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THE PERIODIC CAUCHY PROBLEM FOR NOVIKOV’S

EQUATION

FERIDE TIĞLAY

Abstract. We study the periodic Cauchy problem for an integrable

equation with cubic nonlinearities introduced by V. Novikov. We show

the local well-posedness of the problem in Sobolev spaces and existence

and uniqueness of solutions for all time using orbit invariants. Further-

more we prove a Cauchy-Kowalevski type theorem for this equation,

that establishes the existence and uniqueness of real analytic solutions.

1. Introduction

Recently the integrable equation with cubic nonlinearities

(1) ut − uxxt + 4u2ux − 3uuxuxx − u2uxxx = 0

derived by V. Novikov in [17] has attracted some attention in the litterature
[10, 11]. We study the periodic Cauchy problem for this equation for Sobolev
class and real analytic data. We prove local (in time) well-posedness in
Sobolev spaces and existence and uniqueness of Sobolev class solutions for
all time provided that the initial data of the same class satisfies a sign
condition. Furthermore we prove a Cauchy-Kowalevski type theorem for
this equation using a contraction argument on a decreasing scale of Banach
spaces.

Note that one can write Novikov’s equation (1) in the form

(2) mt +mxu
2 + 3muux = 0 where m = u− uxx.

Like the Camassa-Holm and Degasperis-Procesi equations, Novikov’s equa-
tion (1) has Lax pair representations and admits peakon solutions, but it has
nonlinear terms that are cubic, rather than quadratic. A Lax representation
for this equation is introduced by Novikov in [17] in the form

ψxxx = ψx + λm2ψ + 2
mx

m
ψxx +

mmxx − 2m2
x

m2
ψx,

ψt =
u

λm
ψxx −

mux + umx

m2
ψx − u2ψx.

Another representation of this equation as a matrix Lax pair is given
in [11] and is shown to be related to a negative flow in the Sawada-Kotera
hierarchy. In the same article a bi-Hamiltonian structure is provided without
proof in the form mt = B1(δH1/δm) = B2(δH2/δm) where the operators are
B1 = −2(3m∂x+2mx)(4∂x−∂

3
x)−1(3m∂x+mx) and B2 = (1−∂2x) 1

m∂x
1
m (1−

1
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∂2x) and the Hamiltonians are H1 = 1
3

∫

(m−8/3m2
x + 9m−2/3)dx and H2 =

1
8

∫

(u4 + 2u2u2x −
1
3u

4
x)dx.

Another interesting property of Novikov’s equation (1) that is common
with Camassa-Holm and Degasperis-Procesi equations is that it has non-
smooth soliton solutions with multiple peaks (multipeakons). Multipeakons
for (1) are explicitly computed in [10] using scattering theory.

In section 2 we prove local well-posedness (existence, uniqueness and con-
tinuous dependence on initial data for a short time), persistence of solutions
and global existence and uniqueness of solutions for the periodic Cauchy
problem for Novikov’s equation. In order to prove local well-posedness we
use a method that can be traced back to the work of D.G. Ebin and J. Mars-
den [7]. Following the elegant geometric framework given by V. Arnold in [2],
they develop in [7] the analytic tools and prove sharp local well-posedness
results in Sobolev and Hölder spaces for the Dirichlet problem for Euler
equations of ideal hydrodynamics. This method has also been implemented
to prove local well-posedness of the periodic Cauchy problems for nonlinear
evolution equations such as Camassa-Holm and Hunter-Saxton equations
(see [8], [14] and [21]). Here we use this method for Novikov’s equation (1)
and prove a local well-posedness theorem in Sobolev spaces.

Our global existence and uniqueness theorem 3 uses orbit invariants to
establish that the solutions persist for all time if a sign condition holds. We
refer to [6] for a similar result for Camassa-Holm equation on the real line.
A detailed discussion of these orbit invariants is given in [22].

In section 3 we prove the analytic regularity (i.e., existence and uniqueness
of analytic solutions for analytic initial data) of the Cauchy problem for
Novikov’s equation. It is well known that the solutions to the Hunter-Saxton
and Camassa-Holm equations are analytic in both space and time variables
for a short time (see [21] and [9] respectively). In contrast the solutions of
the Korteweg-De Vries equation are analytic in the space variable for all time
[24] but are not analytic in the time variable [12]. Theorem 4 establishes that
solutions of the Novikov’s equation, like Hunter-Saxton and Camassa-Holm
equations, are analytic in both space and time variables.

