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On triangles determined by subsets of the Euclidean plane, the

associated bilinear operators and applications to discrete geometry

Allan Greenleaf and Alex Iosevich

Abstract. We prove that if the Hausdorff dimension of the set E ⊂ R
2 is greater than 7

4
, then

the three-dimensional Lebesgue measure of the set of triangles determined by E is positive. We
establish this fact by showing that the natural measure on the set of triangles determined by
E, given by the relation

∫
f(a, b, c)dν(a, b, c) =

∫ ∫ ∫
f(|x − y|, |x − z|, |y − z|)dµ(x)dµ(y)dµ(z),

where dµ is a Frostman measure on E, is in L∞ if the Hausdorff dimension of E is greater than
7

4
. Furthermore, we show that the exponent 7

4
cannot, in general, be improved.

The study of this problem naturally leads to the analysis of the bi-linear convolution operator

B(f, g)(x) =

∫ ∫
f(x − u)g(x− v)dK(u, v),

where dK is the Lebesgue measure on the set {(ω, ω′) ∈ S1 × S1 : |ω − ω′| = 1}. We obtain
L2(R2)×L2(R2) → L1

s(R
2) for the operator B on non-negative functions. It is needed to establish

the geometric fact described above. We note that the L2(R2)×L2(R2) → L1
s(R

2) estimate holds

with s = 1

2
, on characteristic functions, in spite of the fact that the multiplier does not possess the

isotropic decay rate at infinity of order − 1

2
. It does decay of this order away from an exception

co-dimension 2 plane. The fact that this is enough is a critical feature of the bi-linear setting.
As a consequence of our main result, we show that for a natural class of discrete sets in

the plane consisting of n elements, the maximum number of times a given triangle arises, up to

congruence, is O(n
9
7
+ǫ), improving upon the known bound of O(n

4
3 ) in this context.

1. Introduction

The classical Falconer distance conjecture says that if the Hausdorff dimension of a compact
set E ⊂ R

d, d ≥ 2, is greater than d
2 , then the Lebesgue measure of

∆(E) = {|x− y| : x, y ∈ E}
is positive. Here, and throughout, | · | denotes the Euclidean distance. A beautiful example due to
Falconer, based on the integer lattice, shows that the exponent d

2 is best possible. The best known
results, culminating almost three decades of efforts by Falconer ([12]), Mattila ([21]), Bourgain ([3])
and others are due to Wolff ([29]) in two dimensions and to Erdogan ([5]) in higher dimensions.
They prove that L1(∆(E)) > 0 if

dimH(E) >
d

2
+

1

3
.

One may think of the distance set problem as showing that a compact E of sufficiently large
Hausdorff dimension determines a positive proportion of all possible two-point configurations. This
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is because two different two-point configurations are equivalent, up to rigid motions, precisely if
the corresponding distances are exactly the same. A natural question to ask is, how large does the
Hausdorff dimension of a compact set needs to be to ensure that it determines a positive proportion
of finite point configurations with a larger number of points. To this effect, define

Tk(E) = Ek+1/ ∼,
where Ek+1 = E × E × · · · × E, k + 1 times and

(x1, x2, . . . , xk+1) ∼ (y1, y2, . . . , yk+1)

if there exists an element Λ of the orthogonal group O(d) and a translation τ ∈ R
d such that

yj = τ + Λ(xj),

for all j.

Observe that we may view Tk(E) as a subset of R(
k+1

2 ) since rigid motions may be encoded
by fixing distances. The problem under consideration was first taken up in [4] where the authors
proved that if

dimH(E) >
d+ k + 1

2
, then L(

k+1

2 )(Tk(E)) > 0.

Unfortunately, these results do not give a non-trivial exponent for what is arguably the most nat-
ural case of triangles in the planes, tetrahedra in three space and, more generally, of d-dimensional
simplexes in R

d. In this paper we partly fill this gap by establishing a non-trivial exponent for
triangles in the plane.

