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ON WEAK MIXING, MINIMALITY AND WEAK DISJOINTNESS OF ALL
ITERATES

DOMINIK KWIETNIAK AND PIOTR OPROCHA

Abstract. Given a continuous mapf , we study the recurrence properties off (∗m) = f ×
f 2 × . . . × f m. In contrast to minimal case, we show that in general there isno relation
between topological weak mixing and transitivity off (∗m). In minimal case, we survey
some old results related to the topic and show that some of them work also in noninvertible
case. That way we answer some open question existing in the literature.

1. Introduction

Let X and Y be compact metric spaces and letf : X 7→ X and g: Y 7→ Y be con-
tinuous maps. In the theory of dynamical systems there is well-established and exten-
sively explored notion ofweak disjointnessof dynamical systems given byf andg (see
[1, 12, 14, 15]). It was introduced both, in topological dynamics and ergodic theory set-
ting, by Furstenberg in his seminal paper of 1967 [8]. Let us recall, thatf andg areweakly
disjoint if their Cartesian productf ×g is topologically transitive. Weakly disjoint systems
are kind ofindependentone from another. It is independence in a rather weak sense asit
may happen thatf is weakly disjoint from itself (if it is the case, we say thatf is weakly
mixing).

Therefore, it is natural to ask:Can f be weakly disjoint from some of its iterates, fm,
where m≥ 2? This question is connected with the analysis of the recurrence properties
of f × f 2 × . . . × f m, for m ≥ 2, and the latter question can be thought of as a topological
dynamics counterpart of the problems considered in ergodictheory (see [11]). Here we
consider two properties, very similar to weak mixing, namely:

(⋆): for eachm ∈ N the mapf × f 2 × . . . × f m is transitive.
(⋆⋆): for eachm ∈ N there is a residual set ofY ⊂ X such that for every pointx ∈ Y

the tuple (x, . . . , x) ∈ Xm has a dense orbit inXm under the mapf × f 2 × . . . × f m.

Following [24], we will say thatf is multi-transitive if it satisfies (⋆) and that f is ∆-
transitiveif (⋆⋆) holds.

It is known that both properties presented above are equivalent to weak mixing iff is
a minimal homeomorphism. The proof of this equivalence using only elementary notions
of topological dynamics is contained in [24]. The implication stating that weak mixing
implies∆-transitivity was earlier proved by Glasner ([11]) with thehelp of the general
structure theorem for minimal homeomorphisms. In [24] the question whether this impli-
cation holds for necessarily invertible continuous maps was left open. Here we answer it
affirmatively.

Moreover, we solve another open problem stated in [24]. We show that in general there
is no connection between weak mixing and multi-transitivity by constructing examples of
weakly mixing but not multi-transitive and multi-transitive but not weakly mixing systems.
Finally, we offer some remarks regarding the last question of [24]. Moothathu asked if
there is a nontrivial minimal systemf : X 7→ X such thatf × f 2 × . . . × f m : Xm 7→ Xm is
minimal for somem≥ 2.
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2. Preliminaries

Let X be a compact metric space andf : X 7→ X be a continuous map. For everym≥ 1
denote the Cartesian product ofmcopies ofX with itself byXm and define two maps ofXm

to itself: f (×m) = f × . . . × f and f (∗m) = f × f 2 × . . . × f m.
Given any setsU,V ⊂ X we denoteN(U,V; f ) = {n > 0 : f n(U) ∩ V , ∅}. If the map

f is clear from the context we simply writeN(U,V).
A map f is minimal, if it has no proper closed invariant set, that is, ifK ⊂ X nonempty,

closed andf (K) ⊂ K thenK = X. We say thatf is transitiveif N(U,V) , ∅ for any pair of
nonempty open setsU,V ⊂ X. A setS ⊂ Z+ is syndeticif there is a constantK > 0 such
that for everyn ≥ we have [n, n+ L] ∩ S , ∅. Then we say that a mapf is syndetically
transitiveif N(U,V) is syndetic for any nonempty open setsU,V ⊂ X. If f × f is transitive,
then we say thatf is weakly mixing. If for any nonempty open setU ⊂ X there isM > 0
such that