Our approach in proving theorem 4 is to use a contraction argument on an
appropriate scale of Banach spaces. The general framework for this existence
theorem has been developed as an abstract Cauchy-Kowalevski theorem by
L.V. Ovsjannikov [18, 19], F. Treves [23], L. Nirenberg [15], T. Nishida [16]
and M.S. Baouendi and C. Goulaouic [5] among others and subsequently
applied to the Euler and Navier-Stokes equations.

2. Local well-posedness and existence of global solutions

We formulate the periodic Cauchy problem for (1) as follows using the
inverse Λ−2 of the elliptic operator Λ2 = 1 − ∂2x:

ut + u2ux = −Λ−2
(

3u2ux + 2u3x + 3uuxuxx
)

, x ∈ T = R/Z, t ∈ R,(3)

u(0, x) = u0(x).(4)
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In our estimates we use some properties of Sobolev class functions. We
summarize them here for the convenience of the reader. Note that all bounds
are up to a constant that may depend on Hs norms of the Sobolev class
diffeomorphisms η and η−1.

Let s > 3/2. We denote the space of circle diffeomorphisms of Sobolev
class Hs by Diffs(S1). If u ∈ Hs then the composition map η 7→ u ◦ η
from Diffs to Hs and the inversion map η 7→ η−1 on Diffs are continuous.
Furthermore, for any η ∈ Diffs(S1), 1

(5) ‖u ◦ η‖Hs . (1 + ‖η‖sHs)‖u‖Hs .

Another tool we use is a commutator estimate from [13]. For s > 0 and

Λs = (1 − ∂2x)s/2, if u, v ∈ Hs(T) then

(6) ‖[Λs, u]v‖L2 . ‖∂xu‖∞‖Λs−1v‖L2 + ‖Λsu‖L2‖v‖∞.

Theorem 1 (Local well-posedness). For s > 5/2 and u0 ∈ Hs(T) there is
a T > 0 and a unique solution

u ∈ C((0, T ),Hs(T)) ∩ C1((0, T ),Hs−1(T))

to the problem (3)-(4) that depends continuously on initial data.

Our strategy will be to reformulate (3)-(4) as an initial value problem on
the space of circle diffeomorphisms Diffs(S1) of Sobolev class Hs. It is well
known that whenever s > 3/2 this space is a smooth Hilbert manifold and
a topological group. We will then show that the reformulated problem can
be solved on Diffs(S1) by standard ODE techniques.

It is convenient to introduce the notation Aξ = Rξ ◦ A ◦ Rξ−1 for the

conjugation of an operator A on Hs(S1) by a diffeomorphism ξ ∈ Diffs(S1),
for instance ∂xξ

f means (∂x(f ◦ ξ−1)) ◦ ξ.
Let u = u(t, x) be a solution of (3) with initial data u0. Then the flow

t→ ξ(t, x) associated to u2, i.e. the solution of the initial value problem2

η̇(t, x) = u2(t, η(t, x)), η(0, x) = x

is (at least for a short time) a smooth curve in the space of diffeomorphisms
starting from the identity id ∈ Diffs(S1). On the other hand a solution (η, ζ)
of the initial value problem

η̇ = ζ2,(7)

ζ̇ = −Λ−2
η

{

3ζ2∂xηζ + 2(∂xηζ)3 + 3ζ∂xηζ∂
2
xη
ζ
}

= F (η, ζ),(8)

η(0, x) = x, ζ(0, x) = u0(x)(9)

determines a solution u(t, x) = ζ(t, η−1(t, x)) of the problem (3)-(4).
In the proof of theorem 1 we make repeated use of the estimates in (5),

(6) and Sobolev embedding theorems.

