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Abstract. We specify a small set, consisting of O(d(log log d)2) points,
that intersects the basins under Newton’s method of all roots of all (suit-
ably normalized) complex polynomials of fixed degrees d, with arbitrar-
ily high probability. This set is an efficient and universal probabilistic
set of starting points to find all roots of polynomials of degree d using
Newton’s method; the best known deterministic set of starting points
consists of d1.1d(log d)2e points.

1. Introduction

Newton’s root-finding method is as old as analysis, but still not well un-
derstood, even in the fundamental case of finding all roots of a polynomial
in a single variable. Its local convergence properties are well known; near
simple roots convergence is quadratic and thus extremely rapid. However,
the global dynamical properties are insufficiently understood so that nu-
merical analysis algorithms often use different global methods, and resort to
Newton’s method for a final local “polishing” of the roots.

This article is a contribution towards a better understanding of the global
properties of Newton’s method, applied to polynomials in a single complex
variable. Even for polynomials over the reals, and even if all the roots are
real, it is often preferable to use complex methods; see Figure 1.

Among the difficulties with Newton’s method are the following:

• if an orbit under iteration comes close to a critical point of the poly-
nomial, the Newton map sends the orbit far away near ∞, so that
control of the dynamics is lost, and in any case a large number of
iterations are required until the orbit comes back to where the roots
are;
• there are polynomials with open sets of starting points that do not

converge to any root (Smale [S] asked, in 1984, for a classification of
such polynomials; an answer is being given by Mikulich in current
work);
• the boundary of the basins of convergence for the roots may have

positive planar Lebesgue measure (this follows from recent work by
Buff and Cheritat on the existence of Julia sets with positive measure
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Figure 1. Dynamical planes of Newton maps of two com-
plex polynomials. Different colors illustrate basins of at-
traction of different roots; shades of color illustrate different
speeds of convergence. It is clearly visible that all immedi-
ate basins are unbounded and have one or several channels
to ∞ of different widths. Left: a polynomial of degree 7.
Right: a polynomial of degree 11 with all roots real. Some
of the roots are very close to each other, but away from the
disk containing all the roots, the basins and their channels
all have almost uniform width, so that finding the real roots
using complex methods is much easier.

[BC], combined with Douady and Hubbard’s renormalization theory
[DH]);
• even if almost every point in C converges to some root under the

Newton iteration, our goal is to find all roots of the polynomial,
and with bounded complexity. Finding some roots and deflating
is usually not an option, because inflation is in general numerically
unstable (unless the roots are found in a specific order), and because
deflation might not be compatible with the way the polynomial may
be specified, or evaluated efficiently (for instance, if the polynomial
itself is given by an efficient iteration procedure).

See [Rü] for a recent survey of known results on Newton’s method.
Our goal is to turn Newton’s method into an efficient algorithm. This

goal raises the following questions:

• select a finite number of good starting points that are guaranteed to
intersect the basins of all roots;
• specify a condition when to stop iterating any of these starting

points, because the orbit is either sufficiently close to a root, or
the orbit is discarded in favor of some other starting points;
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• give a good bound on the complexity of Newton’s method to find all
roots of the polynomial with prescribed precision.

This article is concerned with the first of these questions. The other tasks
are addressed in [Sch1, Sch2]: for instance, roughly speaking, for “most”
polynomials p of degree d, properly normalized, our universal set Sd contains
d points that converge to the d different roots of p so that the total number
of Newton iterations, for all d roots combined, to achieve an accuracy of ε is
at most O(d3 log3 d) + d log | log ε| (or possibly O(d2 log4 d + d log | log ε|) ).
This makes it possible to turn Newton’s method from a heuristics into an
efficient algorithm.

To state our main result, let Pd be the space of polynomials of degree d,
normalized so that all roots are contained in the complex unit disk D.

Theorem 1 (Small Probabilistic Universal Set of Starting Points).
For every degree d ≥ 3, there is an explicit universal probabilistic set Sd
consisting of O(d(log log d)2) starting points so that for every polynomial
p ∈ Pd, the probability is greater than 1/2 that the immediate basin of each
root of p contains at least one point in Sd.

