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A formula for the HOMFLY polynomial of rational

links

S.Duzhin∗, M. Shkolnikov

Abstract

In this paper we give an explicit formula for the HOMFLY polynomial of a
rational link (in particular, knot) in terms of a special continued fraction for the
rational number that defines the given link.

1 Rational links

Rational (or 2-bridge) knots and links constitute an important class of links for which
many problems of knot theory can be completely solved and provide examples often
leading to general theorems about arbitrary knots and links. For the basics on rational
(2-bridge) knots and links we refer the reader to [6] and [8]. As regards the definition,
we follow [6], while the majority of properties that we need, are to be found in a more
detailed exposition of [8]. In particular, by equivalence of (oriented) links L = K1 ∪K2

and L′ = K ′
1 ∪K ′

2 we understand a smooth isotopy of R3 which takes the union K1 ∪K2

into the union K1 ∪K2, possibly interchanging the components of the link.1

Let p and q be mutually prime integers, p > 0, |p
q
| ≤ 1, and we have a continued

fraction
p

q
=

1

b1 +
1

b2 +
1

· · ·+ 1

bn−1 +
1

bn

, (1)

where bi are nonzero integers (positive or negative). Below, we will use shorthand notation
[b1, b2, . . . , bn] for the continued fraction with denominators b1, b2, . . . , bn. A theorem of

∗Supported by grants RFBR 08-01-00379 and NSh-8462.2010.1.
1The problem of interchangeability of two-component links is discussed in some papers, for instance,

in [11]; however, as far as we know, this problem in general is open even for rational links.
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Schubert (see, for instance, [6, 8]) says that the (isotopy type of the) resulting unoriented
link does not depend on the choice of the continued fraction for the given number p/q.

The case p = q = 1 is exceptional: it corresponds to the trivial knot which is the
only rational, but not 2-bridge knot. On some occasions, it will be helpful to allow the
numbers bi also take values 0 and ∞ subject to the rules 1/0 = ∞, 1/∞ = 0, ∞+x = ∞.

Consider a braid on four strands corresponding to the word Ab1Bb2Ab3 . . . , where A
and B are fragments depicted in Figure 1 and concatenated from left to right.

A A−1 B B−1

Figure 1: Fragments of natural diagrams

Then take the closure of this braid depending on the parity of n (see Fig. 2).

n ≡ 1 mod 2 n ≡ 0 mod 2

Figure 2: Odd and even closure

We will call (non-oriented) diagrams obtained in this way natural diagrams of rational
links and denote them by D[b1, b2, . . . , bn]. We shall denote the link represented by this
diagram as L(p

q
). For odd denominators L(p

q
) turns out to be a knot, while for even

denominators it is a two-component link. Such knots and links are called 2-bridge or
rational.

Example. We have, among others, the following two continued fractions for the
rational number 4/7 (we use shorthand notation, see page 1):

4

7
= [1, 1, 3] = [2,−4].

These fractions correspond to the natural link diagrams shown in Figure 3.
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Figure 3: Two natural diagrams of the table knot 52

2 Orientations

Note that, if a natural diagram represents a two-component link, then the two vertical
leftmost fragments belong to different components. If they are oriented in the same
direction, as shown in Figure 4, then we call the diagram positive and denote it by
D+[b1, b2, . . . , bn].

n ≡ 1 mod 2) n ≡ 0 mod 2)

Figure 4: Positive orientation on a 2-component rational link

If the orientation of one of the components is reversed, then we call it negative and
denote by D−[b1, b2, . . . , bn]. It does not matter which component of the link is reversed,
because the change of orientation of both components yields the same link, see [8]. As
we will see later (Lemmas 3 and 4), the choice between the corresponding links does not
depend on a particular continued fraction expansion of the number p/q. This makes the
notations L+(p/q) and L−(p/q) well-defined.

