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FROM WZW MODELS TO MODULAR FUNCTORS

EDUARD LOOIJENGA

ABSTRACT. Inthis survey paper we give a relatively simple and coatiiriree

description of the WZW model as a local system whose basei&thbundle

associated to the determinant bundle on the moduli stachkiofqd curves. We
derive its main properties and show how it leads to a modulactbr in the

spirit of Segal. The approach presented here is almostypalgtbro-geometric
in character; it avoids the Boson-Fermion correspondesperator product ex-
pansions as well as Teichmdlller theory.

The tumultuous interaction between mathematicians amatetieal physicists
that began more than two decades ago left some of us hardiyttirtake stock.
It is telling for this era that it took physicists (Witten, inby) to point out in the
late eighties that there must exist a bridge between twdyeatitne hardly con-
nected, mathematical land masség, algebraic geometry and knot theory, and it
is equally telling that it was only recently that this was eratlized with math-
ematically rigorous underpinnings (and strictly speakirg even in the desired
form yet). We are here referring on the algebro-geometde 8 a subject that has
its place in the present handbook, namely moduli spacesatbvbundles over
curves, and on the other side to the kind of knot invariarike the Jones polyno-
mial) that are furnished by Chern-Simons theory. The brigigéaphor is actually
a bit misleading, because on either side the roads leadirighéal yet to be con-
structed. Let us use the remainder of this introduction teesuvery briefly the
part this route that involves algebraic geometry (stop@hgrt at the point were
the crossing is made), then say which segment is coveredivydiper and con-
clude in the customary manner by commenting on the variottsoses.

To set the stage, l&f be a compact Riemann surfaCeand G a (say, sim-
ply connected) complex algebraic group with simple Lie bfggy. Then there is
a moduli stackM(C, G) of G-principal bundles ove€. With a few exceptions
(where one has to resort to a compactification) this stackesaa natural ample
line bundle®(C, G), which in fact generates its Picard group, and for which the
vector spacét(G)¢ of sections of®(C, G)%!, the so-calledverlinde space of
level ¢, is finite dimensional for all. Its dimension is independent @f and in-
deed, if we varyC over a base, then we get a vector bund#,(G).,s over that
base. Although we require@ to be simply connected, one can makes sense of
this for reductive groups as well, although some care is exdefor instance, for
G = C*, we let M(C,C*) not be the full Picard variety P{€) of C, but pick
the component P{€)9~' parameterizing line bundles of degrge— 1), as this is
the one which carries a natural line bundle that can playdteaf®(C,C*) (and
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which is indeed known as the theta bundle). THROG )¢ is just the space of theta
functions of degreé. These satisfy a heat equation and it is our understandatg th
Mumford was the first to observe that this property may bejmeted as defining

a flat connection for the associated projective space buhtilehin [7] proved that
this is also the case here: the projectivized Verlinde emdbme naturally with

a flat connection. But if one aims for flat connections on thedbes themselves,
then one should work on the total space @ &-bundle overS (which allows for
nontrivial monodromy in a fiber). For the line bundle attathe thisC*-bundle
we can take the determinant bundle of the direct image oftibaff relative dif-
ferentials onC/S. For many purposes—certainly for topological applicadient

is desirable to allow for certain ‘impurities’ of the pripal bundle, in the form
of a parabolic structure. Such a structure is specified bygien C a finite set

of points (x; € C)ier, and for each such point a finite dimensional irreducible
representatiorV; of G. It was shown by Scheinost-Schottenloherl [14] that in this
setting there are still corresponding Verlinde bundled twene with a flat con-
nection after a pull-back to @*-bundle. There is an infinitesimal counterpart of
the above construction via holomorphic conformal field tiyashere the groups
enters only via its Lie algebrg known as the Wess-Zumino-Witten model. This
centers on the affine Lie algebra associateg &md its representation theory and
leads to similar constructs such as the Verlinde bundlek wiprojectively flat
connection. Its mathematically rigorous treatment beggim tive fundamental pa-
per by Tsuchiya-Ueno-Yamada |18] with subsequent extessimd refinements,
mainly by Andersen-Uend [1], [2]. It was however not a pridear that this led
to the same local system as the global approach. Indeedtutinisd out to be
not trivial at all: after partial results by Beauville-Lészand others, Laszlo-Sorger
[12] proved that the Verlinde bundles can be identified argzlaa[11] showed that
via this identification the two connections are the same dk atdeast when no
parabolic structure is present.

The bridge is now crossed as follows: a nonzero point of therdenant line
over C can be topologically specified by means of the choice of Liagjean sublat-
tice inH; (C;Z). This enables us to understand the existence of the flat cbone
on the Verlinde bundles as telling us that these spaces apgrdl on the iso-
topy class of the complex structure Gf In particular, they receive naturally the
structure of a projective representation of the mappingsctgoup of the pointed
surface. This puts these spaces into the topological reathwe thus arrive at an
example of a topological quantum field theory, more pregjsal one of Segal's
modular functors/[15].

Let us now turn to the central goal of this paper, which is tbrgethe Wess-
Zumino-Witten connection and to derive its principal pnajss, to wit its flatness,
factorization, the relation with the KZ-system.,., in short, to recover all the prop-
erties needed for defining the underlying (topological) madfunctor as found in
the papers above mentioned by Tsuchiya-Ueno-Yamada andrgerdUeno. For
an audience of algebraic geometers knowing (or willing tweat) some rather ba-
sic facts about affine Lie algebras our presentation is @aflgrself-contained. It
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is also shorter and possibly at several points more tragap#nan the literature
we are aware of. This is to a large extent due to our consistntdinate free
approach, which not only has the advantage of making it usssry to constantly
check for gauge invariance, but is also conceptually mdisfgimg. Cases in point
are our definition of the WZW-connection and our treatmerihefFock represen-
tation (leading up to Corollafyl 8) which enables us to avesbrting to the infinite
wedge representation and allied techniques.
Let us take the occasion to point out that what makes the WiW-still in-

complete is an explanation of the duality property and th&annstructure that the
associated modular functor should possess.

We finish with brief comments on the contents of the separatiaons. The
rather short Section 1 essentially elaborates on the nofiarprojectively flat con-
nection. Logically, this material should have its placeiah the paper, but as it
has some motivating content for what comes right after itfelieit best to put it
there. Section 2 introduces in a canonical way the Virastgebasa and its Fock
representation and the associated Segal-Suguwara aiimsirin a relative setting.
New is the last subsection about symplectic local systerhsyewve see the deter-
minant bundle appear in a canonical fashion. The Lie algglsaters in section
3. We found it helpful to present this material in an abstedgebraic setting, re-
placing for instance the ring of complex Laurent polynomiay a complete local
field containingQ (or rather a direct sum of these), which is then also alloveed t
‘depend on parameters’. Our extendiom 13 of the Sugawaraseptation to a rel-
ative situation involving a Leibniz rule in the horizontatettion serves here as the
origin of WZW-connection and its projective flatness. Wepké®at setting in Sec-
tion 4, where the connection itself is defined. In the subsetjgection we derive
the coherence of the Verlinde sheaf and establish what lisdcdie propagation
of covacua. Special attention is paid to the genus zero gabé ahown how the
WZW-connection is then related to the one of Knizhnik-Zaodohikov. Section
6 is devoted to the basic results associated to a double geg@neration such as
local freeness, factorization and monodromy. In the finatise 7 we establish
the conversion into a modular functor. Notice that the appihodescribed here is
elementary and does not resort to Teichmiuller theory.

We finally remark that this paper is based on (but substansalpersedes) our
arXiv preprintmat h. AG 0507086.

We find it convenient to work over an algebraically closedifielof character-
istic zero (but when we make comparisons with topologicanum field theory
we takek = C). As an intermediate base we use a regitatgebra, denoted.

1. FLAT AND PROJECTIVELY FLAT CONNECTIONS

A central notion of this article is that of a flat projectivencection. Although it
enters the scene much later in the paper, some of the workidahe first part is
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motivated by the particular way this notion appears herew8&agtart with a brief
section discussing it.

If 1 is a rankr vector bundle over a smooth ba&én other words, is a locally a
free Os-module of rankr), then a flat connection in the associated projective space
bundlePs () is obtained by giving a Lie subalgebfaof the Lie algebraD; (#) of
first order differential operatord — ‘H whose subalgebra of zero order operators
is Os (acting on in the obvious manner) and is such that the map which assigns
to D € D thek-derivationd € Os — [D, ¢] € Os defines a Lie-isomorphism
D/Og = 0s. This clearly maked) an extension 0B by Os. Any Os-linear
sectiono of D — 05 defines a connectioR® in % whose curvature form(V?)
is a closed2-form onS. Any other sectiorv’ differs from o by a Os-linear map
0s — Os, in other words, by a differentiab, and we hav®(V°') = R(V?)+dw.

So this indeed gives rise to a flat connectiofyi?{) and it is easily seen that this
connection is independent of the choice of the section. Iyoca S, R(V?) is
exact, and so we can always find a local secticguch thatV° is flat. Any other
local sectionc’ with that property is then necessarily of the form+- d¢ with

¢ € O and conversely, any such local section has that propertg. Lidhalgebra
sheafD itself does not determine a connection#nthis is most evident whek

is a line bundle, for then we must hatl#) = D; (H).

In the above situation we Igd act on the determinant bundle @&ft) = /\}957{
by means of the formula

Dier A Ae)i=) e A---AD(e) A+ Aey.

i=1

This is indeed well-defined, and identifiésas a Lie algebra with the Lie algebra
of first order differential operator®; (det{#)). But notice that this identification
makesf € Og C D act on detH) as multiplication byrf.

Let us next observe that X is a line bundle orb andN is a positive integer,
then a similar formula identifie®; (A) with D; (A®N) (both as®s-modules and as
k-Lie algebras), but induces multiplication By on Os. This leads us to make the
following

Definition 1. Let be given a smooth base variefyover which we are given a
line bundleA and a locally freeDs-moduleX of finite rank. AA-flat connection

on H is homomorphism of)s-modulesu : D;(A) — D;(H) that is also a Lie

homomorphism ovek and commutes with the symbol mapdig

It follows from the preceding that such a homomorphiandetermines a flat
connection on the projectivization 8. The mapu preservesDs and since this
restriction isOs-linear, it is given by multiplication by some regular fuioet w on
S. If D € 8 is lifted to D € D;(A), thenD(w) = [w(D),u(1)] = [D,1] = 0.
This shows thatv must be locally constant; we call this theightof w. So in the
above discussiorf) comes with detH )-flat connection of weight .

It is clear that if the weight oft is constant zero, then factors througts, so
that we get a flat connection iH. This is also the case whén= Os, for then
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D1(0Os) containsds canonically as a direct summand (both(asmodule and as
a sheaf ok-Lie algebras) and the flat connection is then given by thiemacif 6.
This has an interesting consequencer if A* — S is the geometric realization
of the G,-bundle defined by, then7m*A has a ‘tautological’ generating section
and thus gets identified witth,x. Hence a\-flat connection or#{ defines a flat
connection ont*#H. One checks that ifv is the weight ofu, then the connection
is homogeneous of degreealong the fibers. So in cake= C, s € S ands € A*
lies overs € S, then the multivalued mafx, h) € C* x Hg — (z§,z"h) € AL x
H, is flat, and so the monodromy of the connectiom\ifi is scalar multiplication
by 2V ~Tw

We will also encounter a logarithmic version. Here we aregia closed sub-
variety A C S of lower dimension (usually a normal crossing hypersupfatéen
the Os-stabilizer of the ideal defining\, denotedds(logA), is a coherenOs-
submodule oBs closed under the Lie bracket. If in Definitidh 1 we havenly
defined on the preimage 6%(logA) C 05 in D;(A) (which we denote here by
D1(A)(log A)), then we say that we havelagarithmic A-flat connection relative
to A onH.

2. A CANONICAL CONSTRUCTION OF THEVIRASORO ALGEBRA

In this section we fix aR-algebra® isomorphic to the formal power series ring
R[[t]]. In other words,® comes with a principal ideah so that© is complete
for the m-adic topology and the associated gradedlgebra®™® m//m/*! is a
polynomial ring oveRr in one variable. The choice of a generat@f the idealm
identifiesO with R[[t]]. We denote by the localization ofD obtained by inverting
a generator ofn. ForN € Z, mN has the obvious meaning agasubmodule of
L. The m-adic topologyon L is the topology that has the collection of cosets
{f + mN}ter nez as a basis of open subsets. We sometimes Whitefor mN. We
further denote by thel-module of continuou®-derivations fromL into L and by
w theL-dual of0. Thesel.-modules come with filtrations (making them principal
filtered L-modules):FN consists of the derivations that taketo m™N*' andFNw
consists of thd.-homomorphism® — L that takeF°0 to m". So in terms of the
generatort above,L = R((t)), 8 = R((t))&, FNo = R[N L, w = R((t))dt
andFNw = R[[t]ItN " dt.

The residue map Resw — R which assigns to an element Bf (t))dt the
coefficient oft~'dt is canonical, i.e., is independent of the choicet.ofThe R-
bilinear map

r:Lxw—R, (fya)— Redfx)

is a topologically perfect pairing of filtereR-modules: we have(t*, t—"1dt) =
o1 and so anyR-linear ¢ : L — R which is continuous (i.e zero onm™ for
someN) is definable by an element of (namely by>, . ¢(t )t~ 'dt) and
likewise for anR-linear continuous map — R.

Atrivial Lie algebra. If we think of L* as an algebraic group ovRr(or rather, as
a group object in a category of ind schemes ®Rerthen its Lie algebra, denoted
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here byl, is L, regarded as & module with trivial Lie bracket. It comes with a
decreasing filtratiort*[ (as a Lie algebra) defined by the valuation. The univer-
sal enveloping algebrdll is clearly the symmetric algebra 6fas anR-module,
Syng([). The idealll.I C Ul generated byis also a rightO-module (sincd is).

We complete itm-adically: given an integelN > 0, then anR-basis of the trunca-
tion U [/(Ulo FNI) is the collectiont®! o --- o t*r with k; <k, < --- < k. < N.

So elements of the completion

are series of the forny_°, ritki1 o --. 0 thir with 1, € R, ¢ < kii < ki <
--- < ky,r, for some constant. We putUl := R & U, [, which we could of course
have defined just as well directly as

— N
ur— ur:= l%u[/u[o F7IL

We will refer to this construction as the-adic completion on the rightalthough

in the present case there is no difference with the analdgdefinedm-adic com-

pletion on the left, agis commutative.

Any continuous derivatiolD € 0 defines arR-linear mapw — L which is
self-adjoint relative the residue pairing((D, «), 3) = 7(«, (D, )). We use that
pairing to identifyD with an element of the closure of Syrin Ul. Let C(D) be
half this element, so that in terms of the above topologieaid)

CD) =% > r((D,t " 'dt),t T dt)ti o vl
ijez
In particular forD = Dy = t*"'§, C(Dy) = 3 ¥_;,; t' o t). Observe that the
mapC : 0 — Ulis continuous.

Oscillator and Virasoro algebra. The residue map defines a central extension of
[, theoscillator algebral, which as arR-module is simplyl & R. If we denote the
generator of the second summandbyhen the Lie bracket is given by

[f +hr, g +hs] .= Reqg df)h.

So[tk,t7Y = hksy, and the center dfis Re @ Rh, wheree = t° denotes the unit
element ofL viewed as an element of It follows that Ul is an R[e,h]-algebra.
As an R[h]-algebra it is obtained as follows: take the tensor algelbra (over
R) tensored withRh], ®%! ®@g RR], and divide that out by the two-sided ideal
generated by the elementsx g — g ® f — Reggdf)h. The obvious surjection
7: Ul — Ul = Syng(1) is the reduction modul.™

We filter T by letting FNT be FNI for N > 0 and FN[ + RR for N < 0. This
filtration is used to completell m-adically on the right:

ur— ur:= ;% ui/uto FNI.
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Notice that this completion has the collectiofi o --- o t* with v > 0, k; <
k, < --- < k,, as topologicalR[h]-basis. Sincd is not abelian, the left and
right m-adic topologies now differ. For instancg,, -, t* o t7* does not converge
in Ul, whereas)_,.,t™* o t* does. The obvious surjection : Ul — Ul is

still given by reduction moduld..”We also observe that the filtrations lo&ndT
determine decreasing filtrations of their (completed) ergal enveloping algebras,
eg. FNUT=Y ., 2 ny et >N Fufo.. o PVl

Let us denote by, the image off @z | ¢ Tor T — UL Under the reduction
moduloh, [; maps onto Sylﬁ‘([) C Ul with kernelRR. Its closurel, in UT maps
onto the closure of Syfil) in Ul with the same kernel. _

The generatot defines a continuouR-linear mapD € 0 — ¢(D) € I, char-
acterized by

¢(Dy) ::% Z ttot ;.
i+j=k

We here adhered to thmrmal ordering conventigrwhich prescribes that the fac-
tor with the highest index comes last and hence acts first herexponent serves
as index). This map is clearly a lift of : © — Syn? I, but is otherwise non-
canonical.

Lemma 2. We have
(i) [C(D),f] = —RD(f) as an identity int{ (wheref € [ ¢ T) and
(i) [C(Dy), (D] = —h(l —K)C(Dier) + 25 (3 = K)Syp10-

Proof. For the first statement we comput&(Dy), t']. If we substituteC(Dy) =
%Ziﬂ.:k -t o ¥ :, then we see that only terms of the forfitf™ o t~1 t!] or
[t~ o t*1 t!] (depending on whethet + 21 < 0 or k + 21 > 0) can make a
contribution and then have coefficiehif k + 21 = 0 and1 otherwise. In all cases
the result is—hltkt = —RDy (t}).

Formula (i) implies that

(€(D), DY) = Jim > 1 (Dilt) ot tho D[t )
<N

=R lim (itk“ ottt rtio(1—1i tk“*i) )
N—oo H;\I ( )
1’ —

This is up to a reordering equal teh(l — k)C(Dy,1). The terms which do not

commute and are in the wrong order are those for which k +1 = —(1 — 1)
(with coefficienti) and for which0 < i = —(k + 1 — 1) (with coefficient(l — 1)).
This accounts for the extra tefd -5 (k3 — k)8y10. O

This lemma shows thath~' C behaves better thad (but requires us of course
to assume thdt be invertible). In fact, it suggests to consider the Gef pairs
(D,u) € 6 x R'1, for which C(D) € Syn? [ is the modh reduction of—hu, so
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that we have an exact sequence
05R—=58-50-50

of R-modules. A non-canonical section is givenby— D := (D, —R'C(D)).
In order to avoid confusion, we denote the generator of tipy 06R by co.

Corollary-Definition 3. This defines a central extension of Lie algebras, called
the Virasoro algebrgof the R-algebral). Precisely, ifT : 0 — U[T,l{] is given
by the second component, thEfis injective and map8 onto a Lie subalgebra of
Ul[}] that sends to 1. If we transfer the Lie bracket 6, then in terms of our
non-canonical section,

K —k

D, DU = (1—k)Dyy1 + 1—25k+l,0C0-

Moreover,adn@) leaved invariant (as a subspace ofl) and acts on that subspace
by derivation with respect th € 6.

Remarkd. An alternative coordinate free definition of the Virasorgadira, based
on the algebra of pseudo-differential operatord.poan be found in [5].

Fock representation. It is clear thatF°T = RR ¢ O is an abelian subalgebra bf
We letF'T = O @ RR act on a free rank one moduky, by letting @ act trivially
andh as the identity. The induced representatiof @ferR,

F := Ul ® 001 Rvo,

will be regarded as HI[R~']-module. It comes with an increasing PBW (Poincaré-
Birkhoff-Witt) filtration W,F by R-submodules, withW,F being the image of
Ds<, 125 ® Rv,. Since the scalarR ¢ [are central if and kill F (becaus® c O),
they act trivially in all of F. As anR-module,F is free with basis the collection
t™ o...0t™® ®@v,, wherer > 0andl < k; <k, < --- <Xk, (forr = 0, read
Vo). (In fact, GIV'F can be identified as a grad@imodule with the symmetric
algebra Sym(I/F°[).) This also shows thdf is even allilh ']-module. ThusF
becomes a representationfbverR, called itsFock representatian

It follows from Lemmd 2 that for anp € 6,

T(ﬁ)tfkr 0 ot K Ry, =
T
= <ZtkT o---oD(t ™) o---otk‘> Ve +t 00t ™ oT(D)v,.
i=1

SinceT(]ﬁ)v0 = 0 whenD € F°9, it follows thatF°@ acts onF by coefficient-wise
derivation. This observation has an interesting consegpie@onsider the module
of k-derivationsR — R (denoted here simply b§r instead of the more accurate
Or/) and the modul®, r of k-derivations ofl that are continuous for the-adic
topology and presen® C L. Sincel = R((t)) as arR-algebra, everk-derivation

R — R extends to one frorh to L. So we have an exact sequence

0—=0—=0r —0g—0.
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The following corollary essentially says that we have defimethe L-moduleF

a Lie algebra@L’R of first order k-linear) differential operators which contains
R as the degree zero operators and for which the symbol maglfvhijust the
formation of the degree one quotient) has imageg.

Corollary 5. The actions or¥ of FOGLR = mGOR C O (given by coefficient-
wise derivation, killing the generatoro) and 6 coincide onF°8 and generate a
central extension of Lie algebra&‘m — O,r by Rc,. Its defining representatlon
on [ (still denotedT) is faithful and has the property that for every I e eL R
of D € O g andf € [we have[T(D), f] = Df (in particular, it preserves every
Ui-submodule oF).

Proof. The generatot can be used to define a sectionGfz — Og: the set of
elements oD g which kill t is ak-Lie subalgebra o6; x which projects isomor-
phically ontoOz. Now if D € Or, write D = D\,e,t + Dhor With Dyert € 0
andDhor(t) = 0 and define aR- Imear operatoﬁ in IF as the sum of (Dyer) and
coefficient-wise derivation bipnor. This map clearly has the properties mentioned.
As to its dependence on another choice yields a decomposition of the form
D = (Dhor + Do) + (Dyert — Do) With Dy € F°8 and in view of the abov®), acts
in IF by coefficient-wise derivation. O

The Fock representation for a symplectic local systemIn Section 4 we shall
run into a particular type of finite rank subquotient of theclkoepresentation and
it seems best to discuss the resulting structure here. \Westdrom the following
data:

(i) a freeR-moduleH of finite rank endowed with a symplectic forfn, ) :
H ®g H — R, which is nondegenerate in the sense that the induced map
H — H*, a— (,a) is an isomorphism oR-modules,
(ii) an R-submodule® C 6y closed under the Lie bracket for which the inclu-
sion is an equality over the generic point and a Lie aciibrs Vp of ©
on H by k-derivations which preserves the symplectic form,
(iii) a Lagrangian submodule C H.

Property (i) means thdd € © — Vp € End((H) is R-linear, obeys the Leibniz
rule: Vp(ra) = rVp(a) + D(r)a and satisfiesVpa, b) + (a, Vpb) = D(a, b).
In the cases of interesp) will be the 6x-stabilizer of a principal ideal iR (and
often be all ofog). One might think ofV as a flat meromorphic connection on the
symplectic bundle represented by

In this setting, a Heisenberg algebra is defined in an obwicaisner: it isA :=
H @ Rh endowed with the brackétr + Rh,b + Rh] = (a,b)h. We also have
defined a Fock representati@itiH, F) of A as the induced module of the rank one
representation of = F + R on R given by the coefficient df. Notice that if we
gradelF(H, F) with respect to the PBW filtration, we get a copy of the syminetr
algebra ofH/F overR. We aim to define a projective Lie action ® onF(H, F).

We begin with extending th®-action toA by stipulating that it killst. This
action clearly preserves the Lie bracket and hence detesrone of© on the
universal enveloping algebidA. This does not however induce oneHR(H, F),
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asVp will not respect the right ideal itlA generated bt — 1 andF. We will
remedy this by means of a ‘twist'.

We shall use the isomorphism: H ®g H = Endy (H) of R-modules defined by
associating ta ® b the endomorphisne(a ® b) : x € H — a(b,x) € H. If we
agree to identify an element in the tensor algebrhl oh particular, an element of
H, as the operator itlA or F(H, F) given by left multiplication, then it is ready
checked that fok € H,

[aob,x] =0c(a®b+b®a)(x).

We choose a Lagrangian supplementrah H, i.e., a LagrangiarR-submodule
F’ C H that is also a section dit — H/F. SinceF’ is an abelian Lie subalgebra
of A, we have a natural map Syiit’) — F(H, F). Itis clearly an isomorphism
of Sym(F')-modules. Now writéVp according to the Lagrangian decomposition

H=F oF
VF’ 0./>
vh— (YD ©°D
P (UD Vb

Here the diagonal entries represent the induced conneatioR’ andF, whereas

op € Homg(F', F) ando], € Homg(F, F’). Sinceo identifiesF @ F resp.F’ @g F’

with Homg (F’, F) resp. Hom(F, F’), we can writeop = o(sp) with sp € F®g F
andof, = o(sf,) ands], € F' ®@g F’. These tensors are symmetric and represent
the second fundamental form Bf C H resp.F C H. Notice that ifa € F, then

[Vp,a]l = Vpl(a) = VE(a) + G]Fc/(a) = VFD(a) + 12[3{3, al

and similarly, ifa’ € F/, then[Vp, a’] = VFD'(a’) + %[SD, a’]l. This suggests to

assign taD € D the first order differential operatds/ (D) in F(H, F) = Sy F/
defined by

Te/ (D) := Vh + 1sp + 1sf.
Proposition 6. The mapl;: : ® — End.(Synt F') is R-linear and has the prop-
erty that [Ty (D), a] = Vp(a) for everyD € ® anda € A. Any other map
D — End(Synm F’) enjoying these properties differs frofa, by a multiple of
the identity operator, in other words, is of the foitn— T¢/ (D) 4+ n(D) for some
1 € Homg (D, R).

Proof. That Tr/(D) has the stated property follows from the preceding. et
D — End,(Synt F’) be the difference of two such maps. Then for evBryc
D, n(D) € Enck(F(H,F)) commutes with all elements ¢1. SinceF(H, F) is
irreducible as a representationfdf it follows thatn (D) is a scalar irR. O

Notice that ifu;, ..., u, € A, then

T (D) (w0 0wy @ve) =

T
= (Zuro...oVD(ui)o...ou1—I—uro...ou1o%sl/)> X Vo.
i=1
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So this looks like the operatdky acting inF with s/, playing the role of-C(D).
Here is the key result about the ‘curvatureef.

Lemma 7. GivenD,E € D, then[Ts/(D), T/ (E)] — T/ ([D, E]) is scalar mul-
tiplication by 1/2 times the value on of th&"-curvature ondetF) on the pair
(D, E).

Proof. The fact thatV preserves the Lie bracket is expressed by the following
identities:

FoF FoF /
VbVe = VeVp VDE = Op0p — OpOg,
F/ FIoF oo /
vEvE —vEVE - Vipg = OLOD — O( O,

VHom(F ’F)(O‘E) . Vgom(F’,F)(o_D) _

D O[D,Els
Hom(F,F/ Hom(F,F/
VDom( Y(of) - VEom( \(op) = oD

The first two give the curvature &fF andV"' on the pair(D, E). The last two can
also be written as operator identities in Syifft

[VE, sl — [VE  spl = S[D,El»
[VD> sgl — [VE ySp) = S[D E]-

If we feed these identities in:

[Tr/(D), Te/ (B)] — T ([D, B]) =

:[VFD/+%SD+]751/)>VE,+15E+15/]_(V[FDE]+ B+ 35pe) =
= ([vg,vé’] —Vibg) + 3(IVh, sel = [VE, spl — spyg))
([VD> E] [VE »SD] [D,E])) + 7 ([SD»SE] [sE, SI/D])

(where we identified(H, F) with Sym F’), we obtain

[Te/ (D), T/ (E)] — T/ ([D, E]) = (ogop + J—L[SD, sg)) — (opoE + %[SDH se).
We must show that the right hand side is equeg W (o of, — opot), or perhaps
more specifically, thatfop + %[sD,sé] = —%Tr(oDoé) (and similarly if we
exchangeD and E). This reduces to the following identity in linear algebi&:
a € Fandp € F/, then in SymF’ we have

o(B®B)ola®a)+ilaca,Bopl=—3Trr(0azaCpep),

Indeed, a straightforward computation shows that

[aoa,Bopl=2(aB)(aoch+poa)=4(aB)poa+t2(ap)
If we interpret(a, B) o a as an operator in Synt’, then applying it tox € F’
yields (a, B)B(a,x) = —o(B ® B)o(a ® a)(x). We also find thata, p)?> =
—TrF/(G(CL@(l)O'(B@B). O
If N is a freeR-module of rank one, then bysajuare root ofN we mean a free
R-module® of rank one together with an isomorphism@fzy © ontoN.
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Corollary 8. Let® be a square root ofletz(F). Then the twisted Fock module
Homg (©,F(H, F)) comes with a natural action & by derivations.

Proof. Given the Lagrangian supplemeht of F in H, then endow® with the
unigue®-module structure that makes the given isomorph3my © = dek(F)
one of®-modules: ifw € © is a generator an&V%etF(w ®w) = T™w ® w, then
V% (w) = %rw This ensures that th®-action on Hom (O, Synt F’) preserves
the Lie bracket. It remains to show that this action is indele@t ofF’. This can
be verified by a computation, but rather than carrying this we give an abstract
argument that avoids this. It is based on the well-known tiaat if H, is a fixed
symplectick-vector space of finite dimensiatg, andF, C H, is Lagrangian,
then the set of Lagrangian supplementdgoin H, form in the Grassmannian of
H, an affine space over S)ﬁﬁo (and hence is simply connected). Now by doing
the preceding construction universally over the corredpan affine space over
Sym§ F, we see that the flatness on the universal example immedigiteds the
independence. O

Remarkd. We will use this corollary mainly via the following reformation. First
we observe that the Lie algebra of first ordtelinear differential operator® — ©
projects tady (this is the symbol map) with kernel the scal&sDenote by® (O)
the preimage of9. This is clearly a Lie subalgebra. Then the above corollary
can be understood as saying that there is a natural Lie agtio®) onF(H, F)

by first order differential operators, acting, in the terology of Sectiori I, with
weight1. The image in EndF(H, F)) is theR-submodule of EndF(H, F)) gen-
erated by thély/ (D) and the identity operator. We may also uéde(F)) in-
stead, although then the weight will lée Note that our discussion of projectively
flat connections at the beginning now suggests a formulatiaonore geometric
terms, namely that the pull-back BfH, F) to the geometric realization of thi&,, -
bundle over Spd®) defined by det(F) acquires a flat meromorphic connection
with fiber monodromy minus the identity.

Remark10. The preceding follows the presentation of Boer-Looijengjarfther

closely. The quadratic terms that enter in the definitiofiefare in a way a relict
of the heat operator of which the theta functions associatéus symplectic local
system are solutions (flat sections are expansions of thatdiéns relative to an
unspecified lattice).

3. THE SEGAL-SUGAWARA CONSTRUCTION

In this section, we fix a simple Lie algebgaover k of finite dimension. We
retain the data and the notation of Secfibn 2.

Loop algebras. We identify the space of bilinear formg x g* — kwith g ® g.
The subspace := (g ® g)? of g-invariants (relative to the adjoint action on both
factors) is of dimension one and consists of symmetric tensRincey is reductive,
we have a uniqug-equivariant projectiog®g — ¢. There is a canonical generator
c of ¢, referred to here as th@asimir elementcharacterized by the property that it
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takes the valu@ on the longest roots (relative to a choice of Cartan subatggb
of g; the roots then lie in the zero Eigen spaceéyoh g*). This element is in fact
invariant under the full automorphism group of the Lie algal not just the inner
ones. It is nondegenerate when viewed as a symmetric hilfoea ong* and so

the inverse form oy is defined. If we denote the latter By then the equivariant
projectiong ® g — cis given byX ® Y — ¢(X, Y)c.

It is well-known and easy to prove thamaps to the center @lg. This implies
that ¢ acts in any irreducible representation by a scalar. In the case of the
adjoint representation half this scalar is called dual Coxeter numbeof g and
is denoted byh. So if we choose an orthonormal ba§i& } of g relative toc, so
thatc takes the formp_, X, ® Xy, then

Y XX, Yl =2hY forallY €g.

Let Lg stand forg ®y L, but considered as a filter&dLie algebra (so we restrict
the scalars t®): FNLg = g ®, m™N. An argument similar as for shows that the
pairing

T (g®k L) x (g @k w) = c @R =1¢g

which assigns tdXf, Yx) the natural image oK ® Y ® Regfa) in ¢ ® R (in
other wordsc Regfa )¢ (X, Y)) is topologically perfect; the basis dual(tHKtl)Kyl
is (Xt 1dt) 1.

For an integeN > 0, the quotienfULg/ULg o FNLg is a freeR-module (a set
of generators i, t* o --- o X, t*, k; < .-+ < k; < N). We completellLg
m-adically on the right:

ULg/ULg o FNLg.

ULg := lim
N

A central extensioﬂ_Ag of Lg by ¢ ® R is defined by endowing the suiiy & cg
with the Lie bracket

[Xf 4 cr, Yg + cs] := [X, YIfg + r4(Yg, Xdf).

We filter Lg by letting forN > 0, FNLg = FNLg and forN < 0, FNLg = FNLg +
cR. Thenufﬁ is a filteredR[c]-algebra whose reduction modutas ULg. Since
the residue is zero o, the inclusion ofF°Lg in fﬁ is @ homomorphism of Lie
algebras. The Auy)-invariance ofc implies that the tautological action of Auf)
on g extends tcfﬁ.

Them-adic completion on the right

ULg := Q% ULg/(ULg o FNLg)
is still aR[c]-algebra and the obvious surjectiﬁr{\g — ULg is the reduction mod-

ulo c. These (completed) enveloping algebras not only come Wwél{ihcreasing)
Poincaré-Birkhoff-Witt filtration, but also inherit a (deeasing) filtration froni..
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Segal-Sugawara representation.Tensoring withc € g ®y g defines thek-linear
map

(@rl—Lgerly, f@grc-fRg=) Xdf&Xg,

which, composed withh g ®r Lg C f\g ®R fﬁ — uiﬁ, yieldsamapy : [®@g | —
uiﬁ. Sincey(f® g—g®f) =)  [Xcf,Xcg] = cdimgReggdf), y drops and
extends naturally to aR-module homomorphisr : I, — ufﬁ which send$119
cdimg. This, in turn, extends continuously to a map from the clesuof [, in Ul

to ﬁfﬁ. Asl_z contains the image of : 6 — Ul, and since is Aut(g)-invariant,
we get aR-homomorphism

G :i=9C:0 — (ULgAWo,
We may also describ@g in the spirit of Sectionl2: give € 0, then theR-linear
map
TeD:grw — g L
is continuous and selfadjoint relative tg and the perfect pairing, allows us to

identify it with an element oliLg; this element produces Ol@g(D). Thus the
choice of the parameteryields

Co(D) =3 Xt o Xt
K,l
This formula can be used to defi(??g, but this approach does not exhibit its natu-
rality.
Lemma 11. For X € g andf € L we have
[Cq(Dy), Xf] = —(c + h)XDx(f)

(an identity inﬁfﬁ) and upon a choice of a parameterthen with the preceding
notation
3

[C4(Di)y Co(D1)] = (¢ + h)(k — 1 Cq(Diy1) +clc + fm)sm,oT dimg.

For the proof (which is a bit tricky, but not very deep), weerefo Lecture 10
of [9] (our Cg(ﬁk) is their Ty). This formula suggests that we make the central

elementc + h of ﬁfﬁ invertible (its inverse might be viewed as a rational fuoicti
onc¢*), so that we can state this lemma in a more natural manneflaw$o

Corollary 12 (Sugawara representationyhe mapDy — ;—‘-Hég(Dk) induces a
natural homomorphism &-Lie algebras
Ty: 0 — (ULg[ L))"

which sends the central elemente 6 to c(c + h)~' dimg. Moreover, ifD € 8,
thenadTg(m leavesLg invariant (as a subspace &fLg) and acts on that subspace

by derivation with respect to the imageofin 6.
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A representation for LAg We fix £ € k with £ # —h. LetF' Lg @ Rc act on the
free R-module of rank on&v, via the projection onto the second faciltlr with ¢
acting as multiplication by. We regardF' Lg @ Rc as a subalgebra ¢fLg so that
we can form the induced module

Fe(g, L) := ULg @11 gasre) RVE,

which we often simply denote l¥,(g). We usev, also to denote its image in this
module. As arR-moduleF,(g) is generated b¥,,t * o---0X,,t % ®@v, where
r>0,0<k <k <--- <k, and whergX,) is a givenk-basis ofg. If we let
6 act onFy(g) via T, then it follows from Corollary I that i£0 lifts D € 0, then

Tg(ﬁ)XKrt_kT 0:-0 qut_k1 ERYES
T
= Z XKr’(*kr 0. XKiD(tfki) o---0Xg 78 @ vt
i=1

+ XKTt_kT 0--+0 XKlt_k‘ o Tg(ﬁ)w.

Thus® is faithfully represented as a Lie algebra Rinear endomorphisms of
Fe(g). If D € F°9, then cIearIyTg(l‘))w = 0 and hence we have the following
counterpart of Corollariy]5 (with the same proof). It tellsthat @L)R acts inlFy(g)
as a Lie algebra of first order differential operators, buhits degree zero paR
acting with weight(c + h)~'cdimg:

Corollary 13. The Sugawara representatioy of 0 on Fy(g) extends t(ﬁL,R in
such a manner theﬁoeL,R acts by coefficientwise derivation (killing the generator
v), [Ty(D),Xf] = X(Df) for X € g, f € L and T,(D) is Aut(g)-invariant. In
particular, this action preserves evetyLAg—submoduIe oF(g).

Semi-local case.This refers to the situation where we allow tRealgebral to
be a finite direct sum oR-algebras isomorphic t&((t)): L = @i, where
I is a nonempty finite index set arld as before. We then extend the notation
employed earlier in the most natural fashion. For instafiten, w, [ are now the
direct sums ovet (as filtered objects) of the items suggested by the notation.
r: L x w — R denotes the sum of the residue pairings of the summands, then
r is still topologically perfect. However, we take for the iistor algebral not
the direct sum of thé;, but rather the quotient af;1; that identifies the central
generators of the summands with a sinigleWe thus get a Virasoro extensién
of 0 by coR and a (faithful) oscillator representation &fin Ul. The decreasing
filtrations are the obvious ones. We shall denoteFlihe Fock representatidf
of T that ensures that the unit of every summandacts the identity; it is then the
induced representation of the rank one representatidfilet © @ RR in Rv,.

In likewise manner we definE\g (a central extension obic1Lg; by cg) and
construct the associated Sugawara representation. ThesespatioriF,(g) of fﬁ
is as before. We have definéd)R and Corollaries 12 arld 1.3 continue to hold.
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4. THE WZW CONNECTION. ALGEBRAIC ASPECTS

From now on we place ourselves in the semi-local casé&, s0®;L; with I
nonempty and finite ant; = R((t)). For the sake of transparency, we begin with
an abstract discussion that will lead us to the Fock reptasen of a symplectic
local system.

Abstract spaces of covacua I.Let A be aR-subalgebra of and letd, r have the

usual meaning as the Lie algebraRstierivationsA — A. We denote byA- L
the annihilator ofA relative to the residue pairing. We assume that:

(A1) as anR-algebraA is flat and of finite type and N O = R,

(A,) theR-modulesL/(A + ©) andF := A N O are free of finite rank and the
residue pairing induces a perfect pairibg(A + O) ®x F — R.

(A3) the universal continuoug-derivationd : L — w mapsA to A and theA-
dual of the resulting\-homomorphisn , r — A is anR-isomorphism

Homa (A1, A) = 84 z.

Remarkl14. The example to keep in mind is the following. SinRes regular
local k-algebra, it represents a smooth g€iSno). Suppose we are given a family
m: C — S of smooth projective curves of gengsover this germ, endowed with
pairwise disjoint sectionséx;)ic;. We letO; be is the formal completion aP.
alongx;, let L; be obtained fron®; by inverting a generator for the ideal defining
xi(S), and take forA the R-algebra of regular functions o := C — U;x;(S)
(or rather its isomorphic image b = @;L;). Itis a classical fact that the three
propertiesA, A,, A3 are then satisfied. For instande/,( A + O) has according to
Weil the interpretation oR'm, O and hence is free of rank It is also classical
that the annihilator oA in w is precisely the image of the space relative rational
differentials onC/S that are regular o@° (so in this casé) g — Al is already
an isomorphism before dualizing).

We putH := A+/A. It follows from properties &) and @A,), that the natural
mapF — H is an embedding with image a Lagrangian subspace. Recab tha
denotes the Lie algebra &fderivationsA — A which preservek. The kernel of
the natural maPa r — Or is 0, g and its image, is by definition ti-submodule
of k-derivationsR — R that extend to one ok. We denote this image B C 0
and refer to it as the module bftable derivations This module is clearly closed
under the Lie bracket. We shall assume that we have equalityei generic point,
SO thateﬁ is as our®. According to @A3) any element ob,  induces the zero
map inH and so g acts inH (as ak-Lie algebra) througt®a . It is clear that
OARr C OLR.

(In the above examplé] would represent the first De Rham cohomology mod-
ule of C/S, F the module of relative regular differentials, and we woulil/dn
G/R* = Bg, as every vector field germ qf$, o) lifts to rational vector field orC
that is regular or€°. The Lie action is then that of covariant derivation of risfat
cohomology classes. The reason for us to alﬁ:,@zv;é Or is because we want to
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admit the central fibers @f — S to have modest singularities; in that c& is
the Bg-stabilizer of a principal ideal iR, thediscriminantideal of7t.)

We writeda g for the preimage 08 g in 81 g and bydg the quotienBa /04 k-
These are extensions ®f r resp.eé‘ by coR. They can be split, but not canonically
S0.

SinceAd(A) c AL, the residue pairing vanishes dnx Ad(A) and henceéd
is contained il as an abelian Lie subalgebra. IRt := F/AF denote the space
of A-covariants.

Theorem 15. The following properties hold:

() The space of covariantB, is naturally identified with the Fock represen-
tationF(H, F),

(i) for everyD € 0, there exists a lifD € 8, such thafT(D) lies in the
closure ofA o Tin U,

(i) the representation of the Lie aIgebEAB\,R on IF preserves the submodule
AT and, y acts inF, through8? by differential operators of degree 1
(with ¢y acting as the identity),

(iv) if © is a square root oflez (F), then the image of this action dfy, is equal
to the image of the Lie algebra of first order differential cgers 6?(@)
(as described in Remalk 9).

Proof. The proof of the first assertion is straightforward and leftite reader.

Sincel /(A + O) is finitely generated as R-module, we can choose a finite
subsetM C Lsuchthall = A + 3 ;.\, Rf + O.

Now let D € 04,z. According to A3), we may viewD as aL-linear map
w — L which mapsA+ to A. This implies thatC(D) lies in the closure of the
image ofA g T+T®g A in UL. Itfollows thatC (D) has the formhr+5_ -, frogn
with r € R, one off,,, g, € L being inA and the order of,, smaller than that of
gn for almost alm. In view of the fact that the nonzero elements?oére of lower
order than those aP andf,, o g, = g, o f, (ModhR), we can assume that &l|
lie in A and so we can arrange thatD) lies in the closure oA o T.

For (iii) we observe that iD € 0, andf € A, then[D, f] = Df liesin A.
This shows thal (D) preservesAF and hence acts ifi,. WhenD ¢ Oa/r and if
we choose) € 0, ¢ as in (i), thenT (D) is clearly zero inFa. ThusBa r acts in
Fa through®?.

Property (iv) follows from the observation that the actidn@q)R onFp =
F(H, F) evidently has the properties described in Propositionsitafin . O

Abstract spaces of covacua Il.We continue with the setting of the previous sub-
section. Withg as before we have defindt}(g). We first consider the space of
Ag-covariants infy(g),

Fo(g)ag :=Fe(g)/AgFe(g).

Proposition 16. For D € 8z, T,(D) lies in the closure ofg o Lg in ULg. The
Sugawara representation of the Lie algelﬁr@R onlF,(g) preserves the submodule
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AgF(g) C F¢(g) and acts in the space dfg-covariants inf(g), F¢(g)ag. viaé/R*;
this representation is one by differential operators ofrdeg< 1 (with ¢, acting as
multiplication by(c + h)~"c dimg).

Proof. The proof is similar to arguments used to prove Thedrem Ifce$) maps
At to A C L, 1 ® D maps the submodulg ® A+ of g ® w to the submodule
g®A = Agofg®L = Lg. Itis clear thatg ® A+ and Ag are each others
annihilator relative to the pairing,. This implies thatC (D) lies in the closure of
the image ofAg @y Lg + Lg ® Ag in ULg. It follows that ¢(D) has the form
cr+ ) > o1 Xefn 0 Xcgen With v € R, one off,, g«n € L being inA and
the order off,, smaller than that of. » for almost allk,n. Since the elements
of A have order< 0 andXfcn © Xcgxn = XcGyn © Xcfen (mModcR), we can
assume that afl, ,, lie in A and so the first assertion follows.

If D € Ak, then forX € g andf € A, we have[D, Xf] = X(Df), which is
an element oAg (sinceDf € A). This shows thaTg(ﬁ) preservesAglFy(g). If
D € 04/, then it follows from the proven part th@(ﬁ) mapsFe(g) to AgF,(g)

and hence induces the zero majFifig) o,- SO0, g acts orlfy(g)a, via . O

For what follows we need to briefly review froin [8] the theofjhighest weight
representations of a loop algebra suct{\gsAccording to that theory, the natural
analogues fofﬁ of the finite dimensional irreducible representations effihite
dimensional semi-simple Lie algebras are obtained asWsllassuming thdtis a
singleton. Fix an integef > 0 and letV be a finite dimensional irreducible repre-
sentation ofy. MakeV ak-representation di°Lg by lettingc act as multiplication
by ¢ and by lettingg ® O act via its projection ontg. If we induce this up t@
we get a representaticﬁﬁg(V) of f\g which clearly is a quotient df(g). Its irre-
ducible quotient is denoted [, (V). This is integrable as bAg-moduIe: ifY eg
is nilpotent and € L, thenYf acts locally nilpotently ifH, (V) (which means that
the latter is a union of finite dimension#f-invariant subspaces in whicff acts
nilpotently). We can be more precise if we fix a Cartan suliatge C g and a
system of positive rootex;, ..., «,) in h*. LetO® € h* the highest root) € h the
corresponding coroot arXl € g a generator of the root spage.

Lemma17. If A € b* be the highest weight &f, thenH (V) is zero unlesa(0) <
€. Assuming this inequality, théii,(V) can be obtained as the quotientlaf g by

the left ideal generated hy®y m, ¢ — € and (Xf)' ) where we can take fdr
any ©O-generator off'[. In fact, the image o¥ in H,(V) (which generate#l,(V)

as aLAg—representation) is annihilated by all expressions of refXfy o- - - o Xf;

with f, € F'randN > ¢ — A(0).

Proof. The first assertion is in the literature in the form of an Eisr12.12 of
[8]). As to the second statement: choose varialbles .., uyn and observe that
fu == f + ) , wfy is an O-generator off ' for genericu. SoV is killed by
(Xf)N for genericu and hence for allr. By taking the coefficient ofi; - - - uy
(and using that thf,'s commute with each other), we find thefy o - - - o Xf;
annihilatesv. O
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Let us call thek-span of anX as above dighest root line Since the Cartan
subalgebras af are all conjugate under the adjoint representation, the $atnue
for the higest root lines.

Definition 18. Thelevelof a finite dimensional representatidof g is the smallest
integert for which some (or equivalently, any) highest root lindhas the property
thatn*! c Ug kills V. We denote it byt (V).

It is clear that in terms of the above root data, theRatf equivalence classes
of irreducible representations of leve€l{ can be identified with the set of integral
weights in a simplex, hence is finite. Notice thRatis invariant under dualization
and more generally, under all outer automorphismg. of

Returning to the general case in whicheed not be a singleton, we @#if(V) :=
®ic1He(V;). So this is zero unless eveW is of level < {. Inspired by the physi-
cists terminology, th&-moduleH,(V)a, is called the space afovacuaattached
to A. The following proposition says that it is of finite rank andsdribes the
WZW-connection.

Proposition 19 (Finiteness) The spaceH, (V) is finitely generated as &lAg-
module (so thatlly(V)a, is a finitely generate®-module). The Lie algebréﬁ
acts onH(V)a, via the Segal-Sugawara representation veigracting as multipli-
cation byHiFL dimg.

Proof. Choose a generatar of m;. SinceR is a local ring we can find a finite set
@ of negativepowers of these generators mapping tRamasis set of /(O + A).
The nilpotent elements gf span a nontrivial subspace that is invariant under the
adjoint action and hence span allgfLet= C g be ak-basis ofg consisting of
nilpotent elements. Then for pdiX, f) € = x ®, Xf acts locally nilpotently in
H,(V) and so there exists a positive inte@ésuch that théNth power of any such
element kills the image abi1V; in Hy(V).

The Poincaré-Birkhoff-Witt theorem implies th& (V) is the sum of the sub-
spaces

Ago (X, f )™ oo (X)) @ (®ierVi) C He(V)

with (X;, f;) € = x @ pairwise distinct foii = 1,...,r, andny > --- > n, >
0. Since we get a nonzero element only when< N, we thus obtain a finite
collection ofR-module generators dfly(V)a,. The remaining statements follow
from[186. O

Remark20. We expect theR-moduleH, (V)4 to be flat as well and this to be a
consequence of a related property for thag-moduleH,(V)). Such a result, or

rather an algebraic proof of it, might simplify the argumanf18] (see Sectiohl6

for our version) which shows that the sheaf of covacua atith¢b a degenerating
family of pointed curves is locally free.

Remark21. It is clear from the definition that a system gfequivariant isomor-
phisms(¢; : Vi = V/)i¢; of finite dimensional irreducible representations induces
an isomorphismp, : He(V)aq = He(V')Aq. By Schur's lemma, each; is unique
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up to scalar ink and hence the same is true for. We may rigidify the situa-
tion by fixing in each representatidri andV; involved a highest weight orbit for
the closed connected subgroup of linear transformatiorsseviie algebra is the
image ofg: if we require that every; respects these orbits, thén is unigue.

We can also say something if we are giveww ac Aut(g). This turns every
representatiory/ of g into another one (denoted’) that has the same underlying
vector spacé/, by lettingX € g act aso(X) onV. The extensio of o to f\g does

the same witht; (V). It follows that we have an identification ﬁﬁ—modules:
Y fro-- 0 Y11 W (Riervi) € Hy(°V) —
o(Yy)fr 00 0(Y1)fi @ (®iervi) € H(V).

Sinceo preservesi g, this descends to an identificatiéfy (Vo) ay = H(V)a,4 Of
R-modules. It is clear from the definition above that this soaéquivariant for the
Segal-Sugawara representation and hence is an isomorph%nmodules.

Propagation principle. The following proposition is a bare version of what is
known as theoropagation of vacuait essentially shows that trivial representations
may be ignored (as long as some representations remaitharkeatrivial, then we
can get rid of all but one of them). If we do not care about theWW@bnnection,
then this is even true for nontrivial representations (d faat can be found in
Beauville [4]) so that we then essentially reduce the disiomsto the case wheie

is a singleton.

Proposition 22. Let] C I be such thaiA maps ontad;c;L;/O;. Denote byB C
A the kernel of the map — @j¢jL;/my; = RJ (evidently an ideal) so that we
have a surjective Lie homomorphidha — (R ® g)! via whichBg acts onR ®y
(®;e1V;). Then the map dbg-moduledt(V|I—]) ®xk (®je7V;) — He(V) induces
an isomorphism on covariants:

(H(VIT— ) @ (@561V))gg

If 62° < 0% denotes the module &fderivationsR — R that lift to k-derivations
A — A which preserved (or equivalently®jejm;), anddp® ¢ 87 stands for the
corresponding extension, then the above isomorphism @iriemis is compatible
with the action of@Q»B on both sides, provided that the representatidfjsare

trivial for j € J.

i) HQ(V)AQ.

Proof. For the first assertion it suffices to do the case whisra singletor{o}. The
hypotheses clearly imply tha,(V|I — {o}) ® V, — H¢(V)aq is onto. The kernel
is easily shown to b&g(H,(V|I —{o}) ® V,).

The second assertion follows in a straightforward manrenfour definitions:
if D € Q/R*»B, then lift D to ak-derivationD : A — A which preserve®. This
implies thatD preserves eacty;, j € J. If we choose a parameterfor O; so that

O; = R((t;)), thenD takes in0; the formDE)rJr DY) with DU the extension of

o] hor

D which kills t; andD); = c1d/dt; plus higher order terms witt{i) € R. The

Sugawara action dj‘)\(}e)rt on the subspac¥; C H,(V;) is up to a factor irR given



FROM WZW MODELS TO MODULAR FUNCTORS 21

by . ’c]._‘XK oX,. Butif Vj is the trivial representation, then this is evidently zero.
The second assertion now follows. O

Remark23. Our discussion of the genus zero case will show that the igoinigm
of covariants generally fails to be compatible reIativdm@Q»B—action.

Remark24. The proposition is sometimes used in the opposite directfomn, C
A is a principal ideal with the property that for a generatar m,, the m,-adic
completion ofA gets identified withR((t)), then let] be the disjoint union of
and{o}, V the extension o¥ to I which assigns to the trivial representation and
A := Alt™"]. With (1,{0}) taking the role of I, ]), we then find tha,(V)a, =
H({(V)Ag.

5. BUNDLES OF COVACUA

Spaces of covacua in familiesWe specialize the discussion of Sectldn 4 to a
more concrete geometric situation. This leads us to sheafifiyy of the notions
we introduced earlier and in such cases we shall modify otation (or its mean-
ing) accordingly. Suppose given a proper and flat morphistwdenk-varieties
m: C — S whose basé is smooth and connected and whose fibers are reduced
connected curves that have complete intersection sintgiegaonly (but we do not
assume thaf is smooth oveik). Since the family is flat, the arithmetic genus
of the fibers is locally constant, hence constant, say equgl ¥We also suppose
given disjoint sectiong; of 7, indexed by the finite nonempty setvhose union
Uierxi(S) lies in the smooth part af and meets every irreducible component of a
fiber. The last condition ensures thaj ifC° := C —U;c1xi(S) C C is the inclusion,
thensj is an affine morphism.

We denote by(O;, m;) the formal completion ofd. along x;(S), by £; the
subsheaf of fractions @; with denominator a local generator wf and byOQ, m
and L the corresponding direct sums. But we keep on using, 0 etc. for their
sheafified counterparts. So these are nowglmodules and the residue pairing
is also one ofDs-modules:r : £ x w — Os. We write A for 7t,j.j*O¢ (a sheaf of
Os-algebras that is also equal to the direct imag&®gf on S) and often identify
this with its image inl. We denote by 4,5 the sheaf of0s-derivationsA — A
and byw 4,5 for the sheafr.j.j*w¢ /s (Which is also the direct image dhof the
relative dualizing sheaf @°/S; if C° is smooth, this is simply the sheaf of relative
differentials). Saw 4,5 is torsion free and embeds thereforewn

Lemma 25. The propertiesA;, A, and A3 hold for the sheafd. Precisely,

(A7) Ais as a sheaf of)s-algebras flat and of finite type,

(A)) ANO =0OsandR'm,Oc = L/(A+ O) is locally free of rankg,

(A3) we haved 4,5 = Homy(w 45, A) and w 4,5 is the annihilator ofA with
respect to the residue pairing.

Proof. Property A; is clear. It is also clear thabs = .0 — AN O is an
isomorphism. The long exact sequence defined by the fumGt@pplied to the
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short exact sequence
0= 0c —ij«j"Oc — L/O =0

tells us thaR' m,O¢ = £/(A + O); in particular, the latter is locally free of rank
g. HenceA; holds as well.

In order to verify A3, we note thatr,wc/s is the Os-dual of R'7,Os, and
hence is locally free of ran. The first part of4; follows from the corresponding
local property6.,s = Homo, (w¢ /s, Oc) by applyingm,j* to either side. This
local property is known to hold for families of curves withrgplete intersection
singularities. (A proof under the assumption tas smooth—which is does not
affect the generality, since is locally the restriction of that case and both sides
are compatible with base change—runs as followsj’ if C’ C C denotes the
locus wherer is smooth, then its complement is of codimensie2 everywhere.
Clearly, 8¢/s is the Oc-dual of we,s onC’ and since both are inert undgj’,
they are equal everywhere.)

The last assertion essentially restates the well-knowirttiat the polar part of a
rational section ofv¢,s must have zero residue sum, but can otherwise be arbitrary.
More precisely, the image ab 4/ in w/Flw is the kernel of the residue map
w/Flw — Os. The intersectionw 4,5 N Flwis T.we s and is hence locally free
of rankg. Since(F'w)* = O, it follows that(w 4/5)-NOandL/((w 4/5)" 4+ O)
are locally free of rank 1 ang respectively. Sincel has these properties also and
is contained inw 4,5)*, we must haved = (w 4/s)*. O

For what follows one usually supposes that the fibers aréeslgiminted curves
(meaning that every fiber afj has only ordinary double points as singularities and
has finite automorphism group) and is versal (so that theidigtant A,; of 7t is
a reduced normal crossing divisor), but we shall not maksetl@Essumptions yet.
Instead, we assume the considerable weaker property thaettions of the sheaf
0s(log Ax) of vector fields orb tangent toA,, lift locally on S to vector fields or.
(This is for instance the casedfis smooth andr is multi-transversal with respect
to the (Thom) stratification of HofiC, t*TS) by rank [13].) Notice that we have
a restriction homomorphisi®s (logAx) ® Oa, — Oa,,.

LetOc s C O¢ denote the sheaf of derivations which preserv®s. If we apply
T,j«j* to the exact sequence — 0c/s — O¢cs — 0O¢s/0c/s — 0 and use our
liftability assumption and the fact thaj is affine, we get the exact sequence

0—04— 045 — 0s(logAz) — 0.

We defined@A,s as the preimage d 45 in @5,5 and @S(Iog Ar) as the quotient
éz:,s/eA- These exten@ 4 s and0s by coOs. If we denote théHodge bundle

A:=A(C/S) := def(m,wes),

then we see tha@s(log A,) may be identified with the Lie shed?; (A)(log A,)
of first order differential operatos — A which preserve the subsheaf of sections
vanishing om\ .
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Observe thallg = g ® L is now a sheaf of Lie algebras ov€s. The same
applies tol and so we have a Virasoro extensidnof s by cpOs. We have also
definedAg = g ®x A, which is a Lie subsheaf afg as well as onE; and the Fock
type ZE;-moduIe}‘g(g). The will also consider the sheaf gfg-covariants in the
latter,

Folgless = Folg)ag = AgFe(g)\Felg).
From Proposition 16 we get:

Corollary 26. The representation of the Lie algeb@,g on F;(g) preserves
AgF(g) and acts onFy(g)¢,s via 8(log A-) with ¢, acting as multiplication by
(¢ +h)~"edim g. This construction has a base change property along any §moo
part S’ of the discriminant in the sense that the residual actio®@dgA,) on
Ful@)ey, /s = Fulg)ess ® Os: factors throughs:.

The bundle of integrable representatiddg V') overS is defined in the expected
manner: it is obtained as a quotient Bf(g) in the wayH,(V) is obtained from
Fe(fﬁ). We writeH(V)¢/s for He(V) 44. The following theorem, which is mostly
a summary of what we have done so far, is one of the main resfute theory.

Theorem 27(WZW-connection) TheOs-module? (V). s is of finite rank; it is
also locally free ovelS — A, and the Lie action oD, (A)(logAx) onHe(V)e/s

defines a logarithmid-flat connection relative ta\, of Weightz(Ti}T) dimg. The

same base change property holds along the smooth part ofideeirdinant as
in Corollary [26. Furthermore, any € Aut(g) determines an isomorphism of
D1 (A)(log Ax)-modulesH(°V)e/s = He(Veys.

Proof. The first assertion follows froM19. The actionfflactors (locally) through
D;(V/A)(log A,) for some square roatA of A and has then weiglt+h) "¢ dim g.
This amounts to an action @ (A)(log A,) of half that weight. The last assertion
follows from Corollary{1B8. The rest is clear except perhdpeslocal freeness of
Hi(V)eys onS — Ay But this follows from the local existence of a connection in
the Os-moduleH,(V)c. a

So if A* — S denotes thé&s,,,-bundle that is associated ¥ then we have a
flat connection on the pull-back &t,(V)¢/s to A*[S — A, with fiber monodromy

scalar multiplication by a root of unity of ordgﬁﬁ—) dimg.

Propagation principle continued. In the preceding subsection we made the as-
sumption throughout that a union of sectionsCof— S is given to ensure that
its complement is affine oveY. However, the propagation principle permits us to
abandon that assumption. In fact, this leads us t&lstand for any map which
assigns to everg-valued pointx of C an irreducibleg-representatiorV, of level

< {, subject to the condition that isupport SupaV) (i.e., the union of the(S)

for which V, is generically not the trivial representation), is a triviiaite cover
overS and contained in the locus whete C — S is smooth. We then might write
Ho (V) for He(Visupgy)), but sinceC —Supd V) need not be affine oveér, this does
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not yield the right notion of conformal block. We can find hawe at least locally
over S, additional pairwise disjoint sections 6f— S so that the complemeigt®

of their support and that &f is affine overS. Then we can forn,(V|C —C°) and
Propositiorf 2P shows that the resulting bundle of covak@V|C — C°)(x, 00 )g
with the projective connection is independent of the ctoitede. This suggests
that we letH (V) resp.H,(V)¢ /s stand for the sheaf associated to the presheaf

SOUr m%g(V|§) resp. M?—Q(Vlg)cu/u,
S S

where$S runs over the unions of pairwise disjoint sections as abdiee latter,
when twisted with the dual of dgt/S), has, being a limit of presheaves with flat
connections, a flat connection as well. It is clear that in fat-up there is also no
need anymore to insist that the fibersmolbe connected.

The genus zero case and the KZ-connectiorMVe here assume€ to be isomor-
phic toP'. Letxy,...,x, € C be distinct and contain Sufig). Choose an affine
coordinatez on C (which identifiesC with P') whose domain contains the's and
write z; for z(x;). Notice thatt., := z~' may serve as a parameter for the local

field atz = co. So if Hy(k) denotes the representationgjﬂ—\‘)) attached to the

trivial representatiork of g((z')), then by the propagation princidlel22 we have
H(V)c = (Vi ® -+ ® Vo ® Hy(k)) g5, Whereglz] acts onV; for i < n via its
evaluation atz;. According to [8], theglz]-homomorphismU(glz]) — H,(k) is
surjective and its kernel is the left ideal generated2y)'+!, whereX € g gener-
ates a highest root line. This implies tti&t(V)p: can be identified with a quotient
of the space of-covarianty V1 ® - - - ® Vy, )4, namely its biggest quotient on which
(31, zXW) T acts trivially (whereXV) acts onV; asX and on the other tensor
factorsVj, j # i, as the identity). Now regarg,...,z, as variables. Our first
observation is that a translation @h does not affect;(V)c: if a € C, then the
actions ofy_ " ;(zi + a)XW andY [ ; zXP onV; @ - -- ® V,, differ the action

of aX € g. So we always arrange that + --- 4+ z, = 0. Consider inC" the
hyperplanes,,_; defined byz; + - - - +z, = 0 and denote bg. , the open subset
of pairwise distinctn-tuples. Then the trivial family ove$® |, C :=P' x S?_,,
comes withn + 1 ‘tautological’ sections (including the one at infinity) dwat we
also have defined®. This determines a sheaf,(V)¢/so  overS;_,. According

to the preceding, we have an exact sequence

(Vi@ @Vn)g@kOss | = (Vi®- @ Vn)g @k Os = He(V)eyse | — 0,

1
where the first map is given by ; z;X™)1. We identify its WZW connec-
tion, or rather, a natural lift of that connection§ ® --- ® V, ®x Osgq- In

order to compute the covariant derivative with respect ¢ovéctor fieldd; := %

on S _;, we follow our recipe and lift it toC x S;_; in the obvious way (Wfth

n—1
zero component alon@). We continue to denote that lift b3; and determine its

(Sugawara) action of, (V). We first observe thal; is tangent to all the sections,

except theith. Near that section we decompose if §§+ 0i) — % where the first
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term is tangent to theth section and the second term is vertical. The action of the
former is easily understood: its lift ) ® - - - ® V;, Qx (95,?H acts as derivation

with respect taz;. The vertical term,—%, acts via the Sugawara representation,
that is, it acts on théth slot as_alT > X«(z—z)) 7 o X, and as the identity on
the others, in other words, actsa?l—ﬁ > XW(z —2)" o XY, This action does
not induce one iV ® - - - ® V Qx (93;1 . To make it so, we add to this the action

by an element og[Co]uZE; (which of course will act trivially in?-tg(V)C/sfH),
namely

1 () 1 T 6 )
: o Xy = - X{ o X
) c f—l—hjZKZ_Zi & o Xy

{+h4

Doing this for evenyi, then the modification acts ¥h ® - - ® Vi, ®x Ose

! LV ONG!
< X X'«
{+h ; zj—z " "

Let us regard the Casimir elements an element of ®y g, and denote by (H)
its action inV; ® - - - ® V;, on theith andjth factor (sincec is symmetric, we have
cW) = ¢ so that we need not worry about the order here). We conchate t
the WZW-connection is induced by the connection\gn® - -- ® Vi ®x (95,?H
whose connection form is

_dz ) Iy d(zi —3) (i)
Z] - Zl e +h Zi — Z]'

I<i<j<n 1

—1

€+h1 1 A

It commutes with the Lie action gfonV; ® - - - ® V,, and so the connection passes
tooneon(Vi @ -+ ® Vi )g @k (95,?H . This lift of the WZW-connection is known
as theKnizhnik-Zamolodchikov connectiolt is not difficult to verify that it is flat
(see for instance [10]), so that we have not just a projdgtiVat connection, but a
genuine one.

Proposition 28. The map(V; ® --- ® Vi) ®x (95,?H — Hg(V)C/SL] is an
isomorphism fom = 1,2. Hence forn = 1 (resp.n = 2), 3'1£g(V)C/5,L1 is zero
unlessV, is the trivial representation (resp/y and V; are each others dual), in
which case it can be identified withso

Proof. Forn = 1 this is clear. Fon = 2, the stalk ong(V)C/S? at(z,—z),z #0,

can be identified with the image [V} ® V3), of the kernel of(zX (") — zX(2))1+¢
acting inV; ® V3. SinceXV + X2 is zero in(V; ® V,), and(XV) 1+ is zero in
Vi, this (V4 ®V2)g. Il

Remark29. A 3-pointed genus zero curd€ = P';x;,x2, x3) has no moduli, and
S0 we expect in this case an identificationtHf V)¢ also. Indeed, as is shown in
[4], if Vi, V,, Vs are the associated irreducilijerepresentations of levet ¢, then
H,(V)c is naturally identified with the biggest quotient 6f ® V, ® V3 on which
both g and the endomorphismi@; X" + z,X(2) 4 z3X(3))1+¢ act trivially for all
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values of(zy, z;,z3). This last condition is of course equivalent to requiringtth
XP ® X9 ® X" induces the zero map wheneye#- g +r > (.

6. FACTORIZATION

In this section we consider the case when we are given a farityC, — S,
of pointed curves of genug with a smooth base ger8y, = Spe¢R,) (SOR, is
a regular local ring) and for which we are given a sectigralong whichm, has
an ordinary double point. We assume that the fibers have rey sthgularities,
in other words, thatr, is smooth outside,. After possibly making an étale base
change of degree two we find a partial normalizationC, — C, which separates
the branches in the (strong) sense thas an isomorphism over the complement
of xo(S,) andxy has two disjoint lifts toC, (which we shall denote by, and
x-). In what follows we simply assume this to be already the cabere are two
basic cases: theonseparating casevhereC,/S, is connected—in that case the
fibers have genug — 1—and theseparating casewvherex . andx_ take values in
different component§_. of C, such that the fiber genetg. of C. /S, add up to
g. Since the natural base of the WZW-connection is@gbundle defined by a
determinant bundle (or a fractional power thereof), let 1st fecall what we get in
the present case. The bundle of which we take the determim#me direct image
of the relative dualizing sheat,.w¢, /s,. This bundle contains the direct image
of we, /s, and the two differ only at,: an element otvs /s . when pulled back
underv may have a simple pole at, andx_ whose residues add up to zero. So
we have a natural exact sequence

0— Vg s, — We, /s, — 050 — 0,

where the last map is defined by taking the residue atf we take the direct image
underr,, we see that we have a natural injection v).wg, s, — Toxwe, /s, - It

is in fact an isomorphism in the separating case, whereas iiltokernel naturally
isomorphic toR, in the nonseparating case. So after taking determinantsewie g
either case that(C,/So) = A(Co/So), Where it is understood that in the separating
case the right hand side equalg’, /S,) ® A(C_/S,).

We now also assume given a representation valuedVigagn the smooth part
of C, whose support is contained in a finite union of sectipso that we have
definedH,(V,)c, s, - A coarse version of thiactorization principleexpresses this
R,-module in terms of a space of covacua attached to the nmmﬁah@o/so. The
more refined form describes it as a residue of a module of cavan a smoothing
of 71, and takes into account the flat connection.

Throughout this sectioh, C C, is a finite union of sections af,/S, contained
in the smooth part of,,, which contains the support &, and has the additional
property that its complemertiy := C, — X, is affine overS, (this can always
be arranged by adding some ‘dummy’ sections to the suppoit,pf We often
identify X, with its preimage irC,. Notice that(?O = v = Co — L, is also
affine oversS,, being the normalization of an affirfg-scheme. We writé\,, resp.
A, for their (coordinateR,-algebras.
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Coarse version of the factorization property. Recall thatP, denotes the set of
isomorphism classes of irreducible representationsaffevel < { and is invariant
under dualization: ifu € Py, thenu* € P;. LetV, be ag-representation in the
equivalence clasg € P; and choosg-equivariant dualities

by Ve ® Vs =k,

where we assume thal,- is the transpose df,,. Its transpose invergifrzLl EVL®
V. then spans the line gfinvariants inV, @ V,,-.

Proposition 30. LetV,, - be the representation valued map @nwhich is con-
stant equal toV,, resp.V,- onx, resp.x_ and is elsewhere equal t§, (via the
obvious identification defined by). Then the contractiony, : V, ® V= — k
define an isomorphism

@HEPKH@(\?W*)C”O/SO — H(Vo)e, /s, -
This is almost a formal consequence of:

Lemma 31. Let M be a finite dimensional representation pfx g which is of
level < ¢ relative to both factors. 1MM?® denotes that same space viewedgas
module with respect to the diagonal embeddings — g x g, then the contraction
Buer M@ (V XV) — M that on each summand is definedthy(the symbok
stands for the exterior tensor product of representationdyces an isomorphism
between covariants:

Suer, (M & (VB V),

Proof. Without loss of generality we may assume thatis irreducible, or more
precisely, equal t&/y, XV, for some\, A’ € P,. ThenM® = V,, @ Vi,. By Schur’s
Iemma,Mg is one-dimensional ik’ = A* and trivial otherwise. That same lemma
applied tog x g shows thatM  (V,, X V}))gx4 iS Zero unlessa, A = (u*u),

in which case it is one-dimensional and maps isomorphically1®. O

— M.
Xg g

Proof of[30. Evaluation inx, resp.x,x_ define epimorphismg., — R, resp.

A, — Ry @ R, whose kernels may be identified by meansvofWe denote that
common kernel by and byB the algebra of regular functions on the smooth part
of CS. This is also the algebra of regular functions on the complenof the two
sectionsx. 63. If Zg has the evident meaning, then the argument used to prove
Propositior 1P shows thatl := H(V,|Z,)z, is anR,-module of finite rank. It
underlies a representation gfx g of level < { relative to both factors and is
such thatMg = H(Vo)a,g = He(Vo)e,/s,- The assertion now follows from
Lemma[31 and the argument used for the propagation prinaipieh shows that
(M® (Vu X V:;))ROQXROQ = H(Vu,u* )Bg = HK(VLL,}L* )60/30- 0

A smoothing construction. In order to motivate the algebraic discussion that will
follow, we choose generatots. of the ideals of the completed locR)-algebras
of C, atx4 and explain how they determinesenoothingof C,/S,, that is, a way of
makingC, the restriction ovef, x{o} of a flat morphisn€ — S, with S := S, x A
(the spectrum oR := R, [[t]]) which is smooth ove$ — S,. The construction goes
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as follows: in the produc€, x A, blow upx. x {o} and letC be the formal
neighborhood of the strict transform 6f x {o}. So at the preimage ofy x {o}
we have on the strict transform 6fx {o} the formalS,-chart(ty, t/t+). Now let

C be the quotient of obtained by identifying these form&},-charts up to order:
(ty,T/ty) = (t/t_,t_), so that(s,,s ) := (t.,t_) is now a formalS,-chart
of C on which we haver = s, s_ (in either domainr represents the same regular
function). We thus have defined a flat morphi€m— S, x A = S (with T as
second component) with the stated properties.

Remark32. If we were to work in the complex analytic category, then waldo
take for A the complex unit disk. The fiber @f/S over(s,T) € S, x A is then
obtained by removing fron€C the union of the two disks defined by | < |1,
followed by identification of the two closed anniii < |t+| < 1 by imposing the
identityt,t = .

With a view toward a later application—namely, of extragtia topological
guantum field theory from the WZW model—we note that therevisnea limit
if Ttends to zero if we keep its argument fixed. To see this, letrsisdbserve that
for || < 13 the fiber is also obtained by removal of the union of the twerogisks
defined by|t4| < \/ﬂ followed by the above identification of the two closed
annuli\/[t/2] < [t.| < v/]27]. Now do a real oriented blow ug, — C; of the
pointsxy(s) € CS. This means that the polar coordinates associated t@re to
be viewed as coordinates for the preimage of its domaif ont; = 4y with
|C+| = 1T andr4+ > 0 such that the exceptional sef; is defined byr. = 0. No-
tice thatdC, is indeed the boundary of a surface; it has two component$, efa
which comes with a natural principal(1)-action. If we writet = ¢ accordingly
with [¢| = 1 ande > 0, then for\/e/2 < T4 < V2¢, (4, ;) must be identified
with (r_, () precisely whernr,r_ = ¢ and(, (_ = (. This has indeed a con-
tinuous extension over = 0, for then we just identify the two boundary circles
corresponding to = 0 by insisting thatC, (. = ¢. We thus obtain a family
¢ — A over the real oriented blow ufi — A of A at its origin and whose fibers
overdA are as just described. The dependencé]bﬁ is a priori on the coordi-
natest.., but it is clear from the construction this dependence iaah énly via the
(real) ray inT,, C;® T, C, defined by;2- |, ©c 5|, - The fibers of this family
just differ by the way we identified the boundary circles arelthus see that the
monodromy of the family is a positive Dehn twist defined by Wding circle.
For later use we note that this construction takes placesi€thcategory:C has a
naturalC'-structure such that the projectionAois C'.

We should perhaps add that this has an algebro-geometamiation in terms
of log structures and thdt, C; ® T, C, can be understood as the tangent space of
the semi-universal deformation of the singular g, x(s)) (equivalently, our
data define a smooth point of the boundary divisor of some tstick M, , and
T., Cs ® T, C; can be identified with its normal space).

We will denote byX the image off, x A in bothC andC. In either case it is
a union of sections ove$. The representation valued ma&p on C, is extended
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to C in the obvious way (so that ist support is containedjrand we denote this
extension byV. We letA stand forR-algebra of regular functions @ :=C — £.
Notice thatA, = A/(TA) and thatA embeds iInA,[[t]].

The glueing tensor. Suppose that in the regular subalgeRrave are given a sub-
algebraR, and an element in the maximal ideal oR such thaRR = R, [[t]]. We
further assume giveR-algebrad ;. andL_, both isomorphic t®((t)). The ‘ideal’
in Ly corresponding taR[[t]] is denoted byn.. LetL := L, & L_ the direct sum
asR-algebras. We assume given a clo®edubalgebrad, C L with the property
that it can be topologically generated aRaalgebra by two generatoks ,s_ of
the following type: there exist generatars of m.. such that, = (t,,t/t_) and

s = (t/ty,t_). So an element ab, will then have the form
2 amasfsh= ) ama(th ) =
m>0,n>0 m>0,n>0
—k —k\ .k
5 (X et Y et )et
k>0 m>0 n>0
= Z OnmTsT ™+ Z AmmT + Z QnmTmst ™,
n>m>0 m>0 m>n>0

with a,, . € R,. Clearly, the coefficienta,, ., can be arbitrary irR, and the ele-
ment in question is zero only when al}, ;,, are. So0, is a copy ofR,[[s;,s_]].
The last identity shows th&®, is contained in th&-submodule generated by non-
positive powers of . ands_. We shall use the generatdrs for auxiliary purposes
only. A similar argument yields the following lemma and se froof is left as an
exercise.

Lemma 33. Any continuouR,-derivation of©Oy which preserves € O, extends
uniguely to one of. If we letD;" stand fort™" =2, then it has there the form

dty
(D(J)r> 0) + Z Tk( Z am,kD;,]@ Z ak,nD;,k)»
k>0 m>0 n>0

with anm € Ro.

We have definedlg and its central extensid[/ﬁ. Foru € Py, IetHgt(Vu) denote
the representation attached\fg of the central extensioh/i\g of Lyg, so that the
R-moduleH (V,,) ®g H; (V,) is one oﬂ_Ag. These representations are defined
overR, (overk even) and so arise from a base chari@éivu) = R®g, Hie(vu)
and likewise for their tensor product. The Casimir elemeatts inV, as a scalar,

a scalar we shall denote ly. Observe that,« = c,. Its value is best expressed
(and computed) in terms of a Cartan subalgdbra g and a system of positive
roots relative tdy: if we identify p with its highest weight irh*, then

cu = c(u, u+ 2p),

wherep has the customary meaning as the half the sum of the posiiats.rIn
particular,c, is a positive rational number (the denominator is in fact asn3).
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Lemma 34. There exists a serieg' = Y 3 eit¢ € H; (Vy,) ®r, Hy (Vo) [[T]]
(the glueing tensorwith constant terney; = BH that is annihilated by the image
of Opg in E\g Moreover, any continuouR-derivationD of Oy which preserves
determines & e 0 (relative to the Fock construction on tiRealgebraL) with the

property thate" is an eigenvector ng(ﬁ) with eigenvalue—z(%hr).

Proof. We first observe the generatars of m.. define a grading on all the relevant
objects on which we have defined the associated filtrdti(mg., the degree zero
summand ofH,(V,,) is R ® V,,). Itis known ([€], § 9.4) that the pairing,, :
V. x V= — k extends (in fact, in a uniqgue manner) to a perfegtairing

by HY (V) x Hy (V) = R

with the property thab,, (XtTu,u)+b, (u, Xt_"u’) = 0forall X € gandn € Z.
This formula implies that the restriction bf, to H*(Vu)_d x H (Vyx)_qr is zero
whend # d’ and is perfect whed = d’. Soifel € H; (Vy)-a ® Hy (Vyr)—a
denotes the latter's transpose inverse, then we have fot &l Z, X € g the
following identity inH; (Vy)a x H (Vi+)—d_n:

(Xth @ 1) + (1@ Xt-Mel =0.

Ed+n
This just says thatXt? @ 1) +t"(1 @ Xt_") kills e* := Zdzo Eg’td. Sinces” =
(t%, T™t_"), this amounts to saying thisT € Oyg C f\g kills e*. Likewise for
Xs™. Since any element @, lies in theR-submodule generated by the nonpositive
powers ofs, ands_, it follows thate" is killed by all of Oqyg.
The second statement is proved by a direct computation. KiseeLemma 33

to write D as an operator ih, then we find that it suffices to prove:

(i) T T, (D} ) — T T, (D5_,) kills e for all myn > 0, and

(i) To(Dg)(e") = — e

As to (i), if we substitute

T,(Df ) = — €+h 3 > i XtTT T o Xt

jEZ K

and do likewise forTg(ﬁ;_m), then this assertion follows easily.

For (ii) we first observe thak, (D) preserves the grading &f; (V,,) and acts
onH*(V Jo =R®yV,as— (2(’,+2h Z XcoX. Thisis just multlpllcatlon by
— % Foran element € H; (V,)_4 of the formu = Y,t; 0. - o V1t ov

(z+h
withv € V,, andY, € g (so thatd =k, + - - - + k1), we have
—ky —k (¢
To(Df) (W) = —du+ Y75 o0 Vit7 o Ty(Df)(v) = (—d — 2 +“ 7 Ju.

SinceD| (1¢) = dt¢, it follows thate;t¢ is an eigenvector of; (D] ) with eigen-

value—m O
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Finer version of the factorization property. It is clear that our smoothing identi-
fies theR-moduleH, (V) with H,(V,)[[t]]. According to Proposition 1% (V)¢/s =
H(V)aq is a finitely generate®-module. SinceA, = A/TA, the reduction of

He(V)ag modulot yields Hy(Vo)a,g = He(Vo)e, /s, Propositior 3D identifies
the latter With@uepe%g(@u,w)go/so. It is our goal to extend this identification to

one of the space of covac@ (V)¢ /s with the pull-back ofD,cp, H¢(Vy u e, /s,
along the projectioms, : S — S, and to identify the connection on that pull-back.
This will imply among other things that,(V)¢/s is a freeR-module.

Theorem 35. TheR-homomorphism defined by tensoring with the glueing tensor,
E = (Ep)u: He(V) = @pepHe (V)]
U= Z W te - (U@RS“ = Z W ® sg’c]‘*d) ,
k>0 k,d>0 K

is also a map ofAg-representations if we lexg act on the right hand side via the
inclusionA C A,[[t]]. The resultingR-homomorphism of covariants,

Ecys: He(V)ag — @uePlﬂe(@u,w);\og[[ﬂ],
is an isomorphism (so thatl,(V)a, is a freeR-module). It is compatible with
covariant differentiation with respect ®;(logS,) = R[[t]] ®x, g, + RI[T]TL
relative to the lift tods(logS,) of Lemm@ﬂ: it commutes with the action@g,
whereastL respects each summait}(V,,,-) AgllTll and acts there as the first

order differential operatorr% + z(TC:fT)

Proof. The first statement is immediate from Lemima 34. So the map wariemts
is defined and i®-linear. If we reducét ;s moduloT, we get the map

HE(VO)AQQ — @uGPLHi(Vu,u*)]\og» u— Z u® 58)
neP,

and observe that this is just the inverse of the isomorphiderapositior{ 3D. Since
the range ot s is a freeR-module, this implies thak s is an isomorphism.

The commutativity with the action dig, is clear. According to Corollary 13
covariant derivation with respect tqf—T in H(V)c/s is defined by means of ke
derivationD of A which lifts ti: if we write D =t + 3 t"D™, where
D™ is a vector field on the smooth part 6f'S, then the covariant derivative is
induced byT,(D) = t& + ¥ ., T,(D™) acting onH,(V,)[[t]]. From the
last clause of Lemma 84 we get that wHere H,(V,)[[t]],

To(D)EL(U) = Tg(D)(Ue") =

_ G _ G
= T,(D)(U)e" T ﬁ)usu — E,T,(D)(U) TS| E)EH(U).

SinceTy(D) acts oriHIg(%?u,m );\Og[[ﬂ] as derivation byt%, the last clause follows.
O
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Corollary 36. The monodromy of the WZW connection actingriiV). s has
finite order and acts in the summaﬁdg(@u,w)é/so[[ﬂ] as multiplication by the

root of unityexp(—my/—1—%).

{+h

Proof. The multivalued flat sections 6#,(V).,» decompose undei; 5 as a di-
rect sum labeled by,. The summand corresponding iois the set of solutions

of the differential equatiorr%u + z(TcifEu = 0. These are clearly of the form

wr /2 with 1 ¢ He(Vy )4, If we let run over the unit circle, then we
see that the monodromy is as asserted. Sﬁgee Q, it has finite order. O

Remark37. We use here the convention that the monodromy of the multaehl
function z* is exp2ty/—1) (rather than exp-2may/—1)). More pedantically:
for us the monodromy is eovariantrather than a contra-variant functor from the
fundamental groupoid to a linear category.

7. THE MODULAR FUNCTOR ATTACHED TO THEWZW MODEL

We show here that the results of Secfidn 6 lead to topologimahterparts that
take the form of (what is called) a modular functor in topatad) quantum field
theory.

Defining the functor. We will work here in theC'-category. The main objects will
be compact orientedurfaces endowed with @' -structure, possibly with bound-
ary, but where we assume that each boundary component coitiea principal
action of the unit circldl(1) that is compatible with the orientation it receives from
the surface. In the rest of this paper, we will simply refesth an object as a
surface

An infinitesimal collarof a surface is a inward pointing (nowhere zero) vector
field defined on the boundary only. The choice of such a veottd fletermines
a basis for each tangent space (the second tangent veatdodialy the derivative
of the U(1)-action) and so we may think of this as a first order extensioth®
given U (1) action. Suppose given such an infinitesimally collaredeswE and
two of its boundary componeni,, B_. Let us call aglueing magfor this pair an
anti-isomorphismp : B_ — B, that is, aC'-diffeomorphism with the property
thatp(ub) = u ' (b) forall b € B_ andu € U(1). We call it thus, because if
we use it to identifyB_ with B, we get a new (infinitesimally collared) surfacg
without the need of making any further choices: @lestructure must be such that
the normal vector fields become each others antipode. Siyitae topological
quotientX of L obtained by contracting each of its boundary components als
acquires aC'-structure: a function oL is differentiable precisely when its lift
to £ is C' and is such that its derivative evaluated on the infinitekzoar of a
boundary component is the representation of a linear maplar poordinates.

Definition 38. We call a conformal structure on the interior of the infiniteslly
collared surfaceZ admissibleif it is compatible with the giverC'-structure as
well as with the infinitesimal collaring: for every boundasgmponent either the
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conformal structure extends to the boundary or extendsadte image ir- and
we demand that in the first case the infinitesimal collaringpégendