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ON WEAK MIXING, MINIMALITY AND WEAK DISJIOINTNESS OF ALL
ITERATES

DOMINIK KWIETNIAK AND PIOTR OPROCHA

Asstract. Given a continuous map, we study the recurrence propertiesféf™ = f x
f2x ... x f™ In contrast to minimal case, we show that in general thereigelation
between topological weak mixing and transitivity ™. In minimal case, we survey
some old results related to the topic and show that some wof thark also in noninvertible
case. That way we answer some open question existing irt¢hatlire.

1. INTRODUCTION

Let X andY be compact metric spaces and fetX — X andg: Y — Y be con-
tinuous maps. In the theory of dynamical systems there i$-egthblished and exten-
sively explored notion ofveak disjointnessf dynamical systems given bfyandg (see
[1,[12,[14[15]). It was introduced both, in topological dymes and ergodic theory set-
ting, by Furstenberg in his seminal paper of 1967 [8]. Letacsl, thatf andg areweakly
disjointif their Cartesian produdt x g is topologically transitive. Weakly disjoint systems
are kind ofindependenbne from another. It is independence in a rather weak senise as
may happen that is weakly disjoint from itself (if it is the case, we say thiats weakly
mixing).

Therefore, it is natural to askCan f be weakly disjoint from some of its iterate¥, f
where m> 2? This question is connected with the analysis of the receegmoperties
of f x f2x...x f™ form> 2, and the latter question can be thought of as a topological
dynamics counterpart of the problems considered in ergbaicry (see[[11]). Here we
consider two properties, very similar to weak mixing, naynel

(%): for eachm e N the mapf x f2 x ... x f™is transitive.
(x%): for eachm e N there is a residual set of c X such that for every point € Y
the tuple &, ..., x) € X™has a dense orbit iX™ under the mag x 2 x ... x f™,

Following [24], we will say thatf is multi-transitiveif it satisfies &) and thatf is A-
transitiveif (xx) holds.

It is known that both properties presented above are equivéd weak mixing iff is
a minimal homeomorphism. The proof of this equivalencegisinly elementary notions
of topological dynamics is contained in‘]24]. The implicatistating that weak mixing
implies A-transitivity was earlier proved by Glasner ([11]) with thelp of the general
structure theorem for minimal homeomorphisms.[IA [24] thesiion whether this impli-
cation holds for necessarily invertible continuous maps eé open. Here we answer it
affirmatively.

Moreover, we solve another open problem statedin [24]. Vdevghat in general there
is no connection between weak mixing and multi-transitiby constructing examples of
weakly mixing but not multi-transitive and multi-transii but not weakly mixing systems.
Finally, we dfer some remarks regarding the last questiori_of [24]. Mobthasked if
there is a nontrivial minimal syster:. X +— X such thatf x f2 x ... x f™: XM XM is
minimal for somem > 2.
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2. PRELIMINARIES

Let X be a compact metric space ahdX — X be a continuous map. For evary> 1
denote the Cartesian productroftopies ofX with itself by X™ and define two maps of™
toitself: ™ = f x ... x fandftm = f x f2x ... x f™

Given any setd), V c X we denoteN(U, V; f) = {n>0 : f(U)NV # 0}. If the map
f is clear from the context we simply writé(U, V).

A map f is minimal if it has no proper closed invariant set, that iif= X nonempty,
closed and (K) c K thenK = X. We say thaff is transitiveif N(U, V) # 0 for any pair of
nonempty open setd, V c X. A setS c Z. is syndetidf there is a constari > 0 such
that for everyn > we have p,n+ L] Nn'S # 0. Then we say that a mapis syndetically
transitiveif N(U, V) is syndetic for any nonempty open sets/ c X. If f x f is transitive,
then we say that is weakly mixing If for any nonempty open sét c X there isM > 0
such thaIU}\il f(U) = X thenf is said to bestrongly transitive It immediately follows
from the definition that any strongly transitive map is sytcigly transitive.