1From this point on, . denotes an inequality up to a constant that depends only on

‖η‖Hs and ‖η−1‖Hs .
2Here “dot” indicates differentiation in t variable.
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Proof of Theorem 1Note that it suffices to prove that the map (η, ζ) →
F (η, ζ) is Fréchet differentiable. We show that F (η, ζ) maps Diffs(S1) ×
Hs(T) into Hs(T) and that its directional derivatives ∂ηF(η,ζ) and ∂ζF(η,ζ)

define bounded linear maps that are continuous in both η and ζ. Then
Fréchet differentiability of (η, ζ) → F (η, ζ) follows.

Our first estimate establishes the boundedness of the map (η, ζ) → F (η, ζ):
We use the ring property of Sobolev spaces with the estimate (5) to obtain

‖F‖Hs . ‖(ζ ◦ η−1)2∂x(ζ ◦ η−1)‖Hs−2 + ‖(∂x(ζ ◦ η−1))3‖Hs−2(10)

+‖(ζ ◦ η−1)∂x(ζ ◦ η−1)∂2x(ζ ◦ η−1)‖Hs−2(11)

. ‖ζ ◦ η−1‖2∞‖ζ ◦ η−1‖Hs−1 + ‖ζ ◦ η−1‖2Hs−1‖ζ ◦ η
−1‖C1(12)

+‖ζ ◦ η−1‖∞‖ζ ◦ η−1‖C1‖∂2x(ζ ◦ η−1)‖Hs−2 .(13)

Then the same tools imply

‖F‖Hs ≤ Cη‖ζ‖Hs

where Cη depends only on the Hs norms of η and η−1.
Directional derivatives. The derivative of F in the direction of ζ is

(14) ∂ζF(η,ζ)(X) = −Λ−2
η

{

6∂xηζ∂xη(Xζ)+3ζ∂xη(ζ∂xηX)+3∂xη(Xζ)∂2xη
ζ
}

.

The same type of argument we gave above for the boundedness of the map
defined by F applies to ∂ζF(η,ζ)(X) as well, hence X → ∂ζF(η,ζ)(X) is a
bounded linear map on Hs(T). We compute ∂ηF(η,ζ)(X) in steps to simplify
the notation. First observe that we can write ∂ηF(η,ζ)(X) as a sum

(15) ∂ηF(η,ζ)(X) =
d

ds

∣

∣

∣

s=0

(

Λ−2
ηs

)

(W ) + Λ−2
η

( d

ds

∣

∣

∣

s=0
W (ηs, ζ)

)

◦ η

where
W (η, ζ) = 3ζ2∂xηζ + 2(∂xηζ)3 + 3ζ∂xηζ∂

2
xη
ζ.

The following formulas for the directional derivatives of the operators Λ−2
η

and ∂xη are straightforward to compute: Let ηs|s=0 = id and (dηs/ds)|s=0 =
X. Then

(16)
d

ds

∣

∣

∣

s=0
Λ−2
ηs (V ) =

[

X,Λ−2
η

]

∂xηV,

where [ . , . ] denotes the commutator, and

(17)
d

ds

∣

∣

∣

s=0
∂xη (V ) = −∂xηV ∂xηX.

Using (17) we find the directional derivative of W in η to be
(18)
d

ds

∣

∣

∣

s=0
W (ηs, ζ) = −3ζ2∂xηζ∂xηX−3∂xη

(

ζ(∂xηζ)2∂xηX
)

−3∂xηX∂xηζ∂xη

(

ζ∂xηζ
)

.

Note that the cubic nonlinearities are not creating any extra difficulty here.
Combining (15), (16) and (18) we obtain
(19)
∂ηF(η,ζ)(X) = [X,Λ−2

η ∂xη ]W−3Λ−2
η ∂xη

(

ζ(∂xηζ)2∂xηX
)

−3Λ−2
η

(

(∂xηζ)3∂xηX
)

.
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Observe that, by commutator and product estimates for Sobolev spaces,
X 7→ ∂ηF(η,ζ)(X) is a bounded linear map on Hs.

Next we prove the continuity of the map (η, ζ) 7→ ∂ηF(η,ζ) from Diffs×Hs

to L(Hs,Hs). Note that it suffices to estimate

(20) ‖∂ηF(η,ζ)(X) − ∂ηF(id,ζ)(X)‖Hs + ‖∂ηF(η,ζ1)(X) − ∂ηF(η,ζ2)(X)‖Hs .