⋃M
j=1 f (U) = X then f is said to bestrongly transitive. It immediately follows

from the definition that any strongly transitive map is syndetically transitive.
Let f andg be two continuous surjective maps acting on compact metric spacesX and

Y, respectively. We say that a nonempty closed setJ ⊂ X × Y is a joining of f andg if it
is invariant for the product mapf × g and its projections on first and second coordinate are
X andY respectively. IfX × Y is the only joining off andg then we say thatf andg are
disjoint.

The notion of disjointness was first introduced by Furstenberg in [8]. It is well known
that if f andg are disjoint then at least one of them is minimal. It is also not so hard to
verify that if f , g are both minimal, then they are disjoint if and only iff × g is minimal.

3. Strong transitivity and ∆-transitivity

The main result of this section (Theorem 5) is obtained as a corollary from Theorem 4
below. The Theorem 4 was proved by [24, Theorem 4] with the additional assumption
that f is a homeomorphism. Here we present it with a new proof, whichworks for any
continuous map.

We recall two results from [24], modifying first to a suitableform.

Theorem 1 ([24, Proposition 1]). Let X be a compact metric space. A continuous map
f : X 7→ X is∆-transitive if and only if for each m≥ 1 and nonempty open sets U,V1, . . . ,Vm ⊂

X, there exists n≥ 1 such that

U ∩
m
⋂

i=1

f −in(Vi) , ∅.

Theorem 2 ([24, Corollary 2]). Let X be a compact metric space. If f: X 7→ X is a weakly
mixing and syndetically transitive continuous map, then f(∗m) is also weakly mixing and
syndetically transitive for any m≥ 1. In particular, f is multi-transitive.

The induction step in a proof of Theorem 4 is based on the following:

Lemma 3. Let X be a compact metric space. If f: X 7→ X is multi-transitive continuous
map, then for any m≥ 1 and nonempty open sets V1, . . . ,Vm ⊂ X there is a sequence of
integers{kn}

∞
n=0 such that for each n≥ 0 we have kn−n > 0 and for each i= 1, . . . ,m there

is a sequence{V(n)
i }
∞
n=0 of nonempty open subset of Vi such that

f ik j− j(V(n)
i ) ⊂ Vi

for i = 1, . . . ,m, and j= 0, . . . , n.

Proof. Let V1, . . . ,Vm be nonempty open subsets ofX. SetW = V1× . . .×Vm. We proceed
by induction onn. From multi-transitivity off there isk0 > 0 such that (f (∗m))k0(W)∩W ,
∅, or equivalentlyf −ik0(Vi) ∩ Vi , ∅ for i = 1, . . . ,m. PutV(0)

i = f −ik0(Vi) ∩ Vi ⊂ Vi for
i = 1, . . . ,m, to complete the base step.
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For the induction step, suppose thatn ≥ 1 and we have found a sequencek0, . . . , kn−1

and for eachi = 1, . . . ,mwe have nonempty open setV(n−1)
i ⊂ Vi such that

(1) f ik j− j(V(n−1)
i ) ⊂ Vi and k j − j > 0,

hold for j = 0, . . . , n− 1. For i = 1, . . . ,m, let Ui = f −n(V(n−1)
i ). PutU = U1 × . . . × Um.

By multi-transitivity we get an integerkn such thatkn − n > 0 and (f (∗m))kn(U)∩W , ∅, or
equivalentlyf −ikn(Vi) ∩ Ui , ∅, for i = 1, . . . ,m. Fix 1 ≤ i ≤ m. We have

f ikn(Ui) ∩ Vi = f ikn( f −n(V(n−1)
i )) ∩ Vi = f ikn−n(V(n−1)

i ) ∩ Vi .

By the above,V(n)
i = V(n−1)

i ∩ f −ikn+n(Vi) is nonempty, open, and clearlyf ikn−n(V(n)
i ) ⊂ Vi .