Let f andg be two continuous surjective maps acting on compact mgtecesx and
Y, respectively. We say that a nonempty closedJsetX x Y is a joining of f andg if it
is invariant for the product mapx g and its projections on first and second coordinate are
X andY respectively. IfX x Y is the only joining off andg then we say that andg are
disjoint.

The notion of disjointness was first introduced by Fursteglie[8]. It is well known
that if f andg are disjoint then at least one of them is minimal. It is alsbswhard to
verify that if f, g are both minimal, then they are disjoint if and onlyfik g is minimal.

3. SIRONG TRANSITIVITY AND A-TRANSITIVITY

The main result of this section (Theoré&in 5) is obtained asrallaoy from Theoreni 4
below. The Theoreml4 was proved ky 24, Theorem 4] with thetmeal assumption
that f is a homeomorphism. Here we present it with a new proof, whiolks for any
continuous map.

We recall two results froni[24], modifying first to a suitalitem.

Theorem 1 ([24, Proposition 1]) Let X be a compact metric space. A continuous map
f: X - XisA-transitive if and only if for each i@ 1 and nonempty opensets\Y,...,Vm C
X, there exists iz 1 such that

m
un ﬂ 7NV # 0.
i=1

Theorem 2 ([24, Corollary 2]) Let X be a compact metric space. If X — X is a weakly
mixing and syndetically transitive continuous map, théf fis also weakly mixing and
syndetically transitive for any m 1. In particular, f is multi-transitive.

The induction step in a proof of Theorém 4 is based on thearig:

Lemma 3. Let X be a compact metric space. If X — X is multi-transitive continuous
map, then for any nx 1 and nonempty open sets,V..,Vy C X there is a sequence of
integerstkn}y o such that for each = O we have k—n> Oand foreach = 1,..., m there

isa sequenc(a\/i(”)}‘;;’:O of nonempty open subset qfs¥ich that
fl-i(v) c v,
fori=1,...,m,and j=0,...,n.
Proof. Let Vs, ...,V be nonempty open subsetsXfSetW = Vi x ... x V. We proceed
by induction om. From multi-transitivity off there isky > 0 such that {¢™)ke (W) "W #

0, or equivalentlyf*o(V) "V # 0 fori = 1,...,m. Putv® = f-ko(\v) n Vi c V; for
i =1,...,m, to complete the base step.
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For the induction step, suppose tmat 1 and we have found a sequerige. . ., kn-1
and for each = 1, ..., mwe have nonempty open sq@“‘l) c V; such that
(1) fliv™ ) cv;  and k- j>0,

holdforj=0,...,n—1. Fori = 1,....m, letU; = f"(V"). PutU = Uy x ... x Up,
By multi-transitivity we get an integés, such thak, —n > 0 and ¢™)x(U) N W # 0, or
equivalentlyf % (Vi) nU; 2 0, fori = 1,...,m. Fix 1 <i < m. We have

flka(Ui) NV; = flk(F VD)) A v = Fleenv® Dy n v

By the aboveV™ = V("™ n f-krn(v) is nonempty, open, and clearfff" (V") c V.
Moreover V"™ c V™™ Using [1), we conclude that

fl-i(v) c v,
for j =0,...,n. This completes the proof. O

Theorem 4. Let X be a compact metric space. If X — X is a weakly mixing and
strongly transitive continuous map, then fAgransitive.

Proof. First, note thaff is multi-transitive by Theoreild 2. In particular, it is trathse, and
surjective.

To prove thatf is A-transitive we are going to use the equivalent conditiovioled by
Theorenil. We will prove by induction anthat for any nonempty open sedsVi, ..., Vn C
X, there exists > 1 such that

m
Un( )"V =o.
i=1

Form = 1 this statement simply follows from transitivity df Assume we established
the result for somen > 1. We fix nonempty open set$ andVy, . .., V1, and we want

to show that there are > 0 andz € U such thatf"(2) € Vi fori = 1,...,m+ 1. By
strong transitivityUﬂ-“:l f(U) = X for someN > 0. LemmdB gives us nonempty open sets

VN v and integers, . . ., ky such that
flkoiv™ycvi  and ki > |,
fori = 1,...,m+1andj =0,...,N. By the induction hypothesis we can find: V{" and

n > 0 such thatf™"(x) e Vi(i\'l) fori =1,...,m. Clearly, there iy € X such thatf"(y) = x.