Remark 1. The meaning of an “explicit and universal” probabilistic set is as
follows: we give an explicit probability distribution of starting points that
depends only on d so that for any p ∈ Pd, with probability at least 1/2 all
immediate basins contain at least one point in this set. Of course, enlarging
this set by a factor of n will increase the probability to at least 1− 2−n.

This result is in a similar spirit as [HSS], where a similar explicit universal
set of starting points is constructed. It consists of d1.1d(log d)2e points and
is deterministic. Our new set is significantly smaller than the deterministic
set, much closer to the “ideal lower bound” of d points, but we can do so only
using a probabilistic set. We believe that there is no deterministic explicit
and universal set of starting points with o(d log d) points.

Our set Sd is constructed as follows: firstly, we define a define a “funda-
mental annulus” V := {z ∈ C : R

√
1− 1/d < z < R} for some R > 1 +

√
2,

and choose a “deterministic set” of approximately (16/π)d(log log d)2 points
that are distributed on m = d(2/π) log log de circles. These circles have

radii Rk = R(1 − 1/d)(k−1/2)/2m for k = 0, 1, , . . . ,m − 1, and each circle
contains d4πdd(2/π) log log dee points at equal distances. This construction
is in principle the same as in [HSS]. Secondly, we choose a “probabilistic
set” of d(300/π)d log log de points randomly inside the annulus AR = {z ∈
C : R(d− 1)/d− 1/d < |z| < R} for some R ≥ 11. These deterministic and
probabilistic sets of points will respectively find “thick” and “thin” roots,
as defined below.

Historical Remark. This research has its origins at the 50-th anniversary
celebration of the International Mathematical Olympiad (IMO) held in 2009
in Bremen, Germany. One chief goal of this celebration was to bring together
olympiad mathematics and research mathematics, and people involved in
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both. This paper was authored by one research mathematician who in his
youth was one of the first contestants ever at IMOs and in 2009 was a guest
of honor at the 50-th IMO, together with one contestant at the 50-th IMO,
and one research mathematician who was among the senior organizers of
that IMO and its anniversary. This work is thus very much in the spirit
of the IMO anniversary, and we are grateful to this anniversary celebration
that has brought us together.

We gratefully acknowledge support through the European Research and
Training network CODY, the ESF programme HCAA, as well as the German
Research Council DFG.

2. Channels and Their Moduli

Consider a complex polynomial p(z) = c
∏d
j=1(z − αj) and let Np(z) =

z − p(z)/p′(z) be the associated Newton map. This is a rational map of
degree d if all roots of p are distinct, and of lower degree otherwise. Without
changing the Newton map, we may suppose that c = 1, and after rescaling,
we may suppose that all αj ∈ D.

For any root α of p, let Uα be the immediate basin of α: the basin is the
set of all z ∈ C that converge to α under iteration of Np, and the immediate
basin is the connected component containing α. It is known that each Uα
is simply connected [Pr] and that the restriction of Np to Uα sends Uα to
itself as a proper map of some degree k + 1 ∈ {2, 3, . . . , d}. We will use the
construction and some results from [HSS]. If ϕ : Uα → D is a Riemann map
with ϕ(α) = 0, then f := ϕ ◦Np ◦ ϕ−1 is a proper holomorphic self-map of
D of degree k+1 and thus extends, by Schwarz reflection, to a rational map
of degree k + 1, and the restriction of f to ∂D is a covering of ∂D, also of
degree k+ 1. In particular, the restriction of f to ∂D has k ≥ 1 fixed points
q1, . . . , qk. Set λi := f ′(qi), for i = 1, 2, . . . , k.

