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A DISCRETE GAUSS-BONNET TYPE THEOREM

OLIVER KNILL

Abstract. We discuss a curvature theorem for subgraphs of the flat triangular
tessellations of the plane. These graphs play the analogue of ”domains” in two
dimensional Euclidean space. We show that the Pusieux curvature K(p) =
2|S1(p)| − |S2(p)| satisfies

∑
p∈δG K(p) = 12χ(G), where χ(G) is the Euler

characteristic of the graph, δG is the boundary of G and where |Sr | the arc
length of the sphere of radius r in G. This formula can be seen as a discrete
Gauss-Bonnet formula or Hopf Umlaufsatz.

Dedicated to Ernst Specker to his 90th birthday.

1. Introduction

For a domain D in the plane with smooth boundary C, the Gauss-Bonnet

formula or Umlaufsatz
∫
C
K(s) ds = 2πχ(D) relates the curvature K(s) of the

boundary curve with the Euler characteristic χ of the region. For a simply con-
nected region G for which the boundary is a simple closed curve, the total boundary
curvature is 2π. This Gauss-Bonnet type result is a form of Hopf’s Umlaufsatz

and relates a differential geometric quantity, the boundary curvature, with a topo-
logical invariant, the Euler characteristic. In differential geometry, curvature needs
a differentiable structure, while Euler characteristic does not. It is the transcending
property between different mathematical branches which makes Gauss-Bonnet type
results interesting.

We prove here a discrete version of a ”Hopf Umlaufsatz” [3] which is of combina-
torial nature; curvature is an integer. The result applies to special two dimensional
graphs which are part of a flat two dimensional background graph X , where the
dimensionality is defined inductively. While the Euler characteristic is a topological
notion, we need ”smoothness assumptions” to equate the total boundary curvature
with the Euler characteristic.

The curvature, we consider here is K(p) = 2|S1| − |S2|, where Sr(p) is the arc
length of the sphere Sr(p) at the point p. The sphere Sr is a subgraph of G with
vertices of all points of distance r and edges consisting of pairs (q, q′) in Sr(p) such
that q and q have distance 1. As we will explore elsewhere, for many compact
two-dimensional graphs G without boundary, like triangularizations of polyhedra
with 5 or 6 faces, the integral of the curvature K(p) = 2|S1| − |S2| over the entire
graph is 60χ(D). The ”smoothness” assumptions are more subtle than correspond-
ing results for K1(p) = 6 − |S1|. For the later, the result

∑
p∈G K1(p) = χ(G) is
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essentially a reformulation of Euler’s formula and holds for any ”two dimensional
graph” with or without boundary. We will look at a relation between the ”first
order curvature” K1 and second order curvature K at the end of this article.

The main result in this paper is the formula
∑

p∈δG K(p) = 12χ(G) which holds
for discrete domains G and for a second order curvature K. To do so, we need
to specify precisely what a ”smooth domain” is.

The background lattice X plays here the role of the two-dimensional plane. Its
vertices can be realized as the set of points {k(1, 0) + l(1,

√
3)/2 | k, l integers }.

The edges are formed by the set of pairs for which the Euclidean distance is 1. In
the infinite graph X , every point p has 6 neighbors. Together with edges formed by
neighboring vertices, these points form the unit sphere S1(p), a subgraph of X .
Similarly, any sphere S2(p) of radius 2 in this discrete plane has length |S2| = 12.
The curvature K = 2|S1| − |S2| is zero at every point of the background lattice
X .
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Figure: Curvature computation. The numbers near each vertex indicate the cur-
vature of the point. At each of a few chosen points, we have drawn the spheres of
radius 1 and 2 in G. Adding up the curvatures over the boundary gives 12. If a
point has as a neighborhood a disc of radius 2, the curvature is zero.