Moreover,V(n)
i ⊂ V(n−1)

i . Using (1), we conclude that

f ik j− j(V(n)
i ) ⊂ Vi

for j = 0, . . . , n. This completes the proof. �

Theorem 4. Let X be a compact metric space. If f: X 7→ X is a weakly mixing and
strongly transitive continuous map, then f is∆-transitive.

Proof. First, note thatf is multi-transitive by Theorem 2. In particular, it is transitive, and
surjective.

To prove thatf is∆-transitive we are going to use the equivalent condition provided by
Theorem 1. We will prove by induction onmthat for any nonempty open setsU,V1, . . . ,Vm ⊂

X, there existsn ≥ 1 such that

U ∩
m
⋂

i=1

f −in(Vi) , ∅.

For m = 1 this statement simply follows from transitivity off . Assume we established
the result for somem ≥ 1. We fix nonempty open setsU andV1, . . . ,Vm+1, and we want
to show that there aren > 0 andz ∈ U such thatf in(z) ∈ Vi for i = 1, . . . ,m+ 1. By
strong transitivity,

⋃N
j=1 f (U) = X for someN > 0. Lemma 3 gives us nonempty open sets

V(N)
1 , . . . ,V

(N)
m+1 and integersk0, . . . , kN such that

f ik j− j(V(N)
i ) ⊂ Vi and k j > j,

for i = 1, . . . ,m+1 and j = 0, . . . ,N. By the induction hypothesis we can findx ∈ V(N)
1 and

n > 0 such thatf in(x) ∈ V(N)
i+1 for i = 1, . . . ,m. Clearly, there isy ∈ X such thatf n(y) = x.

But strong transitivity gives usf j(z) = y for somez ∈ U and 0≤ j ≤ N. ¿From the above
we get

f i(n+k j )(z) = f i(n+k j )− j(y) = f ik j− j( f in(y)) =

= f ik j− j( f i(n−1)(x)) ∈ f ik j− j(V(N)
i ) ⊂ Vi

for any i = 1, 2, . . . ,m+ 1. We showed that

z ∈ U ∩ f −n(V1) ∩ . . . ∩ f −n·(m+1)(Vm+1),

which completes the proof. �

Theorem 5. Let X be a compact metric space. If f: X 7→ X is a weakly mixing and
minimal continuous map, then f is∆-transitive.

Proof. It is well known that any minimal map (invertible or not) on a compact metric space
is strongly transitive (see [21, Theorem 2.5(8)] for a proof). We apply Theorem 4 to finish
the proof. �

Now we may formulate a general version of [24, Corollary 7], which was stated there
for homeomorphisms. Only the implication given by Theorem 5is new here. The rest of
the proof is identical as in [24].
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Theorem 6. Let f : X 7→ X be a minimal continuous map on a compact metric space X.
Then the following are equivalent:

(1) f × f 2 is transitive.
(2) f is multi-transitive.
(3) f is weakly mixing.
(4) f is∆-mixing.

4. Weak mixing and multi-transitivity

In [24, page 10] T. K. S. Moothathu asked the following question

Question 1. Are there any implications between weak mixing and multi-transitivity?

The aim of this section is to show that these notions are not related in a general situation,
that is a continuous map can be multi-transitive and not weakly mixing, or weakly mixing
and not multi-transitive. As it is often the case, to finish our task we will construct a
symbolic systems.