The holomorphic fixed point formula (which essentially is the residue
theorem for 1/(z − f(z)); see [M]) implies that

(1)
k∑
i=1

1

λi − 1
≥ 1

(with equality if the root α is simple). Each of these k fixed points gives rise
to a channel to ∞ in the immediate basin Uα: for our purposes, a channel
is an unbounded component Bi of Uα \ D. Near∞, each channel is mapped
by Np conformally to itself, and it defines an access to ∞ within Uα that
is fixed by Np. The quotient of Bi by the dynamics of Np is a conformal
annulus with modulus µi = π/ log λi.

Choose some positive real number M < π/ log 4 ≈ 2.266 that will be
specified later (we will eventually use M = π/ log log d for large d).

We call a root α thick if it has a channel with modulus µi ≥M , and thin
if there is no such channel. We will treat these two cases separately.
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• We will explicitly (and thus deterministically) construct a set of
d4πdd2/Me2e points that is guaranteed to intersect each channel of
a root with modulus greater than M . This set will thus suffice to
“find” all thick roots.
• The advantage of thin roots is that even though the individual chan-

nels have small moduli, the total area of these channels within any
fundamental domain of the Newton dynamics is greater than in the
thick case: each channel has little area, but there are more channels
in this case. We show that if d300 d log d/Meπ/Me points are dis-
tributed randomly in a certain fundamental annulus of the Newton
dynamics, then the probability that any immediate basin Uαi con-
tains one of these points is at least 1 − 1/2d, and the probability
that the immediate basins of all thin roots contain such a point is
at least 1/2 because there are no more than d thin roots.

Remark 2. If α is a thin root, then all µi < M , hence all λi−1 = eπ/µi−1 >
eπ/M − 1, so by (1), the number k of channels of a thin root is strictly

greater than eπ/M − 1. But the mapping degree of Uα equals k + 1, so Uα
must contain k > eπ/M − 1 of the at most 2d− 2 critical points of Np, and

thus the number of thin roots is at most (2d − 2)/(eπ/M − 1). In the end,
we will use M = π/ log log d, so the number of thin roots will be at most
(2d− 2)/(log d− 1): most roots will be thick.

If there are thin roots, then we can estimate

(2) eπ/M < k + 1 ≤ d ;

in particular, there are no thin roots at all if M ≤ π/ log d.

A conformal quadrilateral is a Riemann domain Q ⊂ C with two distin-
guished connected and disjoint subsets of the boundary. In our setting, the
boundary of Q may not be a topological curve, but the two distinguished
boundary subsets will be; we will call them distinguished boundary arcs.
Then there is a unique h > 0 so that the domain Qh := {z ∈ C : 0 < Im z <
1, 0 < Re z < h} has a Riemann map ϕ : Q → Qh that maps the two dis-
tinguished boundary arcs onto the two horizontal sides of Qh (the Riemann
map may not extend continuously to the boundary of Q, but it does so near
the two distinguished boundary arcs; the general framework of extremal
length using curve families works even if the boundaries are not curves).
The value h is defined as the conformal modulus of the quadrilateral Q with
respect to the two boundary subsets, and denoted mod(Q); it is invariant
for Riemann maps that respect the distinguished boundary subsets [A].

Identifying the two distinguished boundary arcs, we obtain a complex
annulus (a doubly connected Riemann surface) with modulus mod(Q) or
less (the exact modulus depends on how the boundaries are identified).
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Figure 2. Left: the dynamics of Newton’s method for some
complex polynomial. Highlighted is the immediate basin of
attraction of one root, with fundamental domains within the
channels shaded. Also shown is the circle at radius R and
its image, which is a topological (but not geometric) circle.
Right: the complex unit disk D provides a conformal model
for the Newton dynamics of the immediate basin. (Picture
taken from [HSS].)

3. Hitting thick roots

In this section, we will construct an explicit and deterministic set of start-
ing points that is guaranteed to intersect the basins of all thick roots. Our
arguments are essentially the same as in [HSS, Section 5], except that we no
longer need to find all roots, but only the thick ones.