2. Topology of the planar triangular lattice

A finite subset G of the triangular lattice X defines a graph (V,E), where
V ⊂ X is the set of vertices in G and where E is a subset of edges (p, q) in X , pairs
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in X have distance 1 within X . We start by defining a dimension for graphs. To
our best knowledge, this notion seems not yet have appeared, even so in the graph
theory literature, several notions of dimension exist. The definition of dimension is
inductive and rather general and does not require the graph to be a subset of X .

Definition 1. A sphere Sr(p) in the subgraph G of X whose vertices consists the
set of points in G which have geodesic distance r to p, normalized, so that adjacent
points have distance 1 within G. The edges of the sphere graph Sr are all pairs
(p, q) with p, q ∈ Sr(p) for which (p, q) is in G. A disc Br(p) in the graph G is the
set of points q which have distance d(q, p) ≤ r in G.

Definition 2. A vertex p of a graph G = (V,E) is called 0-dimensional, if p
is not connected to any other vertex. A subset G of X is called 0-dimensional if
every point of G is 0-dimensional in G. Zero-dimensionality for a graph means that
it has no edges. A point p of G is called 1-dimensional if S1(p) is 0-dimensional,
where S1(p) is the unit sphere of p within G. A finite subset G of X is called
1-dimensional if any of the points in G is 1-dimensional. A point p of G is called
2 dimensional, if S1(p) is a one-dimensional graph. A subset G of X is called
2-dimensional, if every vertex p of G is a 2-dimensional point.

The dimension does not need to be defined. For example, a point which has a
sphere which contains of one and zero dimensional components has no dimension.
One could define inductively a fractional dimension by adding 1 to the average
fractional dimensions of the points on the unit sphere.

As an illustration of the notion of dimension, lets look at the platonic solids as
graphs. The cube and the dodecahedron are one dimensional. The isocahedron and
octahedron are two dimensional. The tetrahedron is three dimensional, because the
unit sphere of each point is 2 dimensional. The cube and dodecahedron become
two dimensional after kising (stellating) their faces. The tetrahedron becomes 2
dimensional after truncating corners.

Definition 3. A point p in G called an interior point of G if the sphere S1(p)
in the graph G is the same than the sphere S1(p) in the background lattice X .
In other words, for an interior point, the sphere S1(p) is a one-dimensional graph
without boundary.

Definition 4. A point p of a two-dimensional graph G is a boundary point of
G, if it is not an interior point in G but has a neighbor in G which is an interior
point.

For an interior point, the sphere S1(p) is a closed circle, for a boundary point,
the sphere S1(p) is a union of one-dimensional arcs.

Definition 5. The boundary of G is the set of boundary points of G. The
interior of G is the set of interior points of G.

Remarks:

a) The set of subsets {A ⊂ int(G) } ∪ {G } defines a topology on G such that the
interior of G is open and the boundary δG is closed.
b) The interior of a two dimensional graph G is not necessarily a 2 dimensional
graph. The disc of radius 1 in X for example is has a single interior point so that
the interior is zero-dimensional.
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c) Two dimensionality of a graph has no relation with ”being planar”. There are
planar graphs like the tetrahedral graph which is three dimensional in our sense
but which is planar. And there are graphs like triangularizations of a torus, which
are two dimensional but not planar.
d) Topologically, one can show that the triangular graph X is the only simply-
connected two-dimensional flat graph without boundary.

Definition 6. We call a subset G of X a domain if the following 5 conditions are
satisfied:

(i) G is a two-dimensional subgraph of X .
(ii) Every point of G is either an interior point or a boundary point.
(iii) The set of boundary points in G is a one-dimensional graph.
(iv) If two vertices p, q in G have distance 1 in X , then (p, q) is an edge in G.
(v) Two interior points in G with a common boundary points have distance 1
or are both adjacent to a third interior point.

The conditions (i),(ii), (iii) are natural. Condition (iv) assures that no unnatural
”fissures” can exist. Condition (v) assures that the connectivity topology of the
domain and the connectivity topology of the interior set are the same.

Definition 7. A domain is called a finite domain, if it is a finite graph which
is a domain. A domain is called a smooth domain, if it is a domain and its
complement is a domain too.