Let p′ = p − q, if p > 0, and p′ = p + q, if p < 0. According to [8], we have:
L−(p

q
) = L+(p

′

q
), therefore, in principle, it is sufficient to study only the totality of all

positive rational links. In the case of knots (when q is odd), the two oppositely oriented
knots are isotopic, and we have L(p

q
) = L(p

′

q
) (again, see [8]). Therefore, it is sufficient

to study only the knots with an even numerator (cf. Lemma 2 below).
Another important operation on links is the reflection in space; it corresponds to the
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change of sign of the corresponding rational number: p/q 7→ −p/q, see [8].
The two symmetry operations on rational links generate a group Z2 × Z2; they are

transparently exemplified by the examples p/q = 1/4,−1/4, 3/4,−3/4, which correspond
to the four versions of the so called Solomon knot (although it is actually a two-component
link):

L+(1/4) ↔ D+[4] =

L(−1/4) ↔ D+[−4] =

L(3/4) ↔ D+[1, 3] =

L(−3/4) ↔ D+[−1,−3] =

By dragging the lower strand of the diagram for L(3/4) upwards we get the diagram
for L(−1/4) with the opposite orientation of the upper strand. The same is true for the
pair L(−3/4) and L(1/4).

3 HOMFLY polynomial

In 2004–2005 Japanese mathematicians S. Fukuhara [4] and Y.Mizuma [7] found inde-
pendently different explicit formulae for the simplest invariant polynomial of 2-bridge
links: the Conway (Alexander) polynomial. The aim of the present paper is to establish
a formula for a more general HOMFLY polynomial P in terms of the number p/q that
defines the rational link.

The HOMFLY polynomial [6, 9, 3] is a Laurent polynomial in two variables a and
z uniquely defined by the following relations (we use the normalization of [1] and [3];
other authors may write the same polynomial in different pairs of variables, for example,
Lickorish [6] uses l =

√
−1a and m = −

√
−1z):

P (©) = 1, aP (L+)− a−1P (L−) = zP (L0), (2)

where
As we mentioned in the previous section, in the case of rational knots, the change of

orientation gives the same (isotopic) knot, while for links it is important to distinguish
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L+ L0 L−

Figure 5: Outside of these regions the three links coincide

between the two essentially different orientations (this number is two, not four, because
the change of orientation on both components gives the same rational link).

There is a simple formula relating the HOMFLY polynomials of a knot (link) with
that of its mirror reflection (a 7→ −a−1, z 7→ z), so in principle it is enough to study only
the knots (links) described by positive fractions.

HOMFLY polynomials of some links are given below in Figure 7 and Table 1.

4 Reduction formula

Consider a family of links Ln for n even, which coincide everywhere but in a certain ball,
where they look as shown in Fig. 6.a, 6.b and 6.c. Moreover, we define the link L∞ by
Fig. 6.d. That is, we consider a family of links with a distinguished block where the
strands are counter-directed. A formula similar to what we are going to prove, can also
be established for co-directed strands, but for our purposes the following Proposition is
sufficient. It expresses the value P (Ln) through P (L0) and P (L∞).

a) n > 0 b) n < 0

c) n = 0 d) n = ∞
Figure 6: The differing portions of the links Ln. In the first two pictures the elementary
fragment is repeated |n|

2
times.

Lemma 1.

P (Ln) = anP (L0) + z
1− an

a− a−1
P (L∞) .

Proof. Proceed by induction on n.
1) For n = 0 the assertion is trivially true.
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2) Suppose it is true for n−2. The skein relation (2) shows that zP (L∞) = aP (Ln−2)−
a−1P (Ln). Substituting here the assumed formula for P (Ln−2), we can express P (Ln) as
follows:

P (Ln) = a2P (Ln−2)− zaP (L∞)

= a2
(

an−2P (L0) + z
1 − an−2

a− a−1
P (L∞)

)

− zaP (L∞)

= anP (L0) + z
(

a2
1− an−2

a− a−1
− a

)

P (L∞)

= anP (L0) + z
1− an

a− a−1
P (L∞) .

The positive branch of induction is thus proved.
3) Suppose the assertion holds for a certain value of n. Prove it for the value n− 2.

To do so, it is enough to reverse the argument in the previous item. This completes the
proof of the proposition.