If R > (d + 1)/(d − 1) and CR is the circle of radius R centered at the
origin, then Np maps CR homeomorphically onto some topological circle
around D, and there is some κ > 0 so that the round annulus VR,κ,d =
{z ∈ C : R((d− 1)/d)κ < |z| < R} is contained in the topological annulus
between CR and Np(CR); specifically, if R ≥ 1 +

√
2, then κ ≥ 1/2 for all d.

If R tends to ∞, then κ tends to 1. All this is [HSS, Lemmas 4 and 12]; see
also Figure 2.

We will use the round annulus V = VR,κ,d with R ≥ 1 +
√

2 and κ = 1/2
(if we use larger values of R, then we can take larger values of κ, and our
bounds will eventually be slightly better; however, in practice these starting
points would be further away from the roots, and the iteration would take
longer).

Remark 3. The modulus of V is | log((d− 1)/d)|/4π > 1/4πd.
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Consider some channel Bi. We want to define Qi as “the part of the
channel Bi within V ”. If each of the two boundary circles of V intersects
Bi in a single connected arc, we set Qi := Bi ∩ V . However, if Bi \ V
has more than two connected components, we need to be more careful.
Consider the intersection of Bi with CR, the outer boundary of V . Let γ
be any connected component in this intersection. It separates Uα into two
components, one of which contains the root α; then γ will be called an
essential boundary arc of Bi∩CR if the component of Uα \γ not containing
α is unbounded: this means that γ separates the unbounded part of the
channel Bi from the root. At least one component of Bi ∩ CR is essential;
choose one such essential component γ, let γ′ := Np(γ), and let Q′i be the
subset of Uα that is bounded by γ and γ′ (if Bi intersects CR and equivalently
Np(CR) in only one component, then Q′i is the part of Bi between CR and
Np(CR); in general, the difference may consist of some number of bounded
components). Then Q′i is a fundamental domain of Bi by the dynamics;
when viewed as a quadrilateral with distinguished boundary arcs γ and γ′,
then mod(Q′i) ≥ mod(Bi) = µi (Q′i is a quadrilateral, the modulus of Bi is
defined using the quotient annulus of Bi by the dynamics).

Now let CR′ be the inner boundary circle of V and consider all essential
arcs of intersection of Bi ∩ CR′ . If there is only one, then let γ′′ be this
essential arc. If there are several, then they are totally ordered (because
they all separate α in Uα from the unbounded component of Bi \V ). Let γ′′

be the outermost component that separates α from γ (i.e., the one closest
to γ), and let Qi be the component of Bi \ (γ ∪ γ′′) that is bounded by γ
and γ′′. This is a conformal quadrilateral with Qi ⊂ Q′i, and with γ and γ′′

as distinguished boundary arcs, and we have mod(Qi) ≥ mod(Q′i) ≥ µi.
Our task will be to distribute sufficiently many points into V so that we

hit quadrilaterals Qi ⊂ V with moduli bounded below.

Lemma 2. Let S = {z ∈ C : − 1/2 < Re z < 1/2} and let Q ⊂ C be a
quadrilateral whose two distinguished boundary arcs are on the two vertical
sides of S, one on each. Suppose that Q is disjoint from the set iZ. Then
the modulus of Q is at most 2.

Proof. This is an easy extremal length exercise [A]. There is an integer
n ∈ Z so that any curve in Q connecting the two distinguished boundary
arcs must intersect the segment [ni, (n + 1)i]. Without loss of generality,
suppose that n = 0.

Let B := {z ∈ S : − 1/2 < Im z < 3/2} and let ρ be the characteris-
tic function of B. Then for any curve γ ⊂ Q connecting the two distin-
guished boundary arcs, its intersection with B has length at least 1. Since∫
C ρ

2 dx dy = 2, it follows that mod(Q) ≤ 2. �

Remark 4. The bound of 2 is not sharp. It is not hard to calculate the exact
bound [A], but we are not optimizing constant factors here.
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VCR

C ′R

Np(CR)

Bi
γ

γ′

Figure 3. The annulus V (hatched). Its outer boundary
circle is CR; the image Np(Cr) is a topological circle within
the bounded complementary component of V . Also shown is
a channel Bi; it intersects CR in four arcs, three of which are
essential. Shaded is the quadrilateral Q′i which is bounded
by two essential arcs, one on CR and one on Np(CR); it is
a fundamental domain of Bi modulo Np. The quadrilateral
Qi ⊂ Q′i is shaded darker: it is bounded by two essential arcs
on ∂V , but may not be contained in V .

Lemma 3. If V is subdivided into at least 2/M concentric and conformally
equivalent subannuli, and at least 4πdd2/Me points are distributed onto the
core circles of all subannuli, so that the points on all circles are equidis-
tributed, then each quadrilateral Qi with modulus at least M contains at
least one of these points.

Proof. Let m := d2/Me and subdivide V into m concentric and conformally
equivalent subannuli V1, . . . , Vm, ordered by decreasing radii (so that Vk =

{z ∈ V : Rβk < |z| < Rβk−1} for β = (1− 1/d)1/2m) . Write Q for Qi; this
is a quadrilateral for which the two distinguished boundary arcs are on ∂V ,
one on each boundary component of V .

Subdivide Q into quadrilaterals Q′1, . . . , Q
′
m as follows, similarly as above.

The common boundary circle of Vj and Vj+1 may intersect Q in several
arcs; such an arc is essential if it separates the root α from the unbounded
component of Bi \ V . Use an essential arc to separate Q′j from Q′j+1, for

j = 1, 2, . . . ,m−1. (In the special case that Bi∩∂Vj only has two connected
components, then simply Q′j = Bi ∩ Vj .)

By the Grötzsch inequality, one of the quadrilaterals Qj has modulus
mod(Q′j) ≥ m · mod(Q) ≥ d2/MeM ≥ 2. Supposing for now that 0 6∈ Qj
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log

Figure 4. The annulus V is subdivided into M = 3 concen-
tric subannuli, all of equal moduli. The logarithm unfolds
these annuli to vertical strips (moved apart to show them
separately). Highlighted is the intersection of one channel
with V . Notice that the channel might intersect any circle
centered at 0 more than once, but only one arc of intersection
is “essential”. The quadrilateral in the channel correspond-
ing to the middle subannulus is shown in a darker shade:
notice that it intersects the other subannuli as well.

and taking logarithms, the annulus Vj becomes an infinite vertical strip of
width | log((d − 1)/d)|/2m > 1/2md, and Qj becomes a quadrilateral that
connects the two boundary sides of the strip; see Figure 4.

By Lemma 2, appropriately rescaled, each annulus of modulus 2 intersects
the central vertical line within this strip in a straight line segment of length at
least 1/2md. Therefore, placing an infinite sequence of points on any vertical
line within the strip so that adjacent points have distance less than 1/2md,
one can be sure that at least one of these points intersects the annulus. The
exponential map projects the strip back onto Vj as a universal cover and has
period 2πi, so the required number of points on Vj is 4πmd = 4πdd2/Me.

If Qj happens to contain the point z = 0, then one cannot take the log of
Qj ; but one can take the log of Qj ∩ Vj and transport the function ρ in the
proof of Lemma 2 into Qj ∩ Vj . This suffices for the conclusion to remain
valid. �

Corollary 4 (Deterministic Starting Points for Thick Roots).
For every d there is an an explicit set consisting of d4πdd2/Meed2/Me ≈
16πd/M2 points in V so that for each p ∈ Pd and each thick root of p, at
least one point in Pd is contained in the immediate basin of this root.

Proof. Using the construction described in Lemma 3, we have m = d2/Me
circles, and each circle contains d4πdd2/Mee points. Hence the total number
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of required points is as claimed. These points intersect each quadrilateral
Qi and thus the immediate basin of each thick root. �

4. Hitting Thin Roots

Our goal in this case is to find a good lower bound for the area of the
union of all channels of any root, guaranteeing us that we will hit one of
the channels with high probability if we distribute sufficiently many points
randomly on a specified annulus. The area of intersection of a channel with
modulus µi with an annulus will be bounded below by some multiple of µi,
so the total area of intersection of an immediate basin with the annulus will
be proportional to

∑
µi, summed over all channels of the root. We thus

start with a lower bound for
∑k

i=1 µi.