The first summand in (20) is clearly bounded by

‖[X,Λ−2
η ∂xη ]W (η, ζ) − [X,Λ−2∂x]W (id, ζ)‖Hs(21)

+‖Λ−2
η ∂xη

(

ζ(∂xηζ)2∂xηX
)

− Λ−2∂x
(

ζ(∂xζ)2∂xX
)

‖Hs(22)

+‖Λ−2
η

(

(∂xηζ)3∂xηX
)

− Λ−2
(

(∂xζ)3∂xX‖Hs .(23)

Adding and subtracting appropriate terms in the norm (21) and using com-
position properties of Sobolev spaces (see [4] and [14] for instance) we obtain
the following bound for (21):

‖η − id‖Hs‖[X ◦ η−1,Λ−2∂x](W (η, ζ) ◦ η−1)‖Hs(24)

+‖[X ◦ η−1,Λ−2∂x](W (η, ζ) ◦ η−1 −W (id, ζ))‖Hs(25)

+‖[X ◦ η −X,Λ−2∂x](W (id, ζ))‖Hs(26)

Note that (24) is easily bounded by ‖η − id‖Hs‖X‖Hs‖W (η, ζ)‖Hs−2 using
commutator estimates [20] and the above mentioned properties of Sobolev
spaces. For (25) and (26) we proceed similarly and obtain the respective
bounds ‖X‖Hs‖W (η, ζ)◦η−1−W (id, ζ)‖Hs−2 and ‖X◦η−X‖Hs‖W (id, ζ)‖Hs−2 .
Note that we can write W as

(27) W (η, ζ) = ∂xη

(

ζ3 +
3

2
ζ(∂xηζ)2

)

+
1

2
(∂xηζ)3

and decompose the commutators in (25) and (26) similarly. Note also that
‖W‖Hs−2 is bounded by ‖ζ‖3Hs . Therefore, both (25) and (26) are esti-
mated by ‖η − id‖Hs‖X‖Hs‖ζ‖3Hs . Therefore (21) is estimated by ‖η −
id‖Hs‖X‖Hs‖ζ‖3Hs .

Adding and subtracting the appropriate terms to (22) and using compo-
sition properties of Sobolev spaces lead to

‖Λ−2
η ∂xη

(

ζ(∂xηζ)2∂xηX
)

− Λ−2∂x
(

ζ(∂xζ)2∂xX
)

‖Hs

. ‖η − id‖Hs‖Λ−2∂x

(

ζ ◦ η−1
(

∂x(ζ ◦ η−1)
)2
∂x(X ◦ η−1)

)

‖Hs(28)

+‖ζ ◦ η−1
(

∂x(ζ ◦ η−1)
)2
∂x(X ◦ η−1) − ζ(∂xζ)2X‖Hs−1 .(29)

Then we bound (22) by ‖η − id‖Hs‖X‖Hs‖ζ‖3Hs using (5) and composition
and algebra properties of Sobolev spaces.

We proceed similarly for (23) to obtain

‖Λ−2
η

(

(∂xηζ)3∂xηX
)

− Λ−2
(

(∂xζ)3∂xX‖Hs

. ‖η − id‖Hs‖
(

∂x(ζ ◦ η−1)
)3
∂x(X ◦ η−1)‖Hs−2(30)

+‖
(

∂x(ζ ◦ η−1)
)3
∂x(X ◦ η−1) − (∂xζ)3∂xX‖Hs−2(31)
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from which follows the estimate ‖η − id‖Hs‖X‖Hs‖ζ‖3Hs for (23).
Let us now consider the second summand in (20) and combine the match-

ing terms to estimate ‖∂ηF(η,ζ1)(X) − ∂ηF(η,ζ2)(X)‖Hs by

. ‖[X,Λ−2
η ∂xη ]

(

W (η, ζ1) −W (η, ζ2)
)

‖Hs(32)

+‖Λ−2
η ∂xη

(

ζ1(∂xηζ1)
2∂xηX − ζ2(∂xηζ2)

2∂xηX
)

‖Hs(33)

+‖Λ−2
η

(

(∂xηζ1)
3∂xηX − (∂xηζ2)

3∂xηX
)

‖Hs .(34)

Using algebra property and Sobolev imbedding theorem along with the com-
mutator estimate (6) we have

‖∂ηF(η,ζ1)(X) − ∂ηF(η,ζ2)(X)‖Hs

. ‖X‖Hs‖W (η, ζ1) −W (η, ζ2)‖Hs−2(35)

+‖X‖Hs‖ζ1 ◦ η
−1

(

∂x(ζ1 ◦ η
−1)

)2
− ζ2 ◦ η

−1
(

∂x(ζ2 ◦ η
−1)

)2
‖Hs−1(36)

+‖X‖Hs‖
(

∂x(ζ1 ◦ η
−1)

)3
−

(

∂x(ζ2 ◦ η
−1)

)3
‖Hs−2 .(37)

Adding and subtracting appropriate terms and using the same tools as above
we bound ‖∂ηF(η,ζ1)(X)− ∂ηF(η,ζ2)(X)‖Hs by ‖X‖Hs‖ζ1− ζ2‖

3
Hs . Therefore

the map (η, ζ) 7→ ∂ηF(η,ζ) from Diffs ×Hs to L(Hs,Hs) is continuous.
The continuity of (η, ζ) 7→ ∂ζF(η,ζ) from Diffs ×Hs to L(Hs,Hs) follows

using the same tools except the commutator estimates. This completes the
proof of theorem 1. 2

Our next step towards proving existence of solutions for all time is a
result stated in proposition 2 that establishes a condition which, if satisfied,
guarantees that short time solutions persist for all time. This approach is in
the same spirit as a persistence result by J. T. Beale, T. Kato and A. Majda
[3] for solutions of the Euler equations for ideal hydrodynamics.

Proposition 2 (Persistence of solutions). Let s > 5/2 and u ∈ C
(

[0, T ],Hs(T)
)

be a solution of the Cauchy problem (3)-(4). If there exists a constant K > 0
such that

‖u‖C1 ≤ K

for all t then the solution u can be extended to a solution that persists for
all time.

Proof. The statement follows from Gronwall’s inequality. We show that the
differential inequality

(38)
d

dt
‖u‖2Hs . ‖u‖2C1‖u‖

2
Hs

holds, hence ‖u‖Hs stays bounded as long as ‖u‖C1 is.
For a solution u of (3) we have

d
dt‖Jεu‖

2
Hs = 2〈Λs∂tJεu,Λ

sJεu〉L2

= −2〈ΛsJε(u
2ux),ΛsJεu〉L2 − 3〈Λs−1Jε(u

3),ΛsJεu〉L2(39)

−3〈Λs−1Jε(uu
2
x),ΛsJεu〉L2 − 〈Λs−2Jε(u

3
x),ΛsJεu〉L2 .(40)
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We write the first summand in (39) as a sum of two terms
(41)

〈ΛsJε(u
2ux),ΛsJεu〉L2 = 〈[Λs, u2∂x]u,ΛsJ2

ε u〉L2 + 〈u2∂xΛsu,ΛsJ2
ε u〉L2 .

and estimate each term separately. For the first term we use a commutator
estimate that can be found in [20]:

‖[Λs, u2∂x]u‖L2 ≤ ‖u2‖Hs‖ux‖∞ + ‖u2‖C1‖ux‖Hs−1

≤ ‖u‖2C1‖u‖Hs .

For the second summand on the right hand side of (41) we use the identity
∫

S1

u2(Λs∂xu)(ΛsJ2
ε u)dx = −

∫

S1

uux(ΛsJεu)2dx

to obtain

〈u2∂xΛsu,ΛsJ2
ε u〉L2 . ‖u‖2C1‖Jεu‖

2
Hs .

For the remaining three terms in (39)-(40) we do not need to use mollifiers.
They are bounded by

(

‖Λs−1(u3+uu2x)‖L2+‖Λs−2(u3x)‖L2

)

‖u‖Hs by Cauchy-
Schwartz. Therefore, passing to the limit ε → 0 yieds the inequatity (38).
2