Remark 1. For even values of n the fraction (1 − an)/(a − a−1) is actually a Laurent
polynomial, namely, −a− a3 − · · · − an−1, if n > 0, and a−1 + a−3 + · · ·+ an+1, if n < 0.

Corollary 1. Let T2,n be the torus link with counter-
directed strands (shown in the picture on the right). Then

P (T2,n) = z−1an(a− a−1) + z
1− an

a− a−1
.

Proof. Notice that n is even. Consider the family of links Lm = T2,m, where m is an
arbitrary even number. Outside of the grey ellipse all the links of this family are the
same, and inside it they look as shown on Fig 6. Therefore, we fall under the assumptions
of Lemma 1, and it only remains to note that P (L0) = z−1(a− a−1) and P (L∞) = 1.

Particular cases of this Corollary for n = 0, ±2, ±4 give the well-known values of
the HOMFLY polynomial for the two unlinked circles, the Hopf link and the two (out of
the total four) versions of the oriented “Solomon knot”, see Figure 7.

5 Canonical orientation of rational links

Lemma 2. Suppose the numbers p and q are mutually prime and |p
q
| < 1. The number

p
q
has a continued fraction expansion with non-zero even denominators if and only if the

product pq is even, and if such an expansion exists, it is unique.
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z−1(a3 − a)− za z−1(a− a−1) z−1(a−1 − a−3) + za−1

z−1(a5 − a3)− z(a + a3) z−1(a−3 − a−5) + z(a−1 + a−3)

Figure 7: HOMFLY polynomial of some torus links

Proof. 1) Necessity: if p/q = [b1, b2, . . . , bn] with all bi’s even, then pq is even. We shall
prove that by induction on the length n of the continued fraction. The induction base is
evident. Now,

p

q
= [b1, b2, . . . , bn] =

1

b1 + [b2, . . . , bn]
=

1

b1 + p′/q′
=

q′

b1q′ + p′
.

By the induction assumption, one (and only one!) of p′ or q′ is even. Since b1 is even, it
follows that either the numerator or the denominator of the last fraction is even, so their
product is even and, since the numbers p′ and q′ are mutually prime and p′ < q′, this
fraction is irreducible and smaller than 1 by absolute value.

2) Sufficiency: if the product pq is even, then the irreducible fraction p/q allows for a
continued fraction with even denominators.

If q = ±2, then the expansion clearly exists. We proceed by induction on |q|. Among
the numbers [ q

p
] and [ q

p
] + 1 one is even, call it b. The number b − q

p
can be written as

an irreducible fraction p′

q′
. Note that b cannot be 0, because |q/p| > 1. Then |p′

q′
| < 1 and

p
q
= 1

b+ p′

q′

, where we have |q′| < |q|. Similarly to the argument in the previous section

we infer that the product p′q′ is even. By the induction assumption p′

q′
has a continued

fraction expansion with even denominators. This completes the proof of sufficiency.
We proceed to the proof of uniqueness, using induction on the length of the continued

fraction. For p = 1 the assertion is trivial. Suppose that

[b1, b2, . . . , bn] = [c1, c2, . . . , cn]

where all the numbers bi and ci are even, and several last terms of the sequence ci may
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be ∞ (which means that this sequence is actually shorter than the first one). Then

b1 + [b2, . . . , bn] = c1 + [c2, . . . , cn].

Therefore,
|b1 − c1| =

∣

∣[b2, . . . , bn]− [c2, . . . , cn]
∣

∣ < 2

But the number |b1 − c1| is even, hence b1 = c1.
The lemma is proved.

The continued fraction expansion with even denominators and the corresponding nat-
ural diagram will be referred to as the canonical expansion of a rational number and the
canonical diagram of a rational link (defined up to a rotation, see Lemma 4).

Remark 2. The parity of the denominator of a rational number is always opposite to
the parity of the length of its even (canonical) continued fraction expansion. That is, for
knots the canonical expression is of even length, while for links it is of odd length.

Now we are in a position to define a canonical oriented rational link.
Let

p

q
= [b1, b2, . . . , bn] =

1

b1 +
1

b2 +
1

· · ·+ 1

bn−1 +
1

bn

,

where q and all bi are even. The diagram D[b1, . . . , bn] taken with the positive orientation,
denoted by D+[b1, . . . , bn], will be referred to as the canonical diagram of the oriented
link L+(p/q).

We will use the canonical diagrams for the proof of the main theorem. However,
for this theorem to make sense, we must check that the oriented link L+(p/q) does not
depend on a particular choice of the continued fraction for the rational number p/q and,
especially, that it does not change when p/q is changed by p̄/q where pp̄ ≡ 1 mod 2q.
We will prove these facts immediately.

Lemma 3. Suppose that p/q = [b1, . . . , bn] = [c1, . . . , cm] where bi and ci are non-zero in-
tegers. Then the natural diagram D+[b1, . . . , bn] and D+[c1, . . . , cm] are oriented isotopic.

Proof. We will prove that every natural diagram D+[b1, . . . , bn] is oriented isotopic to the
canonical (even) natural diagram. To do so, we follow the induction argument used in
Lemma 2 (sufficiency part). In fact, the induction step used there consists of one of the
two transformations on the sequence {b1, b2, . . . , bn}:

(1) [S, s, t, T ] 7−→ [S, s + 1,−1, 1− t, T ], if t > 0,
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(2) [S, s, t, T ] 7−→ [S, s− 1, 1,−1− t, T ], if t < 0,
where s, t are arbitrary integers and S, T are arbitrary sequences.

The algorithm is to find the first from the left occurrence of an odd number and
apply one of these rules. If T = ∅ and t = ±1, then we use the rule [S, s,±1] 7→ [S, s± 1]
instead. Note that the situation when all numbers bi, 1 ≤ i ≤ n − 1 are even, while bn
is odd, is impossible, because it corresponds to a knot rather than to a two-component
link.

The proof of Lemma 2 assures that, in this process, the denominator of the rational
fraction monotonically decreases, and thus the algorithm is finite.

Each step of the algorithm, when depicted on natural diagrams, shows that during
this process the equivalence of oriented links is preserved (even with numbering of com-
ponents).

The previous lemma justifies the notation L+(p/q).

Lemma 4. If pp̄ ≡ 1 mod 2q, then the links L+(p/q) and L+(p̄/q) are oriented isotopic.

Proof. Making the rotation of the canonical diagram D+[b1, b2, . . . , bn] around a vertical
axis, we obtain the canonical diagram D+[bn, bn−1, . . . , b1], and it is easy to show (by
induction on n) that these two continued fractions have the same denominators, and
their numerators are related as indicated in the statement of the lemma. (Remind that,
for links, the number n is odd). We see that the two corresponding links are isotopic
with the orientation of both components changed. But the total change of orientation is
a link equivalence (see [8]).

In a canonical diagram of a rational link, due to the fact that all blocks are of even
length, the strands are everywhere counter-directed. Therefore, Lemma 1 can be applied
recursively:

P (D+[b1, . . . , bn]) = aεnbnP (D+[b1, . . . , bn−1, 0]) + z
1 − aεnbn

a− a−1
P (D+[b1, . . . , bn−1,∞])

= aεnbnP (D+[b1, . . . , bn−2]) + z
1 − aεnbn

a− a−1
P (D+[b1, . . . , bn−1]),

(3)

because the following two pairs of diagrams are equivalent as links: D+[b1, . . . , bn−1, 0] =
D+[b1, . . . , bn−2] and D+[b1, . . . , bn−1,∞] = D+[b1, . . . , bn−1]. The sign εn = (−1)n−1

comes from our convention of counting the number of twists in the first and the second
layers of a natural diagram (see Figure 1 — the powers of A and B correspond to odd
and even values of n, respectively).