Set ai = 1
λi−1 , so that

∑k
i=1 ai ≥ 1. We have

µi =
π

log λi
=

π

log(1 + 1
ai

)
.

Since µi < M for all i, we get that ai < 1/(eπ/M − 1) for all i.
We want to find a lower bound for

k∑
i=1

µi =
k∑
i=1

π

log(1 + 1/ai)

subject to the conditions
∑k

i=1 ai ≥ 1 and ai < 1/(eπ/M − 1).

Lemma 5. The function f : R+ → R+, f(x) = π/ log(1 + 1/x) is strictly
monotonically increasing and concave (i.e., its graph is above the line seg-
ment through any two points on it).

Proof. It suffices to prove that f ′ is positive and monotonically decreasing.
This is a straightforward exercise. �

Lemma 6. If µi < M for all i ∈ {1, . . . k}, then
∑k

i=1 µi >
1
2Meπ/M .

Proof. Without loss of generality, assume that a1 ≥ a2 ≥ . . . ≥ ak, and that∑
ai = 1. We now consider the sequence (b1, . . . bk) defined by

bi =


1

eπ/M−1
if i ≤ beπ/M − 1c

1− be
π/M−1c
eπ/M−1

if i = beπ/M − 1c+ 1

0 if i > beπ/M − 1c+ 1 .

Then we also have
∑
bi = 1, and since all ai <

1
eπ/M−1

, it follows that the

sequence (b1, b2, . . . bk) majorizes the sequence (a1, a2, . . . ak), in the sense
that

m∑
i=1

bi ≥
m∑
i=1

ai
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for all m ∈ {1, 2, . . . , k}, with equality for m = k. Since the function f is
concave by Lemma 5, we get from Karamata’s inequality (see [HLP, Thm.
108]) that

∑
f(ai) ≥

∑
f(bi) and thus

k∑
i=1

f(ai) ≥
beπ/M−1c∑

i=1

f(bi) = beπ/M − 1c · f
(

1

eπ/M − 1

)
>
(
eπ/M − 2

)
M.

Since M < π
log 4 , we have eπ/M > 4 and thus

k∑
i=1

µi =
k∑
i=1

f(ai) > M(eπ/M − 2) >
1

2
Meπ/M

as claimed. �

Let ψ : (C \ D)→ C be a linearizing map near ∞ of Np, i.e., ψ(Np(z)) =
ψ(z)(d−1)/d with ψ(∞) =∞, and normalize so that ψ(z)/z → 1 as z →∞.
Let

WR := {w ∈ C : R(d− 1)/d < |w| < R}

be a fundamental domain in linearizing coordinates.

Lemma 7. For any channel Bi, we have

|ψ(Bi) ∩WR| ≥ mod(Bi)R
2/d2 .

Proof. This is another elementary exercise using extremal length: fix a chan-
nel Bi and let B := ψ(Bi) ∩WR. By conformal invariance, the modulus of
Bi equals the modulus of B where the boundaries are identified by multi-
plication by (d− 1)/d, and this is

(modBi)
−1 = (modB)−1 = sup

ρ
inf
γ

`2(γ)

‖ρ2‖B
,

where ρ : B → R+ are measurable functions, γ : [0, 1]→ B are smooth curves

with γ(1) = γ(0)(d− 1)/d, and `(γ) =
∫ 1

0 ρ(γ(t)) |γ′(t)| dt.
We simply set ρ ≡ 1|B (the characteristic function of B). If A denotes the

Euclidean area of B, then ‖ρ2‖B = A. The two boundary circles of WR have
radii R and R(d− 1)/d, so `(γ) ≥ R/d. Therefore, 1/modB ≥ R2/d2A or
A ≥ mod(B)R2/d2 = mod(Bi)R