As for counter-examples, it is not difficult to see that L(
k+1

2 )(Tk(E)) > 0 does not hold if the
Hausdorff dimension of E is less than or equal to d − 1. To see this, just take E to be a subset of
a (d − 1)-dimensional plane. We do not currently know if more restrictive examples exist in this
context. However, more restrictive counter-examples do exist if we consider the following related
question investigated in [4]. Let

Sk
t (E) = {(x1, . . . , xk+1) ∈ Ek+1 : |xi − xj | = tij},

where t = {tij} is symmetric matrix with zeroes on the diagonal and Ek+1 = E × E × · · · × E. In
[4] the authors investigated conditions under which

(1.1) dimM(Sk
t (E)) ≤ (k + 1) dimH(E)−

(
k + 1

2

)
,

where dimM denotes the Minkowski dimension and dimH denotes the Hausdorff dimension. See, for
example, [13] and [22] for a thorough description of these notions and connections with harmonic
analysis.

The estimate (1.1) follows easily if one can show that

(1.2) µ× µ× · · · × µ{(x1, . . . , xk+1) : tij ≤ |xi − xj | ≤ tij + ǫ} . ǫ(
k+1

2 ),

where µ is a Frostman measure (defined in 1.3 below) on E, under the assumption that the Hausdorff
dimension of E is greater than some threshold s0 < d. This was shown in [4] under the assumption
that the Hausdorff dimension of E is greater than k

k+1d +
k
2 . Observe that this only yields a non-

trivial exponent (less than d) if d >
(
k
2

)
and, in particular, does not cover the case k = d.
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It is also not difficult to show (see Section 2 below) that if the estimate (1.2) holds under the

assumption that the Hausdorff dimension of E is greater than s0, then L(
k+1

2 )(Tk(E)) > 0 for all
sets E with Hausdorff dimension greater than s0. The results in [4] prove a number of estimates of
the type (1.2), but, as we note above, they do not cover the case d = k, the full simplex in R

d. We
establish non-trivial exponents for d = k = 2 below by proving the estimate (1.2) in this case for
sets E of Hausdorff dimension greater than 7

4 . Furthermore, we use a variant of Mattila’s example

from [21] to show that our estimate cannot be improved in the sense that for every s < 7
4 there

exists a set E and a Frostman measure µ for which the estimate (1.2) does not hold in the case
d = k = 2.

1.1. A combinatorial perspective. Finite configuration problems have their roots in geo-
metric combinatorics. For example, the Falconer distance problem is a continuous analog of the
celebrated Erdős distance problem. See [24], [20], [1], [28] and the references contained therein.The
discrete precursor of the problem discussed in this paper is the following question posed by Erdős
and Purdy (see [1], [6] and also [7], [8], [9] [10], [11]):

Q: What is the maximum number of mutually congruent k-simplexes among n points in R
d?

In Section 5 we shall see that the main result of this paper (Theorem 1.1) implies that for a

large class of points sets of size n, the maximum number of mutually congruent triangles is O(n
9
7
+ǫ).

For explicit quantitative connections between discrete and continuous finite configuration prob-
lems in other contexts, see, for example, [15], [17] and [18].

1.2. Notation: Throughout the paper, X . Y means that there exists C > 0 such that
X ≤ CY and X ≈ Y means that X . Y and Y . X . We also define X / Y as follows. If X and Y
are quantities that depend on a large parameter N , then X / Y means that for every ǫ > 0 there
exists Cǫ > 0 such that X ≤ CǫN

ǫY . If X and Y depend on a small parameter δ, then for every
ǫ > 0 there exists Cǫ > 0 such that X ≤ Cǫδ

−ǫY as δ tends to 0.
Throughout the paper, we shall work with Frostman measures µ. Recall that a probability

measure µ on a compact set E is a Frostman measure if for any ball Bδ of radius δ,

(1.3) µ(Bδ) / δs,

where s is the Hausdorff dimension of s. For the proof of the existence of such measures for any
compact set E see, for example, [22].

Our main analytic result is the following.

Theorem 1.1. Let E ⊂ [0, 1]
2
of Hausdorff dimenion > 7

4 . Then the estimate (1.2) holds in the
case d = k = 2.

Consequently, if the Hausdorff dimension of E is greater than 7
4 , then

L3(T2(E)) > 0.

The proof that the first assertion of Theorem 1.1 implies the second is in Section 2 below.

