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Recurrence relation for the 6j-symbol of su,(2) from an eigenvalue problem
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A new, linear, three-term recurrence relation for the 6j-symbol of the quantum group su,(2) is derived. It
is cast in the form of a symmetric eigenvalue problem, generalizing a result of Schulten and Gordon for the
classical 6j-symbol, and is particularly useful as an efficient numerical evaluation algorithm. The derivation
is elementary and avoids the use of g-hypergeometric functions, as in the previous work on related recurrence

relations by Kachurik and Klimyk.

Intermediate calculations are simplified using the diagrammatic spin

network formalism of Temperley-Lieb recoupling theory.
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I. INTRODUCTION

Quantum groups first appeared in the study of quan-
tum integrable systems. Since then, they have proven
useful in many applications, including among others con-
formal field theory, statistical mechanics, representation
theory and the theory of hypergeometric function, along
with exhibiting a rich internal structure. Recently, the
quantum group suq(2) was used to construct spin foam
models of quantum gravity with a positive cosmological
constant?!.

The 6j-symbol, or Racah-Wigner coefficients, play a
central role in the representation theory of suy(2). An ex-
plicit formula for the quantum 6;5-symbol is known? and
involves a number of operations (additions and multipli-
cations) that is linear in its arguments. In applications
where a large number of 6j-symbols is needed at once,
e.g., for all values of one argument with others fixed as is
the case in Ref.[1], the total number of operations becomes
quadratic in the arguments. If a recurrence relation ex-
ists among the set of desired 6j-symbols, the efficiency of
the calculation can be greatly increased by reducing the
total operation count to be linear in the arguments.

Recurrence relations have long been known? for the
classical 6j-symbol. They have also been obtained in
the quantum case? using the theory of ¢-hypergeometric
functions. This paper gives an elementary derivation of
a particular linear, three-term recurrence relation for the
quantum 6j-symbol in the guise of a symmetric eigen-
value problem, generalizing the classical result of the Ap-
pendix of Ref.[3. It is particularly convenient for evaluat-
ing the 6j-symbol for all values of one argument with oth-
ers held fixed. The notation and calculations are simpli-
fied using the diagrammatic spin network formalism2:3:6,
thus obviating the need to appeal to the theory of ¢-
hypergeometric functions. An advantage of the eigen-
value problem formulation is the ability to make use of
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readily available, robust linear algebra packages, such as
LAPACKY. The ability to use standard numerical linear
algebra software is particularly useful since such software
packages automatically take care of many issues of nu-
merical accuracy and stability. That is especially true
when ¢ = 1 or when ¢ is a primitive root of unity, be-
cause the relevant inner product becomes either positive-
or negative-definite, allowing the use of even more spe-
cialized numerical methods.

Sec. [[lintroduces the basic notions of the spin network
formalism. Sec [Tl defines the Kauffman-Lins convention
for the 6j-symbol and summarizes basic identities needed
for in Sec. [V}, where the recurrence relation is derived.
Sec. [Vl connects the Kauffman-Lins convention with the
traditional Racah-Wigner convention used in the physics
literature and emphasizes the novel aspects of the deriva-
tion. Finally, the Appendix conveniently summarizes all
formulas needed for a direct computer implementation
of the recurrence-based evaluation of the quantum 6;-
symbol.

Il. SPIN NETWORKS

In a variety of physical and mathematical applications,
one often encounters tensor contraction expressions of the
form

Time = AR g (1)
where T', A, B, ..., Z are invariant tensors, with each in-

dex transforming under a representation of a group or an
algebra. The application at hand usually calls for eval-
uating 7', or at least simplifying it. An extensive litera-
ture on this subject exists for the classical group SU(2)
or its Lie algebra, a subject known as angular momen-
tum recoupling®2. Tt is well known that such tensor con-
tractions can be very efficiently expressed, manipulated,
and simplified using diagrams known as spin networks?.
Extensions of these techniques®¢ are also known for the
quantum (or g-deformed, since they depend on an ar-
bitrary complex number ¢ # 0) analogs, the quantum
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group sugy(2) or Uy(su(2)). The basics of this diagram-
matic formalism, as needed for the derivation of the re-
currence relation, are given in this and next sections. All
relevant formulas, including explicit spin network eval-
uations in terms of quantum integers are listed in the
Appendix.