Remarks:

a) We could additionally require the interior of a domain to be two-dimensional but
we do not need that. Actually, the proof of the main theorem becomes simpler if
we do not make this assumption. It would just lift a difficulty on a different level.
For us it will be important to look at the dimension of points in the interior of G.
b) Some of these conditions for ”domains” have analogues in the continuum, where
they are necessary for the classical Gauss-Bonnet to be true: we can not have
”hairs” sticking out of the domain for example. The closure of the complement
of a domain is a domain too and we can not just leave out part of the boundary.
Also in the continuum, it should not happen that parts of domains are tangent to
each other. We also can not allow the boundary to be two-dimensional, like for the
Mandelbrot set.
c) For a smooth domain, we can look at the interiorH ′ = int(G′) of the complement
G′ of int(G). Then, the boundaries satisfy δ(G) = δ(G′). The three sets int(G′),
int(G) and δ(G) = δ(G′) partition the graph X .
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Figure: Examples of domains. The number in the upper right corner is the total
boundary curvature of the domain.
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Figure: Examples of graphs which are not domains. To the left, a set with 2, 1
and 0 dimensional points. It violates conditions (i). The second example is a set
with both 2 and 1 dimensional points.
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Figure: Domains which are not smooth domains. The curvature of the first was
computed while assuming the nearest neighbor connection to be an edge as required
by condition (iv). If the connection is not in place (violating (iv)), the total curva-
ture would be 24.

The following lemma allows us to deal more efficiently with eligible regions and
eliminates many subsets which are not regions. It says that the set of interior points
determines the region as well as its boundary.

Lemma 1. Let G be a domain and H = int(G) be the set of interior points of G.

Then G =
⋃

q∈H B1(q), where B1(q) is the disc of radius 1 in X. Especially, the

interior set H = int(G) determines the domain G completely.

Proof. If a point p is in G, then it is either an interior point or a point adjacent
to an interior point. Therefore G ⊂

⋃
q∈H B1(q). On the other hand, if p is

in
⋃

q∈H B1(q), then p ∈ B1(q) for some q. Because q ∈ G and S1(q) ∈ G by
definition of being an interior point, we have p ∈ G. �

Remark: For a simply connected region, also the boundary of G determines
the region, but we do not need that.
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3. Curvature

Definition 8. Let |Sr(p)| denotes the number of edges in the sphere Sr(p). We
call it the arc length of the sphere Sr.

Remarks.

a) Note that |S1| is not necessarily the number of vertices in S1. Similarly, |S2| is
the number of edges in S2 which is not always equal to the number of vertices in
S2.
b) The sphere |S1| does not necessarily have to be connected, nor does it have to
have a defined dimension. It could be a union of a segment and a point for example.

Definition 9. The curvature of a boundary vertex p in a region G is defined as

K(p) = 2|S1(p)| − |S2(p)| .

The curvature of a finite domain G is the sum of the curvatures over the boundary.

Remarks.

a) This definition is motivated by differential geometry since one can derive an

analogue formulas in the continuum K = limr→0
2|Sr|−|S2r|

2πr3 for a point on the
boundary curvature of a region.
b) Note that as defined, S2(p) refers to the geodesic circle of radius 2 in G and not
in X so that every point q ∈ G of distance 2 in X to p belongs to S2(p) whether
there is a connection within G from p to q or not. The reason for this choice is that
we do want the curvature definition to be nonlocal. This subtlety will not matter
since for the definition of smooth curve, we anyhow disallow situations where points
have a large distance within G but small distance in X .
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Figure: The first picture is a smooth domain. It is not simply connected although
the two parts S1, S2 of the regions are at first separated enough to get a curvature
24. In the second case S2 ”feels” part of the other region S1 and the curvature is
not a multiple of 12.
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Figure: In the first picture, the domain is still not smooth because the complement
is not a domain. The last example is a smooth domain. It has become simply
connected.

Definition 10. A curve γ in a smooth domain G is a sequence of points x0, . . . , xn

in the interior of G such that d(xi, xi+1) = 1 and consequently (xi, xi+1) is an edge
of G. A curve is a closed curve if x0 = xn. In graph theory, a curve is called a
chain. It is a nontrivial closed curve if its length is larger than 1. It is called a
simple closed curve, if all points x0, x1, . . . , xn−1 are different and x0 = xn.

Definition 11. A domain is called simply connected if every closed curve {x1, . . . , xn }
in the interior H of G can be deformed to trivial closed curve within G, where a
deformation of a curve within G consists of a composition of finitely many ele-
mentary deformation steps {x1, . . . , xn} → {y1, . . . , yn } with

∑
i d(xi, yi) = 1 and

such that xi, yi are in H . As in the continuum, simply connectedness means that
any closed curve in the interior of G can be deformed to a point within the interior
of G.

4. The curvature 12 theorem

Our main result of this paper is a discrete version of the ”Umlaufsatz”. It will
be generalized to more general domains below.

Theorem 2 (Curvature 12 Umlaufsatz). The total boundary curvature of a finite,

smooth and simply connected domain G is 12.

Proof. For the proof, it suffices to look at local deformations. We start with an
arbitrary simply connected smooth regionG and find a procedure to remove interior
points near the boundary while keeping the simply connectedness property and
keeping also the curvature the same. Removing one point only affects the curvatures
in a disc of radius 2 so that only finitely many cases need to be studied:

Lemma 3 (Curvature is local). Let G1, G2 be two regions and p be a point in both

G1 and G2. Let U1 = B2(p) ⊂ G1 and U2 = B2(p) ⊂ G2 be the discs of radius 2 in

G1 and G2 respectively. Define Hi = Gi \ {p}. If U1 = U2, then
∑

p∈H1

K(p)−
∑

p∈H2

K(p) =
∑

p∈G1

K(p)−
∑

p∈G2

K(p) .
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In other words, if we remove a point from a region, then the total curvature-
change can be read off from the curvature-changes in a disc of radius 2.

We could check all possible configurations in discs of radius 2 and compare the
total curvature before and after the center point is removed. We indeed checked
with the help of a computer that in all cases, where the total boundary curvature
changes, the number of local connectivity components of the interior has changed
or the complement has become non-smooth near the removed point. These experi-
ments helped us also to get the conditions what a domain is.

But checking all possible local deformations is not a proof. We also need to know
that there is always a point which we can remove without changing the topology
of G or its complement.

It turns out that this question is of more global nature. Take a ring shaped
region for example which has a one dimensional interior. No point can be removed
without the curvature to change. The key is to look at the dimension of points in
the interior of G and distinguish points which are one-dimensional in int(G) and
points which are two-dimensional in int(G). A zero dimensional interior means for
a simply connected region that the graph is the disc of radius 1 in X . By removing
interior points, we want to reach this situation.
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Figure: Pruning a tree, a simply connected domain. To reduce a region, we have
to trim the tree, removing alternatively two-dimensional interior points and one-
dimensional interior points until only one interior point is left.
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We are allowed to look at the topology of interior points because int(G)
defines G by the above lemma, it is enough to check what happens if we remove
interior points. Our goal is to show:

Proposition 4 (Trimming a tree). For any simply connected smooth region G
for which the interior set H has more than one point, it is possible to remove

an interior point p from H, such that the new region defined by H \ {p} remains

a simply connected smooth region with one interior point less and such that the

curvature does not change.

The theorem follows from this proposition. Lets introduce some terminology:

Definition 12. Given a smooth, simply connected region G with interior H . De-
note by H1 the points in H which are one dimensional in H . Similarly, call H2 the
set of points in H which are two dimensional in H . Connected components of H1

are called either branches or bridges. Connected components of H2 are called
ridges. A branch of G is a connected component of H1 for which at least one
point has only one interior neighbor. All other connected components of H1 are
called bridges.
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Figure: A simply connected region with ridges, bridges. All branches have been
pruned. Now, we have to start etching the ridges. We have the choice of 4 end
ridges here. The simply connectivity assures that there is an end ridge.
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Figure: The only situation, where we can not trim any more one dimensional
branches nor two-dimension ridges.