But strong transitivity gives u$!(2) = y for somez e U and 0< j < N. ¢From the above
we get

fi(n+kj)(z) — fi(n+ki)—j(y) — fikj—j(fin(y)) —
= fli(f0D(x) e fRiv) c v,
foranyi =1,2,...,m+ 1. We showed that
zeUn (V) n...n f Dy L),
which completes the proof. O

Theorem 5. Let X be a compact metric space. If X — X is a weakly mixing and
minimal continuous map, then f Astransitive.

Proof. Itis well known that any minimal map (invertible or not) on@napact metric space
is strongly transitive (se€[21, Theorem 2.5(8)] for a pjow¥e apply Theorerl4 to finish
the proof. O

Now we may formulate a general version [0f[[24, Corollary 7hieth was stated there
for homeomorphisms. Only the implication given by Theoféim Bew here. The rest of
the proof is identical as i [24].
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Theorem 6. Let f: X — X be a minimal continuous map on a compact metric space X.
Then the following are equivalent:

(1) fx f2is transitive.
(2) fis multi-transitive.
(3) fisweakly mixing.
(4) fisA-mixing.

4. WWEAK MIXING AND MULTI-TRANSITIVITY
In [24, page 10] T. K. S. Moothathu asked the following quasti
Question 1. Are there any implications between weak mixing and muatisitivity?

The aim of this section is to show that these notions are teter@in a general situation,
that is a continuous map can be multi-transitive and not Vyaakking, or weakly mixing
and not multi-transitive. As it is often the case, to finishr task we will construct a
symbolic systems.

Consider the sef = {0, 1} endowed with discrete topology. L&tdenote the set of
all infinite sequences of 0’s and 1's regarded as the produafinitely many copies of
A with the product topology. All sequencese X are indexed by nonnegative integers,
X = XpX1X2.... Then theshift transformation is a continuous map X +— X given by
o(X) =y, wherex = (X), Y = (Vi), andy; = Xi;1 fori =0,1,.... Any closed subseX c
invariant foro- is called asubshiftof . A word is a finite sequence of elements{6f 1}.
Thelengthof a wordw is just the number of elementswf and is denotefiv. We say that
awordw = wiw, ... W appears irk = (x;) € X at positiont if x.j-1 =wjforj=1,...,1.

If X is a subshift, then thtanguageof X is the set{(X) of all words which appear at
some position in some elemext X. For any wordw let [w]; denote the element of the
sequence standing at positiohand let Spd) = {|i =gl s wli=[w];=21i# j}. The set
Ln(X) consists of all elements df(X) of lengthn.

Let P be a set of nonnegative integers. We say that a word wiw,...w; is P-
admissibleif w; = w; = 1 for some 1< i < j < | implies|i — j| € P, equivalently, if
Spfv) c P. LetXp be the subset af consisting of all sequencessuch that every word
which appears irx is P-admissible. It is easy to see thgt is a subshift, and’(Zp) is
the set of allP-admissible words. We will writerp for o restricted toXp, and call the
dynamical system given hyp: Xp — Xp aspacingshift. The class of spacing shifts was
introduced by Lau and Zame in[22], and for a detailed expmsibf their properties we
refer to [4].