Single spin networks are edge-labeled graphsi®, where
each vertex has valence either 1 or 3. General spin net-
works are formal linear combinations of single spin net-
works. Edges attached to univalent vertices are called
free. Spin networks without free edges are called closed.
Conventionally, the labels are either integers (spins)
of half-integers (twice-spins), which correspond to irre-
ducible representations of suy(2). Ref. 4 1abels all spin
networks with twice-spins. Unless otherwise indicated,
all conventions in this paper follow Ref. 2. Two spin net-
works may be equal even if not represented with identical
labeled graphs. A complete description of these identities
are given in Refs. 12 and l6; their study constitutes spin
network recoupling and is what allows us to equate!! spin
networks with su, (2)-invariant tensors and their contrac-
tions.

In this correspondence, each index of a tensor, trans-
forming under an irreducible representation, corresponds
to a spin network edge, labeled by the same representa-
tion (free indices correspond to free edges). In particular,
a closed spin network corresponds to a complex number.
Spin networks form a graded algebra over C (as do ten-
sors). The grading is given by the number of free edges
(free indices) and the product is diagrammatic juxtapo-
sition (tensor product).

11l. DIAGRAMMATIC IDENTITIES

The spin networks with n free edges with fixed labels
(n-valent spin networks) form a linear space with a nat-
ural bilinear form (or inner product). Suppose that the
free edges are ordered in some canonical way, then, given
two spin networks, we can reflect one of them in a mirror
and connect the free edges in order. The value of the
resulting closed spin network defines the bilinear form,
which is symmetric and non-degenerate?. We use the
bra-ket notation for this inner product (s'|s), where s
and s’ are two spin networks. We also let |s) stand for s
and (s for the reflection of s’. The existence of an inner
product allows the following identities, whose proofs can
be found in Ref. [2. For each identity, the corresponding
well known fact of SU(2) representation theory is given.

The space of 2-valent spin networks, with ends labeled
a and b, is 1-dimensional if @ = b, and 0-dimensional oth-
erwise. For non-trivial dimension, the single edge gives a
complete basis and therefore the bubble identity:

This identity the diagrammatic analog of Schur’s lemma
for intertwiners between irreducible representations.

The space of 3-valent spin networks, with ends labeled
a, b and ¢, is also 1-dimensional if the triangle inequali-
ties (ALG) and parity constraints (A7) are satisfied, and
0-dimensional otherwise, if g is generic. When ¢ is a prim-
itive root of unity, the dimension also vanishes whenever
the further r-boundedness constraint (A-g]) is violated.
In the case of nontrivial dimension, the canonical triva-
lent vertex gives a complete basis and therefore the vertex
collapse identity:

Cg abc 6 (3)

0(a,b, c) = . (1)

The normalization of the vertex, the value of the 6-
network, is evaluated in Eq. (AB). This identity is the
diagrammatic analog of the uniqueness (up to normaliza-
tion) of the Clebsch-Gordan intertwiner.

Now, consider the space of 4-valent networks with free
edges labeled a, b, c and d. There are two natural bases,
the vertical (I| and the horizontal |5):

a a
b b

I e (5)
d d

The admissible ranges for j and [, the dimension n of this
space, and the conditions on (a, b, ¢, d) under which n > 0

are given by Egs. (A6) through (A27). The transition
matrix between the two bases is given by the so-called
Tet-network:

a b

S

The coefficients expressing the vertical basis in terms of
the horizontal one define the 6j-symbol, which can be
expressed in terms of the Tet-network:

n=-{t0d m @

J
a b

Tet(a, b, ¢, d; j,1) = = (j|1). (6)



Note the subscript KL for Kauffman-Lins, since this
6j-symbol is defined with respect to the conventions of
Ref. [d. The relation to the classical Racah-Wigner 6;-
symbol used in the physics literature is given explicitly

in Sec. [Vl

IV. RECURRENCE RELATION FOR THE
Tet-NETWORK

The identities given in the previous section allow an
elementary derivation of a three-term recurrence relation
for the Tet-network.