The set int(G) is the union of points which are two-dimensional in int(G) and
points which are one-dimensional in int(G). We will use two procedures called
pruning and etching to make the region smaller. The pruning procedure removes
a one-dimensional interior point at branches. The etching procedure removes a
two-dimensional interior point at ridges.
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Figure: Pruning reduces the lengths of branches. Since curvature is local, we only
need to check for a few end situations that the total curvature does not change.

Lets start with the pruning procedure which removing interior points which
are one-dimensional in int(G). It allows us to remove one-dimensional branches
until we can no more reduce one-dimensional points in int(G). Removing one-
dimensional parts will make sure that there will be a two-dimensional ridges ready
for the etching procedure. Here are the situations which can occur locally at a point
of a branch.
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Figure: A one-dimensional point which has 1 interior neighbor. After removing a
boundary point, we end up with region 0.
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Figure: Reducing a one dimensional point at the boundary. For any of the two
situations, we end up with a region with one interior neighbor.
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Figure: For any of the first 3 situations, we end up with two neighboring interior
points.

After reducing one dimensional branches, the tree still can have one dimensional
parts: these are 2D ridges connected with one-dimensional bridges which can not
be pruned without changing the topology.
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Figure: Etching thins out ridges. The etching is done at ridges which are end
ridges, where only one bridge is attached. With too many bridges attached, the
etching process might not work.

The etching procedure is invoked if no one-dimensional branches are left. The
region consists now of two-dimensional ridges connected with bridges. Our goal is
to see that we can remove a two-dimensional interior point of a ridge.
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The simply connectivity implies that there is a ridge which has only one bridge
connected to it. To see this, look at a new graph, which contains the two-dimensional
ridges as vertices and one-dimensional bridges as edges. This graph has no closed
loops and is connected and must be a tree with at least one end points. We
can consequently focus our discussion to such an end-ridge for which only one 1-
dimensional bridge is attached. We are able to remove a boundary point on the
opposite side of that region, where no branches can be and where the boundary is
”smooth”.
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Figure: Reducing a two-dimensional interior point at the boundary which has 2
interior points as neighbors.
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Figure: Reducing a two-dimensional point at the boundary which has 3 interior
points as neighbors.
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Figure: A situation where the point has 3 interior neighbors and where the point
can not be reduced.
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Figure: A situation, where the point has 4 interior neighbors and where the point
can not be removed.
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Figure: A situation, where the point has 4 neighbors which are interior points and
where the point can not be removed.
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Figure: Four interior points bounding an interior point. The middle point can not
be removed while keeping the region a smooth region.
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Figure: Having exactly 5 interior points bounding an interior point is not possible.
We then necessarily have 6 neighbors.
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Figure: A bridge and branches. For the picture with the bridge, no interior
point which is one-dimensional in int(G) can be removed. For the picture with
the branches, no interior point which is two-dimensional in int(G) can be removed.
This is a situation, where the branches first need to be trimmed.

Once the etching process is over, we can again start pruning branches, or we are
left with a region with only one interior point. If a region G can no more be pruned
and edged then H consists of only one point and G consists of only 7 points and in
this case, we know the total curvature is 12.

Since pruning and etching did not change the curvature and we have demon-
strated that one can reduce down every simply connected region to a situation with
one interior point, this completes the proof of the curvature 12 theorem. �
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5. Discrete Gauss-Bonnet

To generalize the Umlaufsatz to domains which are not necessarily simply con-
nected we first define the Euler characteristic of a region using Euler’s formula:

Definition 13. A face in a domain G is a triangle (p, q, r) of 3 points in G for
which all three points have mutual distance 1. An edge in G is a pair p, q of points
in G of distance 1. A vertex is a point in G. Denote by f the number of faces
in G, by e the number of edges and v = |G| the number of vertices. The Euler

characteristic χ(G) of the domain G is defined as χ(G) = v − e+ f .