2/d2. �

Lemma 8. For R ≥ 5, the intersection of the annulus

AR = {z ∈ C : R(d− 1)/d− 1/d < |z| < R}

with a channel of modulus µ has area at least

µ

d2
· (R− 1)2(R− 3)2

4(R+ 1)2
.
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Proof. Consider the circle CR := {z ∈ C : |z| = R}, and the image C ′R :=
Np(CR). Then C ′R is another topological circle with absolute values between
R(d− 1)/d− 1/d = R− (R+ 1)/d ≥ (R− 1)/2 ≥ 2 and R(d− 1)/d+ 1/d =
R − (R − 1)/d < R. Let ZR be the annulus bounded by CR and C ′R; it is
a fundamental domain for the Newton dynamics, and we have ZR ⊂ AR.
Consider a channel B and set BR := B ∩ ZR; this is a fundamental domain
of the channel, but not necessarily connected.

Consider again the linearizing function ψ : C \ D→ C of Np, normalized
as ψ(∞) =∞ and ψ(z)/z → 1 as z →∞. The Koebe distortion theorem in
this normalization yields

|z| − 1

|z|(|z|+ 1)
≤
∣∣∣∣ψ′(z)ψ(z)

∣∣∣∣ ≤ |z|+ 1

|z|(|z| − 1)
.

Define the sets

Bn :=

{
z ∈ BR : R

(
d

d− 1

)n−1

< |ψ(z)| < R

(
d

d− 1

)n}
for n ∈ Z. Each area element in Bn is mapped into WR by the map z 7→
ψ(z)((d− 1)/d)n with derivative

|ψ′(z)|
(
d− 1

d

)n
< R
|ψ′(z)|
|ψ(z)|

<
R

|z|
· |z|+ 1

|z| − 1
<

2R

R− 1
· R+ 1

(R− 3)
,

where we used the Koebe theorem in the second inequality and then |z| ≥
(R− 1)/2. This yields a diffeomorphism from BR to ψ(B)∩WR, except for
discontinuities at the finitely many boundary arcs of the Bn.

The set ψ(B) intersects WR in a set of area R2 mod(B)/d2 by Lemma 7,
and areas in Bn are distorted by a factor of no more than the square of the
derivative. This implies that

|BR| >
(R− 1)2(R− 3)2

4d2(R+ 1)2
mod(B)

as claimed. �

Lemma 9. Let R ≥ 5 and consider the annulus AR defined as in Lemma 8.
If ⌈

32πd log d

Meπ/M
· R(R+ 1)3

(R− 1)2(R− 3)2

⌉
points are randomly and independently distributed in AR, then for any poly-
nomial p ∈ Pd, each M -thin root has at least one of these points in its
immediate basin with probability 1/2.

Proof. The area of all channels within AR of any fixed thin root is at least(
(R− 1)2(R− 3)2/4d2(R+ 1)2

)∑
µi by Lemma 8, and

∑
µi >

1
2Meπ/M

by Lemma 6. A simple calculation shows that the area of AR is less than
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2πR(R + 1)/d. Therefore, the probability that a point chosen randomly in
AR will lie in one of the channels of this root is at least

p =
Meπ/M

16πd
· (R− 1)2(R− 3)2

R(R+ 1)3
.

Now, suppose that we distribute some (large) number K of points on the
annulus AR, randomly and independently. Then the probability that we
do not hit one of the channels of some fixed thin root will be at most
(1 − p)K . Since there are at most d thin roots, the probability that there
is some thin root the channels of which are not hit is at most d(1 − p)K .
We need to make K large enough so that d (1 − p)K < 1

2 , hence we need
K > log(1/2d)/ log(1− p).