For a given sequence [b1, . . . , bn] denote xn = P (D+[b1, . . . , bn]). Then Equation 3 can
be rewritten as

xn = z
1 − a(−1)n−1bn

a− a−1
xn−1 + a(−1)n−1bnxn−2 (4)
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which makes sense when n > 2. Drawing the diagrams and applying skein relation (2)
for the cases n = 2 and n = 1, we can see that Equation (4) still holds for these values,
if we set x0 = 1 and x−1 = z−1(a− a−1).

6 Main theorem

Our aim is to find a closed form formula for xn in terms of a and z. To do this, it is
convenient to first consider a more general situation.

Lemma 5. Let rn and ln be elements of a certain commutative ring R. Define recurrently
the sequence xn, n ≥ −1, of polynomials from R[z] by the relation

xn = zlnxn−1 + rnxn−2, n ≥ 1,

where x−1 and x0 are fixed elements of R. Let C be the set of all integer sequences
c = {c1, c2, . . . , cl} where c1 > c2 > · · · > cl, c1 = n, ci−ci+1 = 1 or 2, cl = 0 or −1, and
only one of the numbers 0 and −1 is present in the sequence c (that is, if cl = −1, then
cl−1 6= 0). Then xn can be expressed as the following polynomial in z with coefficients
depending on the elements li, ri and the initial conditions x0, x−1:

xn =
∑

c∈C

zk(c)xcl

∏

i∈λ(c)

lci
∏

i∈ρ(c)

rci,

where λ(c) = {i | ci − ci+1 = 1}, ρ(c) = {i | ci − ci+1 = 2} and k(c) = |λ(c)| = #{i |
ci − ci+1 = 1}.
Proof.

Essentially, the written formula describes the
computational tree for the calculation of xn.
Note that the recurrence is of depth 2, that
is, the element xn is expressed through xn−1

and xn−2. Therefore, the computational tree
is best represented as a layered tree where
each layer matches the li’s and ri’s with the
same i. We draw the l-edges (of length 1) to
the left and the r-edges (of length 2) to the
right. The exponent of z for each directed
path from the vertex at level n to a vertex at
levels 0 or −1 in this tree corresponds to the
number of left-hand edges. Any path in such
a tree is uniquely determined by a sequence
of levels c with the above listed properties. In
the picture, you can see an example of such a
tree for n = 5.
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To obtain the formula for the HOMFLY polynomial of an arbitrary rational link
L±(p/q), we combine Lemma 5 with formula 4. For the sake of unification, we first make
some preparations:

• If q is odd (that is, we deal with a knot) and p is odd, too, then we change p to
p′ = p−q, if p > 0, or to p′ = p+q, if p < 0. Then L(p/q) = L(p′/q), the numerator
of the fraction becomes even, hence Lemma 2 applies and formula (4) is valid.

• If q is even and the link is negative, then we use the property L−(p/q) = L+(p′/q),
where p′ is computed by the same rule as above. Below, we will simply write L(p/q)
instead of L+(p/q).

Now the main result reads:

Theorem 1. Suppose that p is even and q is odd or p is odd and q is even. Let
[b1, b2, . . . , bn] be the canonical continued fraction for the number p/q (all numbers bi
are even, positive or negative, see Lemma 2). Then

P (L(p/q)) =
∑

c∈C

zk(c)xcl

∏

i∈λ(c)

1− a(−1)ci−1bci

a− a−1

∏

i∈ρ(c)

a(−1)ci−1bci , (5)

where

• C is the set of all integer sequences c = {c1, c2, . . . , cl} with c1 > c2 > · · · > cl,
ci − ci+1 = 1 or 2, c1 = n, cl = 0 or − 1, and only one of the numbers 0 and −1 is
present in the sequence c (that is, if cl = −1, then cl−1 6= 0),

• λ(c) = {i | ci − ci+1 = 1},

• ρ(c) = {i | ci − ci+1 = 2},

• k(c) = |λ(c)| = #{i | ci − ci+1 = 1},

• x0 = 1 and x−1 = z−1(a− a−1).

Proof. The proof was actually given above.