Example: for a simply connected region, the Euler characteristic is 1.

Lemma 5. The Euler characteristic does not change under the pruning and etching

operations defined above: both removing an end point of a one dimensional branch,

as well as removing a two dimensional point from a ridge does not change it.

Proof. The number of interior points of a smooth region is 2f − e + χ and which
can be proved by adding faces: each face added is equivalent to adding 2 edges. �
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Figure: A region, where no interior point can be removed any more and which has
more than one interior point is not simply connected.

Remark. The Euler characteristic of int(G) and G is the same if G is a smooth
region.

Theorem 6 (Discrete Gauss-Bonnet theorem). If G is a finite smooth domain G
with boundary C, then ∑

p∈C

K(p) = 12χ(G) .

We could use the same pruning-etching technique as before. However, pruning
and etching can lead to final situations which have no end points like a ring. Instead
of classifying all these final situations, it is easier to reduce the general situation to
a simply connected situation.

There are two ways, how to change the topology:

• build bridges between different connected components.
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• fill holes to make the region simply connected

Merging different unconnected components is no problem. As long as their com-
plement is a smooth region too, both the Euler characteristic as well as the total
curvature add up.

1. We can assume the region to be connected, because both curvature as well
as Euler characteristic are additive with respect to adding disjoint domains. To
illustrate this more, we can also join two separated regions along with a one dimen-
sional bridge. The curvature drops by 12, the number of connected components
drops by 1.
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Figure: Joining two regions changes the total curvature by 12.

Definition 14. The interior of a hole W is a bounded simply connected smooth
region such that int(W ) is a component of the complement of G. By definition a
whole W and the region G share a common part of the boundary.

By the Umlaufsatz for simply connected regions, the hole has total curvature
12. A key observation is that the point-wise curvatures at the inner boundary of G
enclosing the hole are just the negative of the corresponding point-wise curvatures
of the hole. This follows almost from the definition of curvature and the fact that
the circles |S1(p)∩W |+ |S1(p)∩G| = 6 and |S2(p)∩W |+ |S2(p)∩G| = 12 so that
KW (p) +KG(p) = 0.
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Figure: Filling a simply connected hole from a larger region adds to the curvature
exactly the same amount than the total curvature of the hole. The reason is that
the point-wise curvatures of the removed inside region matches exactly the curva-
tures of the inner outside region if the inside region and the outside region have a
common one-dimensional boundary.

This shows that if we fill a hole, the total curvature increases by 12. Simultane-
ously, the Euler characteristic increases by 1.

Alternatively, we could also cut rings:
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Figure: When cutting a ring, the curvature changes from 0 to 12. Only the last
region is a smooth region. The second last is a region but not smooth because the
complement is not a region.

6. Compact flat graphs

If we introduce identifications in the hexagonal background graph X , the topol-
ogy of the background space changes. Identifying points along two parallel lines
for example produces a flat cylinder. With a triangular tiling, we can tessellate a
torus. Because there is no boundary now, the sum of the curvatures is zero, which
is the Euler characteristic. Note that there are many different non-isometric graphs
which lead to such tori. We call them twisted tori. As graphs they are different
even if the number of faces, edges and vertices are fixed.
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Figure: A flat torus obtained by identifying opposite sides of a rectangular domain
in a hex lattice. The total curvature is zero.

The notion of regular domain can be carried over to discrete manifolds like the
twisted tori just mentioned. Let X be such a twisted background torus. We assume
that it is large enough so that S2(p) is a circle at every point. Let G be a subgraph
of X defined as before. We still have:

Theorem 7. If G is a domain in a background torus X, then
∑

p∈δG

K(p) = 12χ(G) .

Remark: More flat compact graphs can be obtained using ”worm hole” con-
structions. Let X be a possibly twisted torus as defined above and let p,q be two
points for which the discs Br(p) and Br(q) are disjoint and the spheres Sr(p) and
Sr(q) are circles. Any orientable graph isomorphism between Sr(p) and Sr(q) pro-
duces an identification of points in G = X \ Br−1(p) ∪ Sr(p) \ Br−1(q) ∪ Sr(q).
Without identification, the total curvature of the boundary of the domain G is∑

p∈C K(p) = 12χ(G) = −24 because every removed disc produces curvature −12.

7. Combinatorial curvature

In this section, we consider a more elementary Gauss-Bonnet formula. The
curvature is again defined by a Puisaux discretization, but only circles of length 1
appear in the definition. It is a first order curvature.

Definition 15. For a two dimensional graph with boundary, we define the com-

binatorial Puiseux curvature as

K1(g) = 6− |S1(g)|
for interior points and

K1(g) = 3− |S1(g)|
for boundary points.

For this combinatorial curvature, Gauss-Bonnet is much easier. For subgraphs
of hexagonal lattice the boundary curvature is almost trivially equal to 6 because
the curvature is related to angles of the corresponding polygon: for a boundary
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point, K1(p)π/3 is the interior angle of the polygon. Because
∑

p K1(p)π/3 = 2π

by the polygonal version of the Umlaufsatz, we have
∑

p K1(p) = 6.

Actually, Gauss-Bonnet holds in great generally for arbitrary two-dimensional
graphs with or without boundary. Since it is so closely related to the Euler char-
acteristic, we should the attribute it to Euler, even so we are not aware that Euler
considered K1(g), nor that he looked at the dimension of a graph.

Theorem 8 (Combinatorial Gauss-Bonnet). Assume G is a two-dimensional finite

graph for which the boundary is either empty or forms itself a one dimensional set.

Then

∑

g∈G

K1(g) = 6χ(G) .

Remarks.

1) This result does not need the rigid requirements on the ”domain” as before nor
does the graph have to be part of X ; it works for any two-dimensional graph, with
or without boundary.
2) The result appears in a different formulation, which does not make its Gauss-
Bonnet nature evident: the Princeton Companion to Mathematics [2] mentions on
page 832 the formula

∑
n(6 − n)fn = 12, where fn is the number n-hedral faces

and summation is over all faces. This is an equivalent formulation, but it makes
the Gauss-Bonnet character less evident.

Note that the combinatorial Gauss-Bonnet theorem is entirely graph theoret-

ical. It avoids the pitfalls with the definition, what a polyhedron is [4]. (Common
definitions of ”polyhedra” refer to an ambient Euclidean space or impose additional
structure on a graph). We can take a general finite graph which is two-dimensional
at each point. Its points are either boundary points, points where the unit sphere
is one-dimensional but not closed, or an interior points, where the unit sphere is a
circle, a simple closed graph without boundary.

Proof. Assume first that the graph G has no boundary. For a two-dimensional
graph, all faces necessarily are triangles. Therefore, the number of faces f and the
number of edges e are related by the dimensionality formula

3f = 2e .

Furthermore, we have the edge formula

∑

g

|S1(g)| = 2e

which is obtained by counting edges in a different way.
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Figure: the identity 3f = 2e. Figure: the identity
∑

g |S1(g)| = 2d.

Using the definition of the Euler characteristic, and these two formulas, we com-
pute

6χ(G) = 6f − 6e+ 6v = −2e+ 6v

= −
∑

g∈G

|S1(g)|+ 6v = −
∑

g∈G

(|S1(g)| − 6) =
∑

g∈G

K1(g) .

This finishes the proof in the case of a graph without boundary.

The case with boundary can be reduced to the boundary-less case: The boundary
is a union of closed cycles. For each of these m cycles δGi just add an other point
Pi and add n = |δGi| edge connections from each of the cycle boundary points
of Gi to Pi. This produces a graph H without boundary and which contains G
as a subgraph. The formula without boundary shows that 6χ(H) is the sum of
curvatures of the original interior points and the sum of the curvatures of the
boundary points as well as the sum of the curvatures K1(Pi) = 6−ni to each newly
added point Pi:

6χ(H) =
∑

g∈int(G)

K(g) +
∑

g∈δG

KH(g) +
∑

i

(6− ni) .

We also have

χ(H) = χ(G) +m− |δG|+ |δG| = χ(G) +m .

For boundary points, KH(g) = 6 − |S1(g)| − 2 and KG(g) = 3 − |S1(g)| so that
KH(g)−KG(g) = 1. From the previous boundary less case, we get

6χ(H) =
∑

g∈H

KH(g) =
∑

g∈int(G)

KG(g)+

m∑

i=1

∑

g∈δGi

(KG(g)+1)+(6−ni) =
∑

g∈G

K(g)+6m

so that

χ(G) = 6χ(H)− 6m =
∑

g∈G

K(g) + 6m− 6m =
∑

g∈G

K(g) .

�

The just verified combinatorial Gauss-Bonnet is entirely graph theoretical.
Our curvature definition K was motivated from the notion of Jacobi fields in
the classical case given by second derivatives. While ”smoothness” requirements”
are necessary for the more sophisticated Gauss-Bonnet formula, the just mentioned
metric Gauss-Bonnet holds for any polyhedron with triangular faces. For example,
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every finite triangularization of a two-dimensional compact manifold works. Let us
explain a bit more, why the curvature

K = 2|S1| − |S2|
is ”differential geometric”: the Gauss-Jacobi equations f ′′ = −Kf in dif-
ferential geometry require the second differences of a Jacobi field f . [1]. Our
starting point had been to extend Jacobi fields to the discrete for numerical pur-
poses: for a discretized Jacobi field with smallest space step 1, we have f ′′(0) =
f(2)− 2f(1) + f(0) = f(2)− 2f(1). The Jacobi equations suggest to call this −K.
Since f(k) is the variation of the geodesic when changing the angle, we can integrate
over the circle and we get the length |Sk| of the circle of radius k. Therefore K is
a multiple of 2|S1| − |S2| and there is no reason to normalize this in the discrete.
The ”first order curvature” K1 = 6−|S1| on the other hand only requires first order
differences. The curvature K has some advantages over the curvature K1:

• the curvature formula for the boundary and in the interior is the same,
while for the curvature K1, one has to distinguish boundary and interior.

• there is no reference to a flat background structure for K, while K1 refers
to the flat situation with via integers 6 or 3.

• it can be generalized to more general situations, where the distance in the
graph can vary and where we have no natural flatness as a reference. We
can look for example for distance functions which minimize the total cur-
vature.

• it is more closely rooted to differential geometry of manifolds and classical
notions like Jacobi fields, a notion which is of ”second order” too.

• it can be adapted to higher dimension, when defining scalar curvature for
graphs and where no natural ”flat triangulated ambient reference graph”
exists.

To summarize, we think that while K1 is ”metric”, K has a more ”differential
geometric” flavor. Similarly as many metric results extend to the differential geo-
metric setup, things are more restricted also in the discrete, if higher order difference
notions are used. The limitations of the results are related to similar limitations
we know in the continuum.

We can combine the two results: for the Puiseux curvature with radius 2 defined
by

K2(g) = 12− |S2(g)| ,
we get the following corollary:

Corollary 9 (K2 formula). If G is a two-dimensional smooth domain in the tri-

angular tessellation X of the plane, then
∑

g∈C

K2(g) = 24χ(G) .
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Proof. Since
∑

g 12 − 2|S1(g)| = 12χ(G) and
∑

g 2|S1(G)| − |S2(g)| = 12χ(G), we

get by addition
∑

g 12− |S2(g)| = 24χ(G). The left hand side is the combinatorial
Puiseux curvature for radius r = 2. �

Note that unlike the combinatorial curvature formula
∑

g∈G K1(g) = 6χ(G),
the K2 formula is only obvious modulo the main result for ”smooth domains”
proved here. If we wanted to establish Gauss-Bonnet type results for curvatures
like K3 = 3S1−S3, the restrictions on discrete domains would be even more severe.
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