Consider the setA = {0, 1} endowed with discrete topology. LetΣ denote the set of
all infinite sequences of 0’s and 1’s regarded as the product of infinitely many copies of
A with the product topology. All sequencesx ∈ Σ are indexed by nonnegative integers,
x = x0x1x2 . . .. Then theshift transformation is a continuous mapσ : Σ 7→ Σ given by
σ(x) = y, wherex = (xi), y = (yi), andyi = xi+1 for i = 0, 1, . . .. Any closed subsetX ⊂ Σ
invariant forσ is called asubshiftof Σ. A word is a finite sequence of elements of{0, 1}.
Thelengthof a wordw is just the number of elements ofw, and is denoted|w|. We say that
a wordw = w1w2 . . .wl appears inx = (xi) ∈ Σ at positiont if xt+ j−1 = w j for j = 1, . . . , l.
If X is a subshift, then thelanguageof X is the setL(X) of all words which appear at
some position in some elementx ∈ X. For any wordw let [w] t denote the element of the
sequencew standing at positiont and let Sp(w) =

{

|i − j| : [w] i = [w] j = 1, i , j
}

. The set
Ln(X) consists of all elements ofL(X) of lengthn.

Let P be a set of nonnegative integers. We say that a wordw = w1w2 . . .wl is P-
admissibleif wi = w j = 1 for some 1≤ i < j ≤ l implies |i − j| ∈ P, equivalently, if
Sp(w) ⊂ P. Let ΣP be the subset ofΣ consisting of all sequencesx such that every word
which appears inx is P-admissible. It is easy to see thatΣP is a subshift, andL(ΣP) is
the set of allP-admissible words. We will writeσP for σ restricted toΣP, and call the
dynamical system given byσP : ΣP 7→ ΣP a spacingshift. The class of spacing shifts was
introduced by Lau and Zame in [22], and for a detailed exposition of their properties we
refer to [4].

Let w be aP-admissible word. By [w]P we denote the set of allx ∈ ΣP such that the
wordw appears at position 0 inx. We call the set [w]P a P-admissible cylinder(a cylinder
for short). The family ofP-admissible cylinders is a base of topology ofΣP inherited from
Σ. It is easy to see that definition of a spacing shift implies that N([1]P, [1]P;σP) = P.
Moreover,σP is weakly mixing if and only ifP is a thick set (see [22, 4]). A thick set is a
subset of integers that contains arbitrarily long intervals (P is thick if and only if for every
n, there is somek such that{k, k + 1, . . . , k + n − 1} ⊂ P). If w is a word andn ≥ 1 then
by wn we denote a word which is a concatenation ofn copies ofw. If n = 0 thenwn is the
empty word.

4.1. Multi-transitive and not weakly mixing example. The results of this section gen-
eralize construction of totally transitive not weakly mixing spacing shift presented in [4].

We say that a finite setS ⊂ N is q-dispersed, whereq ≥ 2, if for everya, b ∈ S ∪ {0}
such thata , b we have|a− b| ≥ q.

Lemma 7. Let M,N be positive integers such that M≥ 3 and let A ⊂ N be an M-
dispersed finite set. Then there exists an M-dispersed finiteset B containing A and such
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that for k= maxA+ 1 and any pair of sequences of words u1, . . . , uN and v1, . . . , vN from
Lk(ΣB) there is n≥ 0 such that

σin([ui]B) ∩ [vi ]B , ∅ for i = 1, . . . ,N.

Proof. Let k = maxA+1. Letm= |Lk(ΣA)|2N be the cardinality of the set of allN-element
sequences of pairs of words fromLk(ΣA). We enumerate all members of this set as a list
W(1), . . . ,W(m). Hence, eachW( j) is an ordered list ofN pairs of words fromL(ΣA):

W( j) =
(

(u( j)
1 , v

( j)
1 ), . . . , (u( j)

N , v
( j)
N )
)

, for each j = 1, . . . ,m,

where (u( j)
i , v

( j)
i ) ∈ Lk(ΣA) × Lk(ΣA) for every i = 1, . . . ,N. Choose integersl1, . . . , lm

fulfilling the following conditions

l1 ≥ 2k+ M − 1,(2)

l j+1 ≥ (N + 1) j l j .(3)

Given 1≤ i ≤ N and 1≤ j ≤ m we define

w( j)
i = u( j)

i 0il j−kv( j)
i ,

wherel1, . . . , lm are as above. Using (2) and (3), it is easy to see that

(4) [ilα − k+ 1, ilα + k− 1] ∩ [ jl β − k+ 1, jl β + k− 1] = ∅,

for 1 ≤ α, β ≤ m, α , β and 1≤ i, j ≤ N. Let

B =
m
⋃

j=1

N
⋃

i=1

Sp(w( j)
i ).