Let w be aP-admissible word. Byw]p we denote the set of al € Xp such that the
wordw appears at position 0 i We call the setW]p a P-admissible cylindeta cylinder
for short). The family ofP-admissible cylinders is a base of topologygfinherited from
X. It is easy to see that definition of a spacing shift impliest td([1]p, [1]p; op) = P.
Moreoverop is weakly mixing if and only ifP is athick set (se€[[22,14]). A thick setis a
subset of integers that contains arbitrarily long intes\Blis thick if and only if for every
n, there is somé such thatk,k + 1,...,k+ n—-1} c P). If wis a word anch > 1 then
by w" we denote a word which is a concatenatiomabpies ofw. If n = 0 thenw” is the
empty word

4.1. Multi-transitive and not weakly mixing example. The results of this section gen-
eralize construction of totally transitive not weakly nmigispacing shift presented (A [4].
We say that a finite s&& c N is g-dispersedwhereq > 2, if for everya,b € S uU {0}

such thaa # b we havda - b| > g.

Lemma 7. Let M,N be positive integers such that M 3 and let Ac N be an M-
dispersed finite set. Then there exists an M-dispersed fait® containing A and such
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that for k= maxA + 1 and any pair of sequences of words u.,uy and \, ..., vy from
Lk(Zg) there is n> 0 such that
c"(ulg) N[vilg#0 fori=1,...,N.

Proof. Letk = maxA+ 1. Letm = |£(Za)[?N be the cardinality of the set of al-element
sequences of pairs of words frofix(X,). We enumerate all members of this set as a list
W@, WM Hence, eacV') is an ordered list oN pairs of words fromC(Za):

wi) = ((u(lj),\/(lj)), s (uﬁ),\fd))), foreachj=1,...,m

where (li(j),\/i(j)) € Ly(Za) x Lk(Za) for everyi = 1,...,N. Choose integerk,...,In
fulfilling the following conditions

) l1>2k+M -1,
(3) i > (N+ 1)1,
Given 1<i < Nand 1< j < mwe define
Wi(i) — ui(j)Oilj’k\/i(j),
wherely, ..., Iy are as above. Usinfl(2) arid (3), it is easy to see that
(4) fily —k+Lil, +k=1]n[jls—k+1, jls +k-1] = 0,

forl<e,f<ma#pand1<i, j < N. Let

B= Lmj LNJ Spi?).

j=1i=1

If n e Athen letu = 101102, Clearly,n € Sp() andu € Li(Za), sincek = maxA+ 1.
This givesA c B. The construction o‘fvi(') implies that for 1< i < Nand 1< j < mwe
have

(5) Sp) \ Ac il —k+ Ll + k- 1].
Therefore,
(6) mnNB\A>1l;-k+1>M+k

In particular, mirB = min A > M. Moreover, we conclude forrl(4) arid (5) that i€ B\ A,
then there are unique index¢s) and j(r) such that Sp@/vi(('r()r))).
Next, we are going to prove thatis M-dispersed, that i$q— p| > M for eachq, p € B,

g # p. We consider three cases:

Casel: Both pandqbelong toA.
Casell: Both pandqbelongtoB\ A.
Caselll: None of the above cases hold.

The first case is clear, sindeis M-dispersed. The third case follows frof (6). To prove
the remaining cas&ase |1, we consider subcases. But first note that in the computation
below we use[{2[-15) without further reference. Giyei € B\ A consider:

CasellA: j(p) # j(q). Without lost of generality we assumé) > j(p). We have

9 2 (@@ -k+1=ljg-k+1
> (N+1)|j(p)—|(+12N|j(p)—k+l+|1
> i(Pljp +k-1+M=p+M.

But then
q-p= M.
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CaselIB: j(p) =j(q), but i(p) # i(g). Without lost of generality we assunig]) >
i(p). Letj = j(p) = j(a). Then

g > i(lj-k+1>(@(p+1)-l;-k+1
> i(plj-k+1+li>i(plj+k-1+M>p+ M.

Hence,
q-p=M.

CaselIC: j(p) =j(q), and i(p) = i(q). Letj = j(p) = j(q) andi = i(p) = i(q). For
r € {p,q} we define

s(r) = minfs: [w]s = W], = 1}.
Clearly, eithers(p) # (), or s(p) + p # S(Q) + 9. We have
19— pl I(s(@) +a) — (@) — (s(p) + p— S(P))l
I(s(@) + a) = (s(p) + p) — (s(a) — s(p))l
lI(s(a) + @) = (s(p) + P)I - Is(a)) — S(P)II-

But|(s(@) +a) - (S(p) + p)I, [S(A) - S(p)| € AU{0}, so eitheit(s(q) + ) — (S(p) + P)I #
|s(@) - s(p)l and then

I(s(@) + @) = (s(p) + P)| = IS(q) — S(p)| = M,

or|(s(a) + a) — (s(p) + P)I = Is(a) — S(p)| # 0, and then
lg—pl > 2M.

\%

It remains to prove that for any pair of sequences of wards. ., uy andvy,.. ., VN
from L(Zg) there isn > 0 such that

A"([ulg) N[vilg#0 fori=1,..., k.
Observe thaly(Xs) = Lk(Za), Since mirB\ A > k, maxA+ 1 = k, andA c B. Therefore,

according to our notation defined at the beginning of the fprfoo any two sequences of
wordsuy, ..., uy andvy, ..., vy from Lg(Zg), there isj = 1,..., msuch that

WO = ((ug, va), . .., (Un, W)

Letvvi(’) = y;0"i~*y; as above. Clearlw(l'), ....w) ¢ L(Zp), and from the definition ofvi(‘)
we conclude that _
WD e d"(ulg)n[wle  forn=1;.
Hence,
o"(ulg)N[vlg#0 fori=1,...,N,
wheren = 1. ]

Theorem 8. There exists a set P N such that the spacing sh{ffp, o-p) is multi-transitive
but not weakly mixing.

Proof. Fix any integefM > 3 and denotd®, = {M}. Define a sequence of sé?g c N
(n > 1) inductively by puttingP,,1 = B, whereB is the set obtained foA = P,, N = n,
andM as above by Lemmnid 7. Denote

P= 0 Pp.
n=0

Easy induction give$p — gl > M for every distinctp,q € PandPy ¢ P1 ¢ P2 &

.... In particularP is not thick, soXp is not weakly mixing. We are going to show that
opX o3 x...xoNis transitive foranyn = 1,2, .. .. Fix any integem > 1 and choose any
open setsJy,...,Umn, Va,..., Vm € XZp. Without loss of generality, we may assume that
fore each 1< i < mthere are wordsi, v; € £(Zp) such that {ii]p c U, and j]p C Vi.
We may also assume that for eack 1 < mwe haveu;, vi € Ly(Zp) for somel > mand
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k = maxP, + 1. The last equality implies thaix(Xp) = Lk(Zp). If m < | then we put
uj=Vvj=umforj=m+1,...1L
Now, by Lemmd, there i§ > 0 such that
aBUN NV o ol([ulp) N [vile
> o"([ulr) N [vip # 0
fori =1,...,1. We have just proved thatp><o-§,><. ..Xopistransitive foranyn= 1,2, ..,
which in other words means thap is multi-transitive. O

It is clear from the construction d? in LemmalY, that the spacing shift- from
the assertion of Theoren 8 is not syndetically transitiieces the seP, and as a result
N([1]p, [1]p), have thick complement. Then the following question &ise

Question 2. Does every multi-transitive and syndetically transitiyestem have to be
weakly mixing?

4.2. Weakly mixing and not multi-transitive example. Fix m> 2. Let

00

BMmK) = {m* L 1+1,... ,m*-1, and P(m)= U B(m,K).
k=1
Observe that for evenn > 2 the setP(m) has the following property
@) peP(m — m-pe¢ P(m).

Theorem 9. Let m> 2 and P = P(m) be as defined above. Then= op % ...ar,;“‘l is
transitive, butr x of' is not transitive. In particular, the spacing shiffp, op) is weakly
mixing, but not multi-transitive.