This result is sharp in the following sense. Define a measure ν on Tk(E) by the relation
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(1.4)∫
f(t12, t13, t23)dν(t12, t13, t23) =

∫ ∫ ∫
f
(
|x1 − x2|, |x1 − x3|, |x2 − x3|

)
dµ(x1)dµ(x2)dµ(x3),

where dµ is a Frostman measure on E. We shall prove that ν ∈ L∞ if the Hausdorff dimension of
E is greater than 7

4 , which is just a rephrasing of the statement that (1.2) holds when d = k = 2.
We will then show in Section 2 that this implies the conclusion of Theorem 1.1. Finally, we will
show that if s < 7

4 , then ν need not be, in general, in L∞ in the sense that for every s < 7
4 there

exists a set E of Hausdorff dimension s and a Frostman measure µ supported on this set, such that
ν, defined in 1.4 above, is not in L∞. This issue is taken up in the Section 4 below.

Theorem 1.1 may be viewed as a local version of the following theorem due to Furstenberg,
Katznelson and Weiss ([14]). See also [2] and [30] for subsequent result along these lines.

Theorem 1.2. Let E ⊂ R
2, of positive upper Lebesgue density in the sense that

lim sup
R→∞

Ld{E ∩ [−R,R]d}
(2R)

d
> 0,

where Ld denotes the d-dimensional Lebesgue measure.
Let Eδ denote the δ-neighborhood of E. Then, given vectors u, v in R

2, there exists l0 such that
for l > l0 and any δ > 0, there exists {x, y, z} ⊂ Eδ forming a triangle congruent to {0, lu, lv},
where 0 denotes the origin in R

2.

We note in passing that it is generally believed that the conclusion of Theorem 1.2 still holds
if the δ-neighborhood of E is replaced by E under an additional assumption that the triangles
under consideration are non-degenerate. We believe that there is a possibility that techniques of
this paper may be applicable to this question and hope to address this issue in a subsequent paper.
For degenerate triangles the necessity of considering the δ-neighborhood of E was established by
Bourgain. See [14] for the description of his argument.

In contrast to Theorem 1.2, we are able in the local version to go beyond subsets of the plane
of positive Lebesgue measure, and we do not require dilations. On the other hand, we only obtain
a positive Lebesgue measure’s worth of all the possible triangles and not all of them.

2. Reduction of the proof of the main result to the estimation of a tri-linear form

Let µ be a Frostman measure on E. Cover T2(E) by cubes of the form

(tl12 − ǫl, t
l
12 + ǫl)× (tl13 − ǫl, t

l
13 + ǫl)× (tl23 − ǫl, t

l
23 + ǫl).

It follows that

1 = µ× µ× µ{E × E × E}

≤
∑

l

µ× µ× µ{(x1, x2, x3) : tlij − ǫl ≤ |xi − xj | ≤ tlij + ǫl}.

Suppose that we could show that this expression is

.
∑

ǫ3l .
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It would then follow, by definition of sets of measure 0, that the three dimensional Lebesgue
measure of T2(E) is positive. By standard pigeonholing, we may assume that tij ≥ c > 0. Therefore
the proof of Theorem 1.1 is reduced to the tri-linear estimate

(2.1)

∫ ∫ ∫
σǫ
t12

(x1 − x2)σǫ
t13

(x1 − x3)σǫ
t23

(x2 − x3)dµ(x1)dµ(x2)dµ(x3) . 1,

where σr is the Lebesgue measure on the circle of radius.

3. Proof of the estimation of the tri-linear form

Let us consider a slightly modified expression of the form

(3.1)

∫ ∫ ∫
σǫ
t12

(x1 − x2)σǫ
t13

(x1 − x3)σǫ
t23

(x2 − x3)µδ
α(x

1)µδ(x2)µδ
−α(x

3)dx1dx2dx3,

where

µǫ(x) =
1

ǫ2
ρ
( ·
ǫ

)
∗ µ(x),

with ρ a smooth approximation to the identity, and µǫ
α is defined by the relation

µα(x) = µ ∗ λα(x),
where

(3.2) λα(x) = |x|−2+α
(1− φ(c−1x)),

with c > 0 to be determined, if x 6= (0, 0) and 0 if x = (0, 0). Here φ is a smooth cut-off function
identically equal to one in a ball of radius 1 and vanishing identically outside the ball of radius 2.

By symmetry, if we could prove that the expression (3.1) is bounded for some α > 0, with
constants independent of ǫ and δ, the estimate (2.1) would follow by interpolation, or, more precisely,
by the three lines lemma. See, for example, [26].

We may replace tijs by a, b, 1 since may take one of the radii to be 1 by scaling. We have

(3.3)

∫ ∫ ∫
µδ
−α(x− u)µδ(x − v)Kǫ(u, v)dudv µδ

α(x)ψ(x)dx,

where

Kǫ(u, v) = σǫ(u− v)σǫ
a(u)σ

ǫ
b(v),

interpreted in the sense of distributions.

Lemma 3.1. With the notation above,

||µδ
α||∞ / 1

if s+ α ≥ 2.
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To prove the lemma, we observe that

µδ
α(x) ≤

∫
|x− y|−2+α

dµδ(y)

≈
∑

m

2m(2−α)

∫

|x−y|≈2−m

dµδ(y)

.
∑

m

2m(2−α)2−ms,

since µ is a Frostman measure. This quantity is / 1 if α+ s ≥ 2, as desired.

Using Lemma 3.1 it follows that the expression in (3.3) is bounded by

∫ ∫ ∫
µδ
−α(x− u)µδ(x− v)Kǫ(u, v)ψ(x)dxdudv

=

∫ ∫
F δ(u, v)Kǫ(u, v)dudv,

where

F δ(u, v) =

∫
µδ
−α(x− u)µδ(x− v)ψ(x)dx.

We have

F̂ δ(ξ, η) = µ̂(ξ)λ̂−α(ξ)µ̂(η)ψ̂(ξ + η)ψ̂(δξ)ψ̂(δη).

So we obtain

(3.4)

∫ ∫
µ̂(ξ)λ̂−α(ξ)µ̂(η)ψ̂(ξ + η)ψ̂(δξ)ψ̂(δη)K̂ǫ(ξ, η)dξdη.

Lemma 3.2. Let K(u, v) = K0(u, v), interpreted in the sense of distributions. We have

(3.5) K̂(ξ, η) = σ̂(Ua,b(ξ, η)),

where

Ua,b : R
4 → R

2

and is defined by

(3.6) Ua,b(ξ, η) =
(
aξ1 + bη1γa,b + bη2

√
1− γ2a,b, aξ2 − bη1

√
1− γ2a,b + bγa,bη2

)

with γa,b =
a2+b2−1

2ab .
Recall that by the standard method of stationary phase (see e.g. [23], [27]),

|σ̂(ξ)| . |ξ|−
1
2 .

Consequently,

(3.7)
∣∣∣K̂ǫ(ξ, η)ψ̂(ξ + η)

∣∣∣ . (|ξ|+ |η|)−
1
2 .
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To prove the lemma, parameterize the Cartesian product of two circles as

{(a cos(θ), a sin(θ), b cos(φ), b sin(φ))}.
The restriction imposed by σ(u − v) says that

dist((a cos(θ), a sin(θ)), (b cos(φ), b sin(φ)) = 1,

which implies via standard trigonometric identities that

cos(θ − φ) =
a2 + b2 − 1

2ab
≡ γa,b

and thus
θ − φ = ±θa,b = cos−1(γa,b). It follows that

K̂(ξ, η) =

∫ 2π

0

e2πi(a cos(θ)ξ1+a sin(θ)ξ2+b cos(θ+θa,b)η1+b sin(θ+θa,b)η2)dθ

= σ̂(Ua,b(ξ, η)),

as claimed. This proves (3.5). The estimate (3.7) follows in the same way since σǫ
a(x) = σa ∗ ρδ(x).

Lemma 3.3. With the notation above,

|λ̂−α(ξ)| . |ξ|α if |ξ| > 2

c
.

To prove Lemma 3.3, observe that the absolute value of the Fourier transform of the distribution

of |x|−2−α
φ(x) is . |ξ|α. Therefore, it suffices to show that the absolute value of the Fourier

transform of |x|−2−α
φ(c−1x) is . |ξ|α if |ξ| > 2

c
. The Fourier transform of this function equals a

constant times

c2
∫

|ξ − z|αφ̂(cz)dz

. CN · c2
∫

|ξ − z|α(1 + |cz|)−N
dz

. CN |ξ|α,
provided that |ξ| > 2

c
, as desired.

Set c = 2 in Lemma 3.3. In view of Lemma 3.2 and Lemma 3.3, for every N > 0 there exists
CN > 0 such that the expression (3.4) equals O(1) plus

/

∫

2≤|ξ|,|η|.δ−1

∫
CN (1 + |ξ + η|)−N

(1 + |Ua,b(ξ, η)|)−
1
2 |ξ|α|µ̂(ξ)||µ̂(η)|dξdη

.

∫

|ξ|.δ−1

|ξ|−
1
2
+α|µ̂(ξ)|2dξ.

This expression is bounded if α = 1
4 and s > 7

4 as the expression above is bounded by a constant
multiple of the energy integral ∫ ∫

|x− y|−
7
4 dµ(x)dµ(y).
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See, for example, [22], for the discussion of energy integrals and connections with Hausdorff
dimensions. We also include the argument here for the reader’s convenience. We have

∫ ∫
|x− y|−

7
4 dµ(x)dµ(y) ≈

∑

j

2
7
4
j

∫ ∫

2−j≤|x−y|≤2−j+1

dµ(x)dµ(y).

By (1.3) this quantity is

.
∑

j

2
7
4
j2−js

and the geometric series converges if s > 7
4 .

This completes the proof of the estimate (3.1) and thus the proof of Theorem 1.1 is complete.

4. Sharpness of the tri-linear estimate (2.1)

To understand the extent to which this result is sharp, we use a variant of the construction due
to Mattila obtained for the case k = 1, d = 2 in [21]. See [19] and [4] where this issue is studied
comprehensively. Let Cα denote the standard α-dimensional Cantor set contained in the interval
[0, 1]. Let

Fα = (Cα − 1) ∪ (Cα + 1)

and let µ denote the natural measure on this set. Let E = Fα × Fβ . Observe that we can a fit a√
ǫ by ǫ rectangle in the annulus {x : 1 ≤ |x| ≤ 1 + ǫ} near (0,±1) and also near (±1, 0).
Fix x and observe that

µ× µ{(y, z) : 1 ≤ |x− z| ≤ 1 + ǫ; 1 ≤ |x− y| ≤ 1 + ǫ;
√
2 ≤ |y − z| ≤

√
2 + ǫ}

≈ ǫ
α
2
+β · ǫα+β = ǫ

3
2
α+2β .

Integrating in x, we see that

µ× µ× µ{(x, y, z) : 1 ≤ |x− z| ≤ 1 + ǫ; 1 ≤ |x− y| ≤ 1 + ǫ;
√
2 ≤ |y − z| ≤

√
2 + ǫ} & ǫ

3
2
α+2β .

We need this quantity to be . ǫ3, which leads to the equation

3

2
α+ 2β ≥ 3.

Choosing α = 1 and β = 3
4 shows that the inequality (2.1) does not in general hold if s < 7

4 . It

is important to note that this does not prove that L3(T2(E)) > 0 does not in general hold if s < 7
4 .

We stress that the calculation above pertains to the tri-linear expression (2.1). We do not know
of any example that shows that L3(T2(E)) is not in general positive if the Hausdorff dimension of
E is greater than one. The discrepancy here is not particularly surprising because it already takes
place in the study of distance sets. For example, as we point out in the introduction, it is known
that if the Hausdorff dimension of E ⊂ R

2 is ≤ 1, then it is not in general true that L1(∆(E)) > 0.
A result due to Wolff ([29]) says that if the Hausdorff dimension of E is greater than 4

3 , then

L1(∆(E)) > 0. On the other hand, an example due to Mattila ([21]) shows that if the Hausdorff
dimension of E is less than 3

2 and µ is a Frostman measure on E, then
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(4.1) lim sup
ǫ→0

ǫ−1µ× µ{(x, y) ∈ E × E : 1 ≤ |x− y| ≤ 1 + ǫ} = ∞.

We note that (4.1) is the analog of (1.4). It says that the distance measure, defined by
∫
f(t)dν(t) =

∫ ∫
f(|x− y|)dµ(x)dµ(y)

is not in L∞.

Thus, in order to prove that L3(T2(E)) > 0 for sets of Hausdorff dimension < 7
4 , it is reasonable

to try to obtain an L2, rather an L∞ bound on the measure ν defined by 1.4 above. We hope to
address this issue in a subsequent paper.

5. Application to discrete geometry

Definition 5.1. Let P be a set of n points contained in [0, 1]2. Define the measure

(5.1) dµs
P (x) = n−1 · n d

s ·
∑

p∈P

χB
n
−

1
s
(p)(x)dx,

where χB
n
−

1
s
(p)(x) is the characteristic function of the ball of radius n− 1

s centered at p. We say

that P is s-adaptable if

Is(µP ) =

∫ ∫
|x− y|−s

dµs
P (x)dµ

s
P (y) <∞.

This is equivalent to the statement

(5.2) n−2
∑

p6=p′∈P

|p− p′|−s
. 1.

To understand this condition in more clear geometric terms, suppose that P comes from a
1-separated set A scaled down by its diameter. Then the condition (5.2) takes the form

(5.3) n−2
∑

a 6=a′∈A

|a− a′|−s
. (diameter(A))

−s
.

This says P is s-adaptable if it is a scaled 1-separated set where the expected value of the
distance between two points raised to the power −s is comparable to the value of the diameter
raised to the power of −s. This basically means that for the set to be s-adaptable, clustering is not
allowed to be too severe.

To put it in more technical terms, s-adaptability means that a discrete point set P can be
thickened into a set which is uniformly s-dimensional in the sense that its energy integral of order s
is finite. Unfortunately, it is shown in [18] that there exist finite point sets which are not s-adaptable
for certain ranges of the parameter s. The point is that the notion of Hausdorff dimension is much
more subtle than the simple “size” estimate. However, many natural classes of sets are s-adaptable.
For example, homogeneous sets studied by Solymosi, Vu ([25]) and others are s adaptable for all
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0 < s < d. See also [16] where s adaptability of homogeneous sets is used to extract discrete
incidence theorems from Fourier type bounds.

Before we state the discrete result that follows from Theorem 1.1, let us briefly review what is

known. If P is set of n points in [0, 1]
2
, let u2,2(n) denote the number of times a fixed triangle can

arise among points of P . It is not hard to see that

(5.4) u2,2(n) = O(n
4
3 ).

This follows easily from the fact that a single distance cannot arise more than O(n
4
3 ) times,

which, in turn, follows from the celebrated Szemeredi-Trotter incidence theorem. See [1] and the
references contained therein. By the pigeon-hole principle, one can conclude that

(5.5) #T2(P ) &
n3

n
4
3

= n
5
3 .

However, it is not difficult to see that one can do quite a bit better as far as the lower bound
on #T2(P ) is concerned. It is shown in [1], page 263 that

#T2(P ) & n ·#{|x− y| : x, y ∈ P}.
A result due to Katz and Tardos, building on a previous breakthrough due to Solymosi and

Toth says that
#{|x− y| : x, y ∈ P} & n≈.86,

and it follows that

#T2(P ) & n≈1.86,

which is better than what we can deduce from Theorem 1.1. However, Theorem 1.1 does allow us
to obtain an upper bound on u2,2 for s-adaptable sets that is better than the one in 5.4. Before we
state the main result of this section, we need the following definition.

Definition 5.2. Let P be a subset of [0, 1]2 consisting of n points as before. Let δ > 0 and define

uδ2,2(n) = #{(x1, x2, x3) ∈ P × P × P : tij − δ ≤ |xi − xj | ≤ tij + δ},
where the dependence on t = {tij} is supressed.

Observe that obtaining an upper bound for uδ2,2(n) with arbitrary tij immediately implies the
same upper bound on u2,2(n) defined above. The main result of this section is the following.

Corollary 5.3. Let P ⊂ [0, 1]
2
be s-adaptable for s = 7

4 + a for every sufficiently small a > 0.
Then for every a > 0, there exists Ca > 0 such that

(5.6) un
−

4
7
−a

2,2 (n) ≤ Can
9
7
+a.

The proof is fairly immediately from Theorem 1.1. Let E denote the support of dµs
P , defined

as in (5.1) above. We know that if s > 7
4 , then

(5.7) µs
P × µs

P × µs
P {(x1, x2, x3) : tij ≤ |xi − xj | ≤ tij + ǫ} . ǫ3.

Taking ǫ = n− 1
s , we see that the left hand side is

≈ n−3 · un
−

1
s

2,2 (n)

and we conclude that

un
−

1
s

2,2 (n) . n3− 3
s ,
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which yields the desired result since s = 7
4 + a.

As we note above, this result is stronger than the previously known u2,2(n) . n
4
3 . However,

our result holds under an additional restriction that P is s-adaptable. We hope to address this
issue in a subsequent paper.
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