If n ∈ A then letu = 10n−110k−n−1. Clearly,n ∈ Sp(u) andu ∈ Lk(ΣA), sincek = maxA+1.
This givesA ⊂ B. The construction ofw( j)

i implies that for 1≤ i ≤ N and 1≤ j ≤ m we
have

(5) Sp(w( j)
i ) \ A ⊂ [il j − k+ 1, il j + k− 1].

Therefore,

(6) minB \ A ≥ l1 − k+ 1 ≥ M + k.

In particular, minB = minA ≥ M. Moreover, we conclude form (4) and (5) that ifr ∈ B\A,
then there are unique indexesi(r) and j(r) such thatr ∈ Sp(w( j(r))

i(r) ).
Next, we are going to prove thatB is M-dispersed, that is,|q− p| ≥ M for eachq, p ∈ B,

q , p. We consider three cases:

Case I: Both p andq belong toA.
Case II: Both p andq belong toB \ A.
Case III: None of the above cases hold.

The first case is clear, sinceA is M-dispersed. The third case follows from (6). To prove
the remaining case,Case II, we consider subcases. But first note that in the computations
below we use (2 - 5) without further reference. Givenp, q ∈ B \ A consider:

Case IIA: j(p) , j(q). Without lost of generality we assumej(q) > j(p). We have

q ≥ i(q)l j(q) − k+ 1 ≥ l j(q) − k+ 1

≥ (N + 1)l j(p) − k+ 1 ≥ Nl j(p) − k+ 1+ l1
≥ i(p)l j(p) + k− 1+ M ≥ p+ M.

But then

q− p ≥ M.



6 KWIETNIAK AND PIOTR OPROCHA

Case IIB: j(p) = j(q), but i(p) , i(q). Without lost of generality we assumei(q) >
i(p). Let j = j(p) = j(q). Then

q ≥ i(q)l j − k+ 1 ≥ (i(p) + 1) · l j − k+ 1

≥ i(p)l j − k+ 1+ l1 ≥ i(p)l j + k− 1+ M ≥ p+ M.

Hence,
q− p ≥ M.

Case IIC: j(p) = j(q), and i(p) = i(q). Let j = j(p) = j(q) andi = i(p) = i(q). For
r ∈ {p, q} we define

s(r) = min
{

s : [w( j)
i ]s = [w( j)

i ]s+r = 1
}

.

Clearly, eithers(p) , s(q), or s(p) + p , s(q) + q. We have

|q− p| = |(s(q) + q) − s(q) − (s(p) + p− s(p))|

= |(s(q) + q) − (s(p) + p) − (s(q) − s(p))|

≥ ||(s(q) + q) − (s(p) + p)| − |s(q) − s(p)||.

But |(s(q)+q)− (s(p)+ p)|, |s(q)− s(p)| ∈ A∪{0}, so either|(s(q)+q)− (s(p)+ p)| ,
|s(q) − s(p)| and then

|(s(q) + q) − (s(p) + p)| − |s(q) − s(p)| ≥ M,

or |(s(q) + q) − (s(p) + p)| = |s(q) − s(p)| , 0, and then

|q− p| ≥ 2M.

It remains to prove that for any pair of sequences of wordsu1, . . . , uN andv1, . . . , vN

fromLk(ΣB) there isn ≥ 0 such that

σin([ui ]B) ∩ [vi ]B , ∅ for i = 1, . . . , k.

Observe thatLk(ΣB) = Lk(ΣA), since minB\ A ≥ k, maxA+ 1 = k, andA ⊂ B. Therefore,
according to our notation defined at the beginning of the proof, for any two sequences of
wordsu1, . . . , uN andv1, . . . , vN from Lk(ΣB), there isj = 1, . . . ,m such that

W( j) = ((u1, v1), . . . , (uN, vN)).