Proof. It is easy to see tha® is thick, hencerp is weakly mixing. To prove that =
op X ...optis transitive, we fix open cylinders
[WWTe, . U™ Ve, Ve, . [V ]p € £(P).
Sett = m?. Without lost of the generality we may assume thiét| = V0| = t for some
k>1,andany = 1,...,m- 1. Sets = m**! + n and define
wi = yOgis-ty), wherei = 1,...,m- 1.
Clearly,
[wW0%p < (o) (1) N [U¥.,
and therefore
W]p x ... x [WM™Y]p ¢
(Ve x . x ™ ]p) 0 ([uP]p x . x [u™ D),
so it is enough to prove thatf’]p # 0, that is,\®) € £(Zp). It follows from definition of
w) that ' ‘ ‘
Sp@?) = sp®) u SpU) Ul -k : (1, k) € A,
whereA is some subset of
0, ..., =L x i - mP* i P e (1) - 1),
Hence, we have
| —ke {m*? . mP*2 - 1) c B(mk+ 1),
andw®) e L(Zp) as desired. We proved that= op X ... 1 is transitive. To finish the
proof it is enough to show thatp x o' is not transitive. Let) = V = [1]p X [1]p. Itis
easy to see fronfiL{7) that
(pxo)'U)NV =0
for everyn > 0, soop x o cannot be transitive. O
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In the literature there are considered other recurrencpepties stronger than weak
mixing, see e.gl[10]. Itis natural to ask if we can replacakvmixing by one of them in
Theorenti®. In the view of the above results we would like toeggbe following problem.

Question 3. Is there any nontrivial characterization of multi-transi¢ weakly mixing sys-
tems?

5. MINIMAL SELF-JOININGS

The last question in[24] ask€an fx f2x...x f™: XM X™be minimal if m> 2 and
X has at least two elements®t us call a magd : X — X providing an #irmative answer
to the above questiomulti-minimal Apparently, Moothathu posing his problem was not
aware that the examples of multi-minimal homeomorphisreskaown. But since their
existence is stated in the language slighti§etient than terminology used in]24] we find
it necessary to add some explanations. In fact the construat multi-minimal systems
is related to the considerations on multiple disjointness.

The first example of a system disjoint from any of its iterdi@e are aware of) is the
example of a PODgroximal orbit densgminimal homeomorphism given by Fursten-
berg, Keynes and Shapiro in/[9]. By Theorem 2.6[0f [23] eveDDPsystem hapositive
topological minimal self-joininggsee [238]). It also follows from Proposition 2.1 6f [23]
that every homeomorphism possessing positive topologiga@mal self-joinings is multi-
minimal, and so is the example frof [9]. Furthermore, detdtswork [16], together with
his joint work with Rahe and Swansdn [17] shows that Chacexesnplel[7] is POD, and
hence also multi-minimal. I [2] Auslander and Markley oduced the class afraphic
minimal systems, which generalizes POD homeomorphismsy &lso proved that each
graphic flow is multi-minimall[2, Corollary 22]. Moreovers@announced iri [2, page 490]
Markley constructed an example of a graphic homeomorphvegiich is not POD, hence
it is another kind of multi-minimal homeomorphism.

More information about minimal subsystems b f2 x ... x f™is to be found in
[3,5,[6,[18[19] to name only a few. There is also in some seasadlpl and certainly deep
theory of minimal self-joinings (a part of ergodic theoriytroduced by Rudolph[25], see
Glasner’s book[[12]. We remark that although every weak ngxhinimal map is multi-
transitive it is not necessarily multi-minimal. Tlléscrete horocycle flow s an example
of a weakly mixing minimal homeomorphism such tiais topologically conjugated to
h?, and hence it is not multi-minimal (s€e 12, pages 26, and110H). The facts gathered
above prompt us to raise following questions:

Question 4. Is there any nontrivial characterization of multi-mininitglin terms of some
dynamical properties?

Itis also interesting whether is it possible to charactenmilti-minimal systems adding
some mild assumptions to Theoréin 6. In particular, we domdvk the answer for the
following question.

Question 5. Assume that f is a weakly mixing map such that f2 is minimal. Is f
necessarily multi-minimal?
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