Novikov’s equation (2) is a generalized right Euler-Poincaré equation

(42)
d

dt

δl

δu
= −θ∗u

δl

δu
,

where the right invariant Lagrangian is determined by l = 1
2

∫

mudx and

θ∗u = u∂x + 3
2u

′ determines an infinitesimal action of the Lie algebra of

vector fields Vect(S1) on its dual g∗. This generalization of Euler-Lagrange
equations in [22] is motivated by systems whose configuration spaces are
given by Lie group representations other than the coadjoint representation.
Indeed the Lie algebra action θ∗ replaces the Lie algebra coadjoint action
ad∗. The corresponding group action is given by Θ∗

η(m) = (m ◦ η)(∂xη)3/2

replacing the group coadjoint action Ad∗. Then a conserved quantity along
solutions u of Novikov’s equation is

(43) Θ∗
η(m) = (m ◦ η)(∂xη

′)3/2 = u0 − u′′0.

for any curve η in Diff(S1) satisfying u = η̇ ◦η−1 [22]. We use this conserved
quantity in the proof of the global existence and uniqueness theorem that
follows.

Theorem 3 (Global existence and uniqueness). For s≥3 assume that u0 ∈
Hs(T) and

(44) Λ2u0≥0 (or ≤ 0).

Then the Cauchy problem (3)-(4) has a unique global (in time) solution
u ∈ C(R,Hs(T)) ∩ C1(R,Hs−1(T)).



8 FERIDE TIĞLAY

Proof. First we note that, by proposition 2, it is sufficient to find a time
independent bound for ‖u‖C1 in order to extend the local (in time) solutions
of theorem 1. Note also that we have ‖u‖C1 . ‖Λ2u‖L1 by the Sobolev
imbedding theorem. Furthermore the orbit invariant in (43) guarantees
that Λ2u0≥0 implies Λ2u≥0 for all t. Therefore we have

‖u‖C1 . ‖Λ2u‖L1 =

∫

S1

Λ2u dx =

∫

S1

u dx ≤ 1 + ‖u0‖H1

and hence the unique solution of theorem 1 exists for all time. 2

3. Analyticity of solutions

In this section we look for real analytic solutions of the periodic Cauchy
problem (3)-(4). The classical Cauchy-Kowalevski theorem does not apply to
equation (1). However a contraction argument on a scale of Banach spaces
can be used for the nonlocal form of this equation to prove the following
theorem.

Theorem 4. If the initial data u0 is analytic on T then there exists an ε > 0
and a unique solution u(t, x) to the Cauchy problem (3)-(4) that is analytic
both in x and t on T for all t in (−ε, ε).

Remark 5. The contraction argument used in the proof of theorem 4 is on
a decreasing scale of Banach spaces. We give the statement of this abstract
theorem here as stated in [16] and [5] for the convenience of the reader:

Given a Cauchy problem

(45) ∂tu = F (t, u(t)), u(0) = 0,

and a decreasing scale of Banach spaces {Xs}0<s<1 so that for any s′ < s
we have Xs ⊂ Xs′ and |||.|||s′ ≤ |||.|||s, let T,R and C be positive numbers,
suppose that F satisfies the following conditions:

1.) If for 0 < s′ < s < 1 the function t 7−→ u(t) is holomorphic in |t| < T
and continuous on |t| ≤ T with values in Xs and sup|t|≤T |||u(t)|||s < R,

then t 7−→ F (t, u(t)) is a holomorphic function on |t| < T with values in
Xs′.

2.) For any 0 < s′ < s ≤ 1 and any u, v ∈ Xs with |||u|||s < R, |||v|||s <
R,

sup
|t|≤T

|||F (t, u) − F (t, v)|||s′ ≤
C

s− s′
|||u− v|||s.

3.) There exists M > 0 such that for, any 0 < s < 1,

sup
|t|≤T

|||F (t, 0)|||s ≤
M

1 − s
.

Then there exists a T0 ∈ (0, T ) and a unique function u(t), which for every
s ∈ (0, 1) is holomorphic in |t| < (1 − s)T0 with values in Xs, and is a
solution to the initial value problem (45).
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Next we restate the Cauchy problem (3)-(4) in a more convenient form.
Let v = ux. Then the problem (3)-(4) can be written as a system for u and
v:

(46)







ut = −u2v − Λ−2(3u2v + 2v3 + 3uvvx) = F (u, v),
vt = −uv2 − u2vx − Λ−2∂x(3u2v + 2v3 + 3uvvx) = G(u, v),
u(0, x) = u0(x), v(0, x) = u′0(x).