Let w( j)
i = ui0il j−kvi as above. Clearly,w( j)

1 , . . . ,w
( j)
m ∈ L(ΣB), and from the definition ofw( j)

i
we conclude that

w( j)
i ∈ σ

in([ui]B) ∩ [vi ]B for n = l j .

Hence,
σin([ui]B) ∩ [vi ]B , ∅ for i = 1, . . . ,N,

wheren = l j . �

Theorem 8. There exists a set P⊂ N such that the spacing shift(ΣP, σP) is multi-transitive
but not weakly mixing.

Proof. Fix any integerM ≥ 3 and denoteP0 = {M}. Define a sequence of setsPn ⊂ N

(n ≥ 1) inductively by puttingPn+1 = B, whereB is the set obtained forA = Pn, N = n,
andM as above by Lemma 7. Denote

P =
∞
⋃

n=0

Pn.

Easy induction gives|p − q| ≥ M for every distinctp, q ∈ P and P0  P1  P2  

. . .. In particularP is not thick, soΣP is not weakly mixing. We are going to show that
σP×σ

2
P× . . .×σ

m
P is transitive for anym= 1, 2, . . .. Fix any integerm≥ 1 and choose any

open setsU1, . . . ,Um,V1, . . . ,Vm ∈ ΣP. Without loss of generality, we may assume that
fore each 1≤ i ≤ m there are wordsui , vi ∈ L(ΣP) such that [ui ]P ⊂ Ui , and [vi ]P ⊂ Vi .
We may also assume that for each 1≤ i ≤ m we haveui , vi ∈ Lk(ΣPl ) for somel ≥ m and
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k = maxPl + 1. The last equality implies thatLk(ΣPl ) = Lk(ΣP). If m < l then we put
u j = v j = um for j = m+ 1, . . . , l.

Now, by Lemma 7, there isj > 0 such that

σ
i j
P(Ui) ∩ Vi ⊃ σi j ([ui]P) ∩ [vi ]P

⊃ σin([ui]Pl ) ∩ [vi]Pl , ∅

for i = 1, . . . , l. We have just proved thatσP×σ
2
P×. . .×σ

m
P is transitive for anym= 1, 2, . . .,

which in other words means thatσP is multi-transitive. �

It is clear from the construction ofP in Lemma 7, that the spacing shiftσP from
the assertion of Theorem 8 is not syndetically transitive, since the setP, and as a result
N([1]P, [1]P), have thick complement. Then the following question arises:

Question 2. Does every multi-transitive and syndetically transitive system have to be
weakly mixing?

4.2. Weakly mixing and not multi-transitive example. Fix m≥ 2. Let

B(m, k) = {m2k−1,m2k−1 + 1, . . . ,m2k − 1}, and P(m) =
∞
⋃

k=1

B(m, k).

Observe that for everym≥ 2 the setP(m) has the following property

(7) p ∈ P(m) =⇒ m · p < P(m).

Theorem 9. Let m≥ 2 and P= P(m) be as defined above. Thenτ = σP × . . . σ
m−1
P is

transitive, butτ × σm
P is not transitive. In particular, the spacing shift(ΣP, σP) is weakly

mixing, but not multi-transitive.

Proof. It is easy to see thatP is thick, henceσP is weakly mixing. To prove thatτ =
σP × . . . σ

m−1
P is transitive, we fix open cylinders

[u(1)]P, . . . , [u
(m−1)]P, [v

(1)]P, . . . , [v
(m−1)]P ∈ L(P).

Sett = m2k. Without lost of the generality we may assume that|u(i)| = |v(i)| = t for some
k ≥ 1, and anyi = 1, . . . ,m− 1. Sets= m2k+1 +m2k and define

w(i) = u(i)0is−tv(i), wherei = 1, . . . ,m− 1.

Clearly,

[w(i)]P ⊂
(

σi
P

)−s
([v(i)]P) ∩ [u(i)]P,

and therefore

[w(1)]P × . . . × [w(m−1)]P ⊂

τ−s
(

[v1]P × . . . × [v(m−1)]P

)

∩
(

[u(1)]P × . . . × [u(m−1)]P

)

,

so it is enough to prove that [w(i)]P , ∅, that is,w(i) ∈ L(ΣP). It follows from definition of
w(i) that

Sp(w(i)) = Sp(u(i)) ∪ Sp(v(i)) ∪ {l − k : (l, k) ∈ ∆},

where∆ is some subset of

{0, . . . ,m2k − 1} × {i ·m2k+1 + i ·m2k, . . . , i ·m2k+1 + (i + 1) ·m2k − 1}.

Hence, we have
l − k ∈ {m2k+1, . . . ,m2k+2 − 1} ⊂ B(m, k+ 1),

andw(i) ∈ L(ΣP) as desired. We proved thatτ = σP × . . . σ
m−1
P is transitive. To finish the

proof it is enough to show thatσP × σ
m
P is not transitive. LetU = V = [1]P × [1]P. It is

easy to see from (7) that
(σP × σ

m
P)n(U) ∩ V = ∅

for everyn ≥ 0, soσP × σ
m
P cannot be transitive. �
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In the literature there are considered other recurrence properties stronger than weak
mixing, see e.g. [10]. It is natural to ask if we can replace weak mixing by one of them in
Theorem 9. In the view of the above results we would like to pose the following problem.

Question 3. Is there any nontrivial characterization of multi-transitive weakly mixing sys-
tems?

5. Minimal self-joinings

The last question in [24] asks:Can f× f 2× . . .× f m : Xm 7→ Xm be minimal if m≥ 2 and
X has at least two elements?Let us call a mapf : X 7→ X providing an affirmative answer
to the above questionmulti-minimal. Apparently, Moothathu posing his problem was not
aware that the examples of multi-minimal homeomorphisms are known. But since their
existence is stated in the language slightly different than terminology used in [24] we find
it necessary to add some explanations. In fact the construction of multi-minimal systems
is related to the considerations on multiple disjointness.

The first example of a system disjoint from any of its iterates(we are aware of) is the
example of a POD (proximal orbit dense) minimal homeomorphism given by Fursten-
berg, Keynes and Shapiro in [9]. By Theorem 2.6 of [23] every POD system haspositive
topological minimal self-joinings(see [23]). It also follows from Proposition 2.1 of [23]
that every homeomorphism possessing positive topologicalminimal self-joinings is multi-
minimal, and so is the example from [9]. Furthermore, del Junco’s work [16], together with
his joint work with Rahe and Swanson [17] shows that Chacon’sexample [7] is POD, and
hence also multi-minimal. In [2] Auslander and Markley introduced the class ofgraphic
minimal systems, which generalizes POD homeomorphisms. They also proved that each
graphic flow is multi-minimal [2, Corollary 22]. Moreover, as announced in [2, page 490]
Markley constructed an example of a graphic homeomorphismswhich is not POD, hence
it is another kind of multi-minimal homeomorphism.

More information about minimal subsystems off × f 2 × . . . × f m is to be found in
[3, 5, 6, 18, 19] to name only a few. There is also in some sense parallel and certainly deep
theory of minimal self-joinings (a part of ergodic theory),introduced by Rudolph [25], see
Glasner’s book [12]. We remark that although every weak mixing minimal map is multi-
transitive it is not necessarily multi-minimal. Thediscrete horocycle flow his an example
of a weakly mixing minimal homeomorphism such thath is topologically conjugated to
h2, and hence it is not multi-minimal (see [12, pages 26, and 105-110]). The facts gathered
above prompt us to raise following questions:

Question 4. Is there any nontrivial characterization of multi-minimality in terms of some
dynamical properties?

It is also interesting whether is it possible to characterize multi-minimal systems adding
some mild assumptions to Theorem 6. In particular, we don’t know the answer for the
following question.

Question 5. Assume that f is a weakly mixing map such that f× f 2 is minimal. Is f
necessarily multi-minimal?
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