Since log(1− p) < −p and log(1/2d) > log(1/d2) = −2 log d, we have

log
(

1
2d

)
log(1− p)

<
log 1

d2

−p
=

2 log d

p
=

32πd log d

Meπ/M
· R(R+ 1)3

(R− 1)2(R− 3)2
,

so it suffices to distribute this number of points within the annulus at random
so that, with probability at least 1/2, at least one channel of each thin root
is hit. �

Remark 5. Increasing the radius R will decrease the necessary number of
points to asymptotically 32πd log d/Meπ/M for large R. The disadvantage
is that the required number of iterations will be very large until the roots
are reached.

5. Conclusion

Proof of Theorem 1. We have to distribute 16πd/M2 points within the an-
nulus V by the algorithm described in Section 3 to be sure that all thick
roots are found. To hit the thin roots, we consider the annulus AR de-
fined as in Lemma 8, where we choose R = 11 (see Remark 5) so that
R(R + 1)3/(R − 1)2(R − 3)2 = 2.97; we thus have to randomly distribute

32 · 2.97πd log d/Meπ/M < 300d log d/Meπ/M points inside the annulus AR
to get all the thin roots with probability at least 1/2 (in both statements,
we ignored the condition that we need to round up certain numbers).

This gives us a total of

P (M) =
16πd

M2
+

300d log d

Meπ/M

points to be chosen to hit the channels of all roots with probability at least
1/2. In particular, setting M = π/ log log d, it suffices to use at least

P

(
π

log log d

)
=

16d

π
(log log d)2 +

300

π
d log log d = O(d (log log d)2)

points. �
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Remark 6. Strictly speaking, this proof only works for d > e4 ≈ 54 as
we claimed in the beginning that M < π/ log 4 and finally chose M =
π/ log log d. However, we only need this to simplify some term in the proof
of Lemma 6; for 2 ≤ log d < 4, by being a little bit more careful in the
proof of Lemma 6 one can even get slightly better constants, whereas for
1 ≤ log d ≤ 2 one has to choose another value for M to get the same final
upper bound.

Remark 7. Of course, the probability 1
2 can be replaced by any probability p

with 0 < p < 1 if we carry out the algorithm for thin roots described above
log(1−p)
log 1/2 times independently. This will not even change the leading order

of the complexity of the whole algorithm as the thin roots only account for
a relatively small part of the points needed (a factor log log d less than the
thick roots).

Remark 8. At several places, we preferred the easy argument over optimal
numerical values, as far as a constant factors were concerned. If one were
to optimize these factors, it would involve the following places.

The thick roots have the higher complexity, so asymptotically it is most
important to optimize constants here. In Lemma 2, the modulus of a quadri-
lateral is estimated only roughly using a simple argument. The precise value
of this quadrilateral can be determined using elliptic integrals; this has been
done in [HSS] in an analogous situation. One could then optimize the num-
ber of circles and the number of points on them: taking more (or fewer)
circles would allow us to use fewer (more) points on each of them, and there
is an optimal value of circles that minimizes the total number of points.

For thin roots, we used the estimate eπ/M − 2 > eπ/M/2 at the end of
the proof of Lemma 6, and for large d this loses a factor of 2. Moreover,
at the end of the proof of Lemma 9 we lost another asymptotic factor 2 by
estimating log(2d) < 2 log d. Finally, there is a certain loss in the estimation
of probabilities of hitting the d different basins; these probabilities are not
quite additive as estimated. Our estimates in the thin case are thus roughly
a factor 4 away from being optimal.

Remark 9. Since the complexities of the deterministic and the probabilistic
parts are different, it is tempting to reduce the total complexity by choosing
a value of M different from π/ log log d so that both partial complexities
become closer to each other. Slight improvements are indeed possible that
way, but the gain seems to be minimal. For example, one has

P

(
π

(log log d)1−1/(1+log log d)

)
= O

(
d (log log d)2−2/(1+log log d)

)
.

In this case, the deterministic term is still much bigger than the probabilis-
tic one. Such calculations seem to become much more complicated with
relatively little gain.
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Moreover, we have not used the condition
∑

αi
ki ≤ 2d − 2 coming from

the total number of “free” critical points. We believe that the effect of
incorporating this condition will be marginal.
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