It is easy to check, using the bubble identity, that both
the vertical and horizontal bases are orthogonal and that
they are normalized as

(i) = QJ :

(1)) =

Qz

Curiously, when these normalizations are fully expanded
using formulas from the Appendix, they take the form
(=) P/Q, where P and @ are products of positive quan-
tum integers. In both cases, ¢ = (a + b+ c+ d)/2, is
an integer independent of j or I. When ¢ = 1 or when
q is a primitive root of unity, positive quantum integers
are positive real numbers. Hence the above inner prod-
uct is real and either positive- or negative-definite. On
the other hand, for arbitrary complex ¢, the normaliza-
tions (@) and (I0) can be essentially arbitrary complex
numbers.

If we can find a linear operator L that is diagonal in
one basis, but not in the other, then we can obtain (j|l)
as matrix elements of the diagonalizing transformation.
Furthermore, if the non-diagonal form of L is tridiagonal,
then the linear equations defining (j|I) reduce to a three-
term recurrence relation.

We can construct such an operator by generalizing the
argument for the classical case, found in the Appendix
of Ref.[3. For brevity of notation, we introduce a special
modified version of the trivalent vertex:

a . a~ a a. (11)

The unlabeled edge implicitly carries twice-spin 2 and the
bold dot indicates the multiplicative factor of [a]. Using
it, we can define a symmetric operator L. Its diagram-
matic representation and its matrix elements are given
below.

The operator L is diagonal in the |I)-basis and its ma-
trix elements Ly = (I|L|l') are

c a a
b
Lll,:ll,:[an] e (12)
O\
= Aa, b, ){I|l"), (13)
with
a=btl] [=atbtl] _ [a+b=l] [atbtl | o
oy o Lo [2g0s] = [o4a=t [engat 4 o)
(2]
(14)
where we have evaluated Tet(a, a,b, b;[,2) as
a
.
- Aa, b, 1). 15

This result may be obtained directly from Eq. (A9]),
where the sum reduces to two terms, or from more funda-
mental considerations!?. In the limit, ¢ — 1, the eigen-
values simplify to A(a, b, 1) = $[1(14+2)—a(a+2)—b(b+2)],
which shows that the operator L is closely related to the
“square of angular momentum” in quantum mechanics,
which was used to obtain the classical version of this re-
currence relation?.

On the other hand, in the |j) basis, the operator L
is not diagonal and the matrix elements L;;» = (j|L|j’),
making use of the vertex collapse identity, are

a a a a b b
I’jj/ :jj/: @ 6 6 , (16)
N/

with the special case Log = 0. Fortunately, though Ejj/
is not diagonal, it is tridiagonal. This property is a con-
sequence of the conditions enforced at the central ver-
tex in both Tet-networks above: the triangle inequality,
|7 — 7’| <2, and the parity constraint, which forces ad-
missible values of j to change by 2. If these conditions
are violated, the matrix element L;;s vanishes.

The diagonal elements L;; can be evaluated using (5.
For the off-diagonal elements Lji2; = Lj ji2 we also
need

a a .]+2

7 Sl ’ 4

which can be obtained in the same way as ([3]). Finally,



we need the identities

2 2

_ +2 : _ :
v__ 21[J] O and V_OHQ'
(18)

The |j)-basis matrix elements can now be expressed as
(again, recall the special case Loy = 0)

T [2])‘(0“7j7 d))‘(bvjvc)

Lj; = =(jli) G+ 2 , (19)
Ligva = G2lien) |2 [T

The transition matrix elements (j|I) can now be ob-
tained by solving an eigenvalue problem in the |j)-basis:

GIL -ty = S Y= M) 5y (21)

VI
0= 3 (Lo = NGT)y) s, (29)

i’

where A\; = A(a,b,1). Since f/jj/ is tridiagonal, we obtain
a three-term recurrence relation for the (j|l) transition
coefficients. Expanding the expression for Ejj/, we find
the following general form of the recurrence relation:

Ljj—2 — Lj; _ 3
G- 2'l>+(<j|j> ”> 7
Lj7j+2 T ol) —
Grajrg PA=0 @Y

with the provision that Ejj/ vanishes whenever either of
the indices fall outside the admissible range or j = 5/ = 0.
Finally, the transition coefficients are uniquely deter-
mined (up to sign) by requiring the normalization condi-
tion

(UG
zj:w = (I|1). (25)

Practically, it is more convenient to recover the correct
normalization of (j|I) for all j and fixed [, or vice versa,
by requiring (j|I), cf. (AI0), to agree with (A9), where
the sum reduces to a single term.

Once the Tet-network has been evaluated recursively,
the 6j-symbol can be obtained from Eq. (). Alterna-
tively, a linear, three-term recurrence relation directly
for the 6j-symbol follows from (24]) and the linear, two-
term recurrence relations for the bubble and #-networks,
obvious from (A4) and (A5). However, because of the
additional normalization factors in Eq. (@), this direct
recurrence relation cannot be cast in the form of a sym-
metric eigenvalue problem like (23]).

V. DISCUSSION

In the classical ¢ = 1 case, the Kauffman-Lins version
of the 6j-symbol (@) differs from the Racah-Wigner con-
vention used in the physics literature, which preserves
the symmetries of the underlying Tet-network. The two
6j-symbols are related through the formula

J1/2 j2/2 j3/2 _
D)2 Ja/2 Ts/2f o
Tet(J1, J2, j1, J2; J3, j3)

V0001, T2, 53)0(j1, j2, 3)0 (1, J2. J3)0(Ja, g1, J3)|
(26)

which can be obtained by comparing the explicit expres-
sions (A9) and (6.3.7) of Ref. |8 Note that, before the
absolute value, the argument of the square root has sign
(_)js*Ja'

Adjusting to the Racah-Wigner convention, the clas-
sical version of the recurrence relation (24)) reduces to
Eqs. (12a-b) of Ref.[3. There, the recurrence was derived
in two ways: first by chaining other, more general but
less convenient, recurrences and second by obtaining it
from a tridiagonal eigenvalue problem. The derivation
of Eq. ([24) is an elementary generalization of the second
method of Ref. [3 to the quantum case.

Other, less convenient, recurrence relations for the
quantum 6j-symbol have previously been obtained by
Kachurik and Klimyk?. They can be chained together to
obtain Eq. ([24)), generalizing the first method of Ref. 3.
However, their derivation is far from elementary, requir-
ing the use of identities for g-hypergeometric functions.
Moreover, the interpretation as a symmetric eigenvalue
problem, which, as discussed in the Introduction, is ad-
vantageous from a numerical point of view, is not obvious
even if the recurrence relation (24)) is known.

Finally, note that it would have been difficult to ob-
tain (24]) directly from the classical version by using the
rule given in Ref. 4: replacement of all factorials m! by
quantum factorials [m]!. This is due to the fact classical
integers are not uniquely representable as sums of ratios
of factorials. Consider for instance the difference between
the “natural” ways of writing A(a,b,l) and its classical
limit.
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Appendix: Formulas

For a complex number ¢ # 0 and an integer n the
corresponding quantum integer is defined as
" —q"
[n] = ——. (A1)
qa—4q
In the limit ¢ — 1, we recover the regular integers, [n] —
n. When ¢ = exp(in/r), for some integer r > 1, it is a
primitive root of unity and the definition reduces to

sin(nm/r)
sin(rw/r)

In] = (A.2)

This expression is clearly real and positive in the range
0 <n < r. Quantum factorials are direct analogs of
classical factorials:

O =1, [l =[]

(A.3)

Next, we give the evaluations of some spin networks
needed in the paper. They are reproduced from Ch. 9 of
Ref. [2. The bubble diagram evaluates to

= (Yl +1]

whenever it is non-vanishing. For generic ¢, it vanishes
if j < 0 and if ¢ is a primitive root of unity then it also
vanishes when j > r — 2. The 6-network evaluates to

(A.4)

(=)°[s + 1]![s — a]l[s — D]![s — ]!
[a]![b]![c]! '

with s = (a 4+ b+ ¢)/2, whenever the twice-spins (a, b, ¢)
are admissible and vanishes otherwise. Admissibility
consists of the following criteria (besides the obvious
a,b,c>0):

O(a,b,c) = (A.5)

a<b+ec

triangle inequalities b<c+a, (A.6)
c<a-+b

parity a+b+c=0 (mod2). (A.7)

When ¢ is a primitive root of unity, further constraints
needs to be satisfied:

a,b,e <r—2
r-boundedness .

AR
a+b+c<2r—4 (A-8)

The tetrahedral- or Tet-network evaluates to

o T (=)°[S +1]!
Tet(a,b,¢,d; j,1) = % XS: IL1S —a]'TL, b, — 5]

(A.9)

where the summation is over the range m < S < M and

I!:H[bj—al]!, EL = [all[b) [ MY,

2,7

(A.10)

a=(a+d+7)/2, b=0+d+j+1)/2, (A.11)

az=(b+c+7)/2, by=(a+c+ji+1)/2, (A12)

az=(a+b+1)/2, bys=(a+b+c+d)/2, (A.13)

ag = (c+d+1)/2, m=max{a,}, (A.14)
(

M = min{b,}.

The indices » and 7 fully span the defined ranges. Each
of the triples of twice-spins (a, b,1), (¢, d, 1), (a,d,j) and
(¢,b,7) must be admissible, otherwise the Tet-network
vanishes. Then, due to parity constraints, a,, b,, m, M,
and S are always integers. If the twice-spins (a, b, ¢, d) are
fixed, the admissibility conditions for generic ¢ enforce
the ranges of j < j < jand [ <[ <1 to

j=max{la—d|,|b—c[}, j=min{a+d,b+c},

(A.16)
l=max{|a —b|,|c—d|}, [=min{a+b,c+d},
(A.17)
with
j=a+b=c+d (mod2), (A.18)
l=a+d=b+c¢ (mod 2). (A.19)

The number of admissible values is the same for j and [
and is equal to n = max{0,n}, where

m = min{a,b,c,d}, (A.20)

7 =min{m,s — M} + 1,
s = M = max{a,b,c,d}. (A.21)

(a+b+c+d)/2,

This number n is also the dimension of the space of 4-
valent spin networks with fixed twice-spins (a, b, ¢, d) la-
beling the free edges. This dimension is non-vanishing,
n > 0, precisely when the twice-spins satisfy the condi-
tions

a+b+c+d<2max{a,b,c,d},
a+b+c+d=0 (mod 2).

(A.22)
(A.23)

When ¢ is a primitive root of unity, the admissible
ranges shrink to [ < j <, and [ <[ <[,, where

I, :min{j,r—2,2r—4—max{a+d,b+c}},
(A.24)
I, =min {l,r —2,2r —4 —max{a +b,c+d}}. (A.25)
The number of admissible values in each range is thus
restricted to n = max{0, 7, }, where

(A.26)

A = min{n,r — 1 — max{M,s —m}}.
The condition n > 0 requires (A.22), (A23) and

a+b+c+d<2min{a,b,c,d} + 2r — 4. (A.27)



The above admissibility criteria are well known. How-
ever, the consequent explicit expressions for the con-
straints on (a,b,¢,d), the bounds on j and [, and the
dimension n are not easily found in the literature.
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