Example. The canonical expansion of the fraction 4/7 is [2,−4]. We have n = 2,
and there are three possibilities for the sequence c:

(1) c = {2, 1, 0}, then λ(c) = {2, 1}, k(c) = 2, ρ(c) = ∅, cl = 0,
(2) c = {2, 1,−1}, then λ(c) = {2}, k(c) = 1, ρ(c) = {1}, cl = −1,
(2) c = {2, 0}, then λ(c) = ∅, k(c) = 0, ρ(c) = {2}, cl = 0,

Then formula (5) gives:
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P (L(4/7)) = z2 · 1− a2

a− a−1
· 1− a4

a− a−1
+ z · z−1(a− a−1) · 1− a4

a− a−1
· a2 + a4

= z2(a2 + a4) + (a2 + a4 − a6)

In formula 5 one can, in principle, collect the terms with equal powers of z. The
formulation of this result is rather involved, and we need first to introduce necessary
notations.

Let α = p/q be a nonzero irreducible rational number between −1 and 1. We denote
by n = ν(α) the length of the canonical continuous fraction for α, and by α′, the number
α+ 1, if α < 0, and α− 1, if α > 0. Now, let

ρk(α) =
∑

C⊆1,n, C∩(C−1)=Ø
|C|=(n−k)/2

∏

m∈C

a(−1)m+1bm
∏

m∈1,n
m/∈C∪(C−1)

(1− a(−1)m+1bm)

where 1, n = {1, 2, . . . , n} and C − 1 is understood as the set of all numbers c− 1, where
c ∈ C.

Then we have:

Theorem 2. Let q be odd, that is, L(α) is a knot. Then:
1) If p is even, then

P (L(α)) =
∑

0≤k≤ν(α)
k≡0 mod 2

zk(a− a−1)−kρk(α)

2) If p is odd, then

P (L(α)) =
∑

0≤k≤ν(α′)
k≡0 mod 2

zk(a− a−1)−kρk(α
′)

Let q be even, that is, L(α) is a two-component link. Then:
3) If the two components are counterdirected, then

P (L+(α)) =
∑

−1≤k≤ν(α)
k≡1 mod 2

zk(a− a−1)−kρk(α)

4) If the two components are codirected, then

P (L−(α)) =
∑

−1≤k≤ν(α′)
k≡1 mod 2

zk(a− a−1)−kρk(α
′)

The theorem can be proved by first collecting the terms with equal powers of z in the
statement of Lemma 5 and then using induction on ν(α); we do not give the details here.
Although Theorem 2 is in a sense more explicit than Theorem 1, it is less practical; in
particular, the formula of Theorem 1 is better suited for programming purposes.
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7 Computer calculations

The formula for P (L(p/q)) can be easily programmed. The source code of the program,
written by the second author and tested by the first one, as well as the resulting table
of HOMFLY polynomials for rational links with denominators not exceeding 1000, are
presented online at [2]. Below, we give a short excerpt of that big table which is enough
to know the polynomials of all rational knots and links with denominators no greater
than 9, if one uses the following rules (see [8]):

1. P (L+(−p/q)) is obtained from P (L+(p/q)) by the substitution a 7→ −a−1.

2. The knots L(p1/q) and L(p2/q) are equivalent, if p1p2 ≡ 1 mod q.

3. The links L+(p1/q) and L+(p2/q) are oriented equivalent, if p1p2 ≡ 1 mod 2q.

In Table 1, the first column (R) gives the notation of the rational link (knot) as
L(p/q) (in the case of links, this means L+(p/q)), the second column (T) contains the
standard notation of that link (knot) from Thistlethwaite (Rolfsen) tables (see [1]; the
bar over a symbol means mirror reflection, the star is for the change of orientation of
one component), and the third column (H) is for the values of the HOMFLY polynomial.
Note that we list HOMFLY polynomials for both orientations of each rational link, while
the famous Knot Atlas [1] shows them for only one orientation of two-component links.

8 Concluding remarks

1. As the Conway polynomial is a reduction of the HOMFLY polynomial, Theorem 1
gives a formula for the Conway polynomial of rational links by the substitutions a = 1,
z = t (the fraction (1 − an)/(a− a−1) is first transformed to a Laurent polynomial and
becomes equal to −n/2).

2. Since the Jones polynomial is a reduction of the HOMFLY polynomial, Theorem 1
leads to a formula for the Jones polynomial of rational links by the substitutions a = t−1,
z = t1/2 − t−1/2.

3. The famous open problem whether a knot must be trivial if its Jones polynomial is
1, has a simple positive solution for rational knots. Indeed, the value |J(−1)| is equal to
the determinant of the knot, and the determinant of a rational knot is its denominator
(see [8]).

4. Problem (open, to the best of authors’ knowledge). Is it true that all the oriented
rational links are interchangeable, that is, there always exists a smooth isotopy of the
ambient space that interchanges the components of the link?

5. Open problem. Can one generalize formula 5 to all links? The results of L.Traldi
[10] show that it can be generalized to at least some non-rational links, although his
result is less explicit.
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R T H

L(1
2
) L2a1 z−1(a3 − a)− za

L(2
3
) 31 (2a2 − a4) + z2a2

L(1
4
) L4a1 z−1(−a3 + a5) + z(−a− a3)

L(3
4
) L4a

∗
1 z−1(−a3 + a5) + z(−3a3 + a5)− z3a3

L(2
5
) 41 (a−2 − 1 + a2)− z2

L(4
5
) 51 (3a4 − 2a6) + z2(4a4 − a6) + z4a4

L(1
6
) L6a3 z−1(−a5 + a7) + z(−a− a3 − a5)

L(5
6
) L6a

∗
3 z−1(a7 − a5) + z(3a7 − 6a5) + z3(a7 − 5a5)− z5a5

L(2
7
) 52 (a2 + a4 − a6) + z2(a2 + a4)

L(6
7
) 71 (4a6 − 3a8) + z2(10a6 − 4a8) + z4(6a6 − a8) + z6a6

L(1
8
) L8a

∗
14 z−1(−a7 + a9) + z(−a− a3 − a5 − a7)

L(3
8
) L5a1 z−1(−a−1 + a) + z(a−3 − 2a−1 + a)− z3a−1

L(7
8
) L8a14 z−1(a9 − a7) + z(6a9 − 10a7) + z3(5a9 − 15a7) + z5(a9 − 7a7)− z7a7

L(2
9
) 61 (a−2 − a2 + a4) + z2(−1− a2)

L(8
9
) 91 (5a8 − 4a10) + z2(20a8 − 10a10) + z4(21a8 − 6a10) + z6(8a8 − a10) + z8a8

Table 1: HOMFLY polynomials of rational links with denominators ≤ 9

9 Acknowledgements

The authors are grateful to M.Karev who read the manuscript and indicated several
inaccuracies. We also thank S.Chmutov for pointing out the relation of our investigations
with papers [5] and [10], and L.Traldi for valuable comments on his paper [10].

References

[1] Knot Atlas, web resource http://katlas.math.toronto.edu/ maintained by Scott
Morrison and Dror Bar-Natan.

[2] Computer generated table of HOMFLY polynomials for rational links, web document,
online at http://www.pdmi.ras.ru/~arnsem/dataprog/.

[3] S. Chmutov, S.Duzhin and J.Mostovoy, Introduction to Vassiliev knot invariants,
draft, 20.07.2010, online at http://www.pdmi.ras.ru/~duzhin/papers/cdbook/.

[4] Shinji Fukuhara, Explicit formulae for two-bridge knot polynomials. J. Aust. Math.
Soc. 78 (2005), p. 149–166.

14



[5] F. Jaeger, Tutte polynomials and Link polynomials. Proceedings of the Amer Math
Soc, v. 103, no. 2 (1988), p. 647–654.

[6] W.B.R. Lickorish, An introduction to knot theory, Springer-Verlag New York, Inc.
(1997).

[7] Yoko Mizuma, Conway polynomials of two-bridge knots. Kobe J. Math. 21 (2004), p.
51–60.

[8] K.Murasugi, Knot Theory and Its Applications, Birkhäuser, 1996.
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