This is our Cauchy problem as in (45).
For s > 0 let Es be defined as

Es =

{

u ∈ C∞(T) : |||u|||s = sup
k>0

‖∂kxu‖H2sk

k!/(k + 1)2
<∞

}

.

This norm is introduced in [9] to study the analyticity of the Cauchy problem
for Camassa-Holm equation. Let Xs denote the product space Es × Es

equipped with a product norm ||| . |||Xs . We use the decreasing scale of
Banach spaces Xs with s > 0 for the contraction argument.

We would like to include three properties of the spaces Es that we use
in the proof of theorem 4. The first one can be seen as a ring property for
Es when 0 < s < 1: For any u, v ∈ Es there is a constant c > 0 that is
independent of s such that

(47) |||uv|||s ≤ c|||u|||s|||v|||s.

The second property is an estimate for the differential operator ∂x: For
0 < s′ < s < 1 we have

(48) |||ux|||s′ ≤
C

s− s′
|||u|||s

for all u in Es. The third property is a pair of estimates for the operator
Λ−2: For 0 < s < 1 we have

(49) |||Λ−2u|||s′ ≤ |||u|||s and |||Λ−2∂xu|||s′ ≤ |||u|||s

for all u in Es. We refer to [9] for detailed proofs of these properties of Es.
Now we have all the tools we need to prove theorem 4.

Proof of theorem 4Note that it is sufficient to verify the conditions
1.) and 2.) in the statement of the abstract Cauchy-Kowalevski theorem
above for both F (u, v) and G(u, v) in the system (46) since neither F nor
G depend on t explicitly.

We observe that, for 0 < s′ < s < 1, the estimates (47), (48) and (49)
imply the bounds

|||F (u, v)|||s′ ≤ 4|||u|||2s |||v|||s + 2|||v|||3s +
C1

s− s′
|||v|||2s |||u|||s

and

|||G(u, v)|||s′ ≤ |||u|||s|||v|||
2
s+

C2

s− s′
|||u|||2s |||v|||s+|||v|||3s+

C3

s− s′
|||v|||2s |||u|||s,

hence condition 1.) holds.
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Note that to verify the second condition it suffices to estimate |||F (u1, v)−
F (u2, v)|||s′ and |||F (u, v1) − F (u, v2)|||s′ separately. By the estimates (47),
(48) and (49) we have

|||F (u1, v) − F (u2, v)|||s′ ≤ CR

(

|||u1 − u2|||s +
1

s− s′
|||u1 − u2|||s

)

where the constant CR depends only on R. Similarly we have

|||F (u, v1) − F (u, v2)|||s′ ≤ C̄R

(

|||v1 − v2|||s +
1

s− s′
|||v1 − v2|||s

)

.

Furthermore |||G(u1, v)−G(u2, v)|||s′ and |||G(u, v1)−G(u, v2)|||s′ are bounded
respectively by CR|||u1−u2|||s+C̄R/(s−s

′)|||u1−u2|||s and CR|||v1−v2|||s+
C̄/(s − s′)|||v1 − v2|||s using the same argument for a new set of constants
CR and C̄R. Therefore condition 2.) holds as well.

2
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[23] F. Trèves, An abstract nonlinear Cauchy-Kovalevska theorem, Trans. Amer.

Math. Soc. 150 (1970), 77–92.
[24] E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl.

Math. 30 (1977), no. 3, 321–337.
[25] T. Yamanaka, Note on Kowalevskaja’s system of partial differential equations,

Comment. Math. Univ. St. Paul. 9 (1961), 7–10.

Fields Institute, 222 College Street, 2nd Floor, Toronto, Ontario M5T

3J1, Canada

E-mail address: ftiglay@fields.utoronto.ca

http://arxiv.org/abs/0905.2219

	1. Introduction
	2. Local well-posedness and existence of global solutions
	3. Analyticity of solutions
	References

