representing w.
Thus, (3) implies (1).

�

Corollary 4.4. A rigid multiword is virtually geometric if and only if it is geomet-
ric.

Manning has shown [8] that the word bbaaccabc in F3 = 〈a, b, c〉 is not virtually
geometric. This is proved by showing that the structure of the Whitehead graph of
this word implies that the Whitehead graph in any finite cover is still non-planar.

Alternatively, using the methods of [4] it is possible to show this word generates
a rigid line pattern, so non-planarity of the Whitehead graph immediately implies
the word is not virtually geometric.

It is also possible to give examples of rigid patterns for which the decomposition
space is planar. For instance, the Whitehead graph of the word a2b2ab̄ in F2 = 〈a, b〉
is the complete graph. Such a pattern is always rigid, see [4, Section 6.2], and it
may easily be checked that condition (3) of Theorem 4.3 is satisfied.

4.2. Non-rigid Multiwords and Virtual Geometricity. The question of vir-
tual geometricity for non-rigid multiwords reduces to the vertex groups of the rJSJ.
Since the circle is planar, we are particularly interested in the rigid vertex groups.

As in Section 3.4, if Dw is connected and has uncrossed cut pairs then we can find
an indivisible element g ∈ F such that q({ḡ∞, g∞}) is an uncrossed cut pair. Up
to conjugation and inversion there are only finitely many such g; let the augmented
multiword Aug(w) be the union of w with these g’s. The decomposition space
DAug(w) is connected with no uncrossed cut pairs (they all become cut points).

Note that the rJSJ is the same for either w or Aug(w).

Lemma 4.5. Let w′ be a multiword in F such that the decomposition space Dw′

is connected. Let w = Aug(w′). The following are equivalent:

(1) The multiword w is virtually geometric.
(2) The decomposition space Dw is planar.
(3) For every non-cyclic vertex group of the rJSJ, the induced multiword is

geometric.

Proof. Corollary 4.2 shows (1) implies (2).
Consider the rJSJ. Recall that in each non-cyclic vertex group we have an induced

multiword consisting of:

• generators of maximal cyclic subgroups containing the images of the edge
injections, and
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• elements of w conjugate into the vertex group that do not generate a cyclic
subgroup containing the image of an edge injection.

The decomposition spaces of the vertex groups with induced multiwords must all
be planar. This is because they all embed into Dw, so if one of them is non-planar,
Dw is non-planar.

For each non-cyclic vertex group of the rJSJ, the induced decomposition space is
either rigid or a circle. If it is a circle then the induced multiword is geometric in the
vertex group. If it is rigid and the decomposition space is planar then Theorem 4.3
says it is geometric. Thus, (2) implies (3).

Assume (3).
From a graph of groups we may build a corresponding graph of spaces. For each

vertex group choose a vertex space with fundamental group isomorphic to the vertex
group. For each edge group choose a space with fundamental group isomorphic to
the edge group, and let the edge space be the product of that space with the unit
interval. Use the edge injections of the graph of groups to define attaching maps
of edge spaces to the corresponding vertex spaces. The resulting space will have
fundamental group isomorphic to the fundamental group of the graph of groups.

For each non-cyclic vertex group, the induced multiword is geometric, so we can
choose the vertex space to be a handlebody with an embedded multicurve in the
boundary representing the induced multiword.

For the edge spaces we could use annuli, but later we will want to thicken them
to make the resulting graph of spaces a 3–manifold.

For the moment we will also make a geometricity assumption on the cyclic vertex
groups. Suppose for a cyclic vertex group 〈g〉 there are k incident edges and each
edge injection is degree one. In this case we choose the vertex space to be a solid
torus with k + 1 disjoint curves on the boundary representing the element g and k
attaching curves to which we will glue a boundary curve of an annulus edge space.
(In fact, we could also achieve this if the degrees of the edge injections are all d and
we replace g by gd in w.)

Another possibility is that the degrees of the edge injections are all two except
for possibly one of degree one. In this case we choose the vertex space to be a solid
Klein bottle, and again we have disjoint curves on the boundary representing g and
the attaching curves.

Suppose one of these possibilities is true for every cyclic vertex group.
The resulting graph of spaces has fundamental group F and has an embed-

ded multicurve representing w such that the multicurve is disjoint from the edge
spaces. It is not yet a 3–manifold with boundary; we need to fatten the annuli. To
see if this is possible, consider for each boundary component of each annulus the
tubular neighborhood of the attaching curve in the boundary of the corresponding
handlebody. If for each annulus the two neighborhoods are either both annuli or
both Möbius strips then the annuli may be fattened to make the graph of spaces a
3–manifold, so w is geometric.

Thus, assuming (3), there are two possible obstructions to geometricity:

(1) The degrees of the edge injections into some cyclic vertex group are not of
one of the two forms described above.

(2) Some annulus can not be fattened because one boundary neighborhood is
an annulus and the other is a Möbius strip.
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Claim 4.5.1. These obstructions vanish in a finite index subgroup of F , so w is
virtually geometric.

Proof of Claim. There are finitely many elements gi ∈ w such that q({ḡ∞i , g∞i })
is a cut point in Dw.

From the proof of Proposition 3.1, an edge injection of degree greater than one
into a cyclic vertex group 〈gi〉 occurs when the gi–action permutes the components
of Dw \ q({ḡ∞i , g∞i }). There are only finitely many components, so there exists
some minimal power ai of gi such that the gaii –action fixes them.

Additionally, if obstruction (2) occurs for some conjugate of gi, and if ai is odd,
then consider g2aii .

Let Gi be a finite index subgroup of F in which gaii (or g2aii ) is basic. Let
G be the finite index subgroup ∩iGi. If we apply the Relative JSJ-Decomposition
Theorem to G we get a graph of groups covering the graph of groups decomposition
for F . By construction, the smallest power of gi in G is a multiple of gaii , so all edge
inclusions are degree one. This takes care of obstruction (1), and we can choose all
the cyclic vertex spaces to be solid tori.

Furthermore, we can take the vertex spaces to be handlebodies finitely covering
the original handlebodies. If some attaching curve in the original decomposition
ran along a Möbius strip then it runs along an even covering of the Möbius strip
in the covering handlebodies. Thus, all attaching attaching curves have annulus
neighborhoods, which takes care of obstruction (2). ♦

Thus, (3) =⇒ (1). �

In the preceding lemma we first augmented the multiword. This is just for tech-
nical convenience. The rJSJ is the same in either case. The only difference is that
for the original multiword some of the cyclic vertices in the rJSJ may correspond to
uncrossed cut pairs in the decomposition space, while for the augmented multiword
they all correspond to cut points. As we see in the next theorem, this makes no
difference for virtual geometricity.

Theorem 4.6. Let w be a multiword in F . The following are equivalent:

(1) The multiword w is virtually geometric.
(2) The decomposition space Dw is planar.
(3) For every non-cyclic vertex group of the rJSJ, the induced multiword is

geometric.

Proof. If the decomposition space is not connected then F splits freely relative to
the line pattern generated by w and we may deal with each free factor separately,
so assume the decomposition space is connected.

We have already seen that (1) implies (2).
Suppose Dw is planar.

Claim 4.6.1. If Dw is planar, then DAug(w) is planar.

By Lemma 4.5, DAug(w) is planar if and only if the induced multiword in each
non-cyclic vertex group of the rJSJ is geometric in the vertex group. By Theo-
rem 4.3, this is true if and only if the decomposition space of each induced mul-
tiword in its vertex group is planar. Thus, Claim 4.6.1 reduces to showing the
following claim.
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Claim 4.6.2. Suppose Dw is planar. For each non-cyclic vertex group G of the
rJSJ, the induced multiword in G gives a planar decomposition space.

Proof of Claim. Let v be the induced multiword in G, and let E be the decompo-
sition space of ∂G corresponding to v.

Recall that v consists of elements of w conjugate into G as well as generators of
the images of the edge injections.

If Dw has no uncrossed cut pairs then v is exactly the elements of w conjugate
into G, and E embeds into Dw and hence into S2, and we are done.

Similarly, for each cut point p there is a unique component Cp of Dw \ p such
that the image of ∂G is contained in Cp ∪ p. The intersection over all cut points of
the sets Cp ∪ p is a connected subset of Dw containing the image of ∂G. Thus, we
may assume that there are no cut points.

Now, suppose we have finitely many elements g1, . . . , gk in v such that {ḡ∞i , g∞i }
gives an uncrossed cut pair in Dw. This means that E is a quotient of the image of
∂G in Dw obtained by identifying pairs of points {hḡ∞i , hg∞i } for each h ∈ G and
i = 1, . . . , k.

Embed Dw into S2. We will show that there is a monotone upper semi-continuous
decomposition of S2 whose non-degenerate elements are arcs whose two endpoints
are {hḡ∞i , hg∞i } for some h and i, and whose interiors are disjoint from the image
of ∂G in S2. Moore’s Decomposition Theorem [9] says that the quotient of the
sphere obtained by collapsing each of these arcs to a point is again the sphere, and
the image of ∂G in this quotient is E. Thus, E is planar.

A decomposition of S2 is just a way of writing S2 as a disjoint union of finite
unions of compact continua. The non-degenerate elements are the non-singletons.
The decomposition is monotone if each element is connected. The collection is
upper semi-continuous if for each element α of the decomposition, and for each
neighborhood U of α, there exists a neighborhood V of α such that any element
of the decomposition that meets V is contained in U . For the quotient to be the
sphere we also require that the elements of the decomposition are non-separating
subsets.

Each uncrossed cut pair q({hḡ∞i , hg∞i }) has finitely many complementary com-
ponents in Dw, one of which, C, contains the image of ∂G. Choose a connected
component of S2 \Dw that limits to q(hḡ∞i ) and q(hg∞i ). The boundary of this set
is a Jordan curve passing through the two points q(hḡ∞i ) and q(hg∞i ). Choose the
arc connecting q(hḡ∞i ) and q(hg∞i ) in our decomposition to be the sub-arc of this
curve that does not go through the component of Dw\{q(hḡ∞i ), q(hg∞i )} containing
the image of ∂G.

To satisfy the requirements of Moore’s theorem, we must show that for every arc
α and every neighborhood U of α there is a neighborhood V of α such that if an
arc α′ meets V it is contained in U .

By construction, each interior point of each arc has a neighborhood that is not
entered by any other arc in the collection, but this is not true for the endpoints of
the arc.

Fix an arc α and let β be one of its endpoints. Let β̂ be the point of ∂T that is
the preimage of this endpoint.

The identity element of F gives a basepoint for the topology on T in the sense
that the basic open neighborhoods Nr(ξ) of a point ξ ∈ ∂T are the subsets of T
consisting of points η such that the geodesic from the basepoint to η coincides with
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the geodesic from the basepoint to ξ for at least distance r. There is a constant R
depending on Aug(w) such that if ξ is the endpoint of a line in the line pattern, and
if one endpoint of a line in LAug(w) is in Nr+R(ξ) \ ξ for some r > 0, the other is in

Nrξ. For this same R, for every r > 0 it is also true that q−1(q(Nr+R(ξ))) ⊂ Nr(ξ).
Thus, for any r > 0 there is an open neighborhood Ur of β in Dw such that

q(Nr+R(β̂)) ⊂ Ur ⊂ q(Nr(β̂)).
Let U be any neighborhood of α. For each interior point γ of α there is a small

neighborhood Vγ contained in U that does not contain points of the other arcs. If
β is an endpoint of α there is a small open neighborhood of β contained in U of
the form Ur for some r, as in the previous paragraph. Let Vβ be a neighborhood of
β of the form Ur+2R. Let V be the union of the Uγ for all γ ∈ α. If any arc of the
collection enters V then it must enter Vβ ⊂ Ur+2R. This implies that the entire arc

is contained in q(Nr+R(β̂)) ⊂ U . ♦

Thus, DAug(w) is planar. By Lemma 4.5, this means Aug(w) is virtually geo-
metric. Clearly this implies w is virtually geometric: just take the graph of spaces
from Lemma 4.5 and omit some of the curves running around solid torus vertex
spaces to get an embedded multicurve representing w.

The equivalence of (3) is also a consequence of Lemma 4.5, since the decompo-
sition and induced multiwords are the same for w and Aug(w). �

Remark. An argument similar to that of Claim 4.6.2 may be used to see the Relative
JSJ-Decomposition Theorem from a different viewpoint. Let w be a multiword
with connected, planar decomposition space. Suppose there is an uncrossed cut
pair with k complementary components. It is possible to embed a graph in S2 with
the two points as vertices and k edges such that the interiors of the edges lie in the
complement of the decomposition space, and such that complementary components
of the decomposition space lie in complementary components of the sphere minus
the graph. We can find a similar graph for all uncrossed cut pairs and cut points,
and make the collection upper semi-continuous as in Claim 4.6.1.

In general, the quotient of the sphere obtained by collapsing all of these graphs
to points is a cactoid, but in this case we can say more: it is a tree of spheres whose
tree structure mirrors that of the Bass-Serre tree of the rJSJ. The vertices of the
Bass-Serre tree with non-cyclic stabilizers correspond to spheres. The cyclic vertices
correspond to points of intersection of different spheres. The decomposition space
of the augmented multiword embeds into the tree of spheres in such a way that the
decomposition space of an induced multiword in a non-cyclic vertex group of the
rJSJ embeds into the appropriate sphere in the tree of spheres, and the cut points
of the decomposition space are exactly points of intersection of multiple spheres.

4.3. Examples.

4.3.1. Baumslag’s Word. The first example is Baumslag’s word w = ā2b̄ābab̄ab in
F2 = 〈a, b〉. In response to a question of Gordon and Wilton, Manning showed, by
enumerating subgroups and checking geometricity, that this word becomes geomet-
ric in an orientable handlebody with fundamental group an index four subgroup of
F2.

This word generates a line pattern whose decomposition space is connected with
no cut points. From Wh(∗) \ [a−∞, a∞], it is apparent that a−∞ and a∞ give a cut
pair in the decomposition space. This pair has only two complementary connected
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components, so it requires more work to see that it is not crossed by any other cut
pair. If it were crossed we would be able to find a disconnected Whitehead graph
of the form Wh([∗, am]) \ {b̄, amb} for some m ∈ Z. The reader may verify that all
such Whitehead graphs are connected, so the cut pair q({a−∞, a∞}) is not crossed
by any other cut pair.

The rJSJ for F = 〈a, b〉 ∼=
〈
a, b, c | c = b̄ab

〉
is shown in Figure 1. (The arrows at

the end of each edge indicate the image of the generator of the cyclic edge group
in the vertex group.)

〈a, c〉 〈a〉
a

c

a

a

Figure 1. rJSJ-Decomposition of 〈a, b〉 for ā2b̄ābab̄ab (c = b̄ab)

The induced multiword in the rank two vertex group is {ā2c̄ac, a, c}. This is a
geometric multiword that generates a rigid pattern.

In Figure 2 we have a reduced Whitehead graph/Heegaard diagram for this mul-
tiword. The cyclic ordering of edges incident to the c and c̄ discs is reversed, so we
identify these discs by an orientation reversing map to make an orientable c–handle.
The cyclic ordering of edges incident to the a and ā discs is the same, so we iden-
tify the discs by an orientation preserving map to make a non-orientable a–handle.
For convenience in drawing figures we will leave the a and ā discs separate in the
handlebody figure. Figure 3 shows a (non-orientable) handlebody with embedded
multicurve representing {ā2c̄ac, a, c}.

a

ā

c̄

c

2
4

1
6

2
4

1
6

5

3
7

7

3

5

Figure
2. Whitehead graph/
Heegaard diagram

a

ā

c

Figure 3. Corresponding
non-orientable handlebody
for {ā2c̄ac, a, c}

The obstruction to geometricity of w is that if we tried to build a graph of
spaces with this non-orientable handlebody as the vertex space we would need to
conjugate a curve running around an orientable handle to one running around a
non-orientable handle (a is conjugate to c).

To correct this problem, pass to the index two subgroup:

G =
〈
A = a2, b, B = abā

〉
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Baumslag’s word is not in this subgroup, but its square is:

w2 = (ā2b̄ābab̄ab)2

= ā2b̄ābab̄abā2b̄ābab̄ab

= ā2 · b̄ · ā2 · abā · a2 · b̄ · abā · ā2 · ab̄ā · b · ab̄ā · a2 · b
= Āb̄ĀBAb̄BĀB̄bB̄Ab

We proceed as in Section 3.5. The A–action fixes the two complementary com-
ponents of D \ q({Ā∞, A∞}). Let C1 = {b, B} and C2 = {b̄, B̄}. The graph of C’s
has a single connected component, since, for example, b ∈ C1 and b̄ ∈ C2. Apply
the Whitehead automorphism that pushes B through b. This sends B to bB and
B̄ to B̄b̄, and fixes b and A.

The word becomes Ā(b̄Āb)BABĀB̄2(b̄Ab).
The splitting over 〈A〉 is therefore

〈
A, b,B,C | C = b̄Ab

〉
. The induced multi-

word in the vertex group 〈A,B,C〉 is {A,C, ĀC̄BABĀB̄2C}. This multiword is
rigid and geometric in a non-orientable handlebody, as seen in Figure 4.

A

C

B̄

B

Figure 4. A non-orientable handlebody for {A,C, ĀC̄BABĀB̄2C}

Although the handlebody is non-orientable, this time we can build a 3–manifold
graph of spaces because we only need to conjugate an orientable handle to an
orientable handle. Gluing on a fattened annulus conjugating A to C gives a non-
orientable handlebody with fundamental group isomorphic to G for which the image
of w2 is geometric. One could pass further to a twofold cover of this handlebody
to find an index four subgroup of F for which the multiword is geometric in an
orientable handlebody, if desired.

4.3.2. Baumslag-Solitar Words. Another interesting family of example are given
by the Baumslag-Solitar words wp,q = āq b̄apb in F2 = 〈a, b〉. We will assume that
0 < p ≤ q. Gordon and Wilton [6] have shown that wp,q is virtually geometric
when p and q are relatively prime.
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The decomposition space associated to this word is connected without cut points.
The pair {q(a−∞), q(a∞)} is a cut pair. Figure 5 shows the Whitehead graph:

Wh{a,b}([∗, a5]){ā3b̄a2b} \ [a−∞, a∞]

This is six copies of Wh(∗) spliced together. Note there are p = 2 components
containing the vertices along the top of the figure, and q = 3 components containing
the vertices along the bottom. The a–action is a shift that exchanges the two
components on the top and cyclically permutes the three components along the
bottom, so the a6–action fixes all five components.

In general there are p+q connected components in the complement of {q(a−∞), q(a∞)}.
There are two orbits of components under the a–action, one of size p and one of
size q.

The case when p = q = 1 is special; in this case the Whitehead graph is a circle,
which implies the decomposition space is a circle and the word is geometric.

Otherwise, the number of complementary components is p+q > 2, so q({ā∞, a∞})
is an uncrossed cut pair. The rJSJ is shown in Figure 6.

Figure 5. Wh{a,b}([∗, a5]){ā3b̄a2b} \ [a−∞, a∞]

〈
b̄apb, aq

〉
〈a〉

aq

b̄apb

aq

ap

Figure 6. rJSJ-Decomposition of 〈a, b〉 for āq b̄apb

The rank two vertex group is
〈
A = aq, C = b̄apb

〉
, and the induced multiword

in this vertex group is {A,C, ĀC}. The Whitehead graph for this multiword is
a circle, which implies the vertex decomposition space is a circle and the induced
multiword is geometric. Thus, Theorem 4.6 says wp,q is at least virtually geometric.

The cyclic vertex group has edge inclusions of degrees p and q.
If p = 1 and q = 2 we can make this geometric by using a solid Klein bottle for

the cyclic vertex space. (We saw the non-cyclic vertex space for this example back
in Figure 3.)

If p = q the word is also geometric, because two disjoint degree p curves fit into
the boundary of a solid torus. However, an additional degree one curve does not
fit. This example is notable because the word wp,p is geometric, but the augmented
multiword {wp,p, a} is only virtually geometric. Augmenting the multiword does not
change virtual geometricity, but it may change geometricity. However, {wp,p, ap}
is geometric.



22 CHRISTOPHER H. CASHEN

Otherwise, the word wp,q is not geometric. Let l be the least common multiple
of p and q. It suffices to pass to the index l subgroup:

G =
〈
A,B0, B1, . . . , Bl−1 | A = al, Bi = aibāi

〉
Since A = al is the smallest power of a in this subgroup, there is still only one
orbit of uncrossed cut pair in the decomposition space. The A–action fixes each of
the p + q complementary components of q({Ā∞, A∞}). Therefore, the rJSJ has a
single cyclic vertex group with all edge inclusions of degree one, and all non-cyclic
vertex groups of the rJSJ have a circle for the decomposition space of the induced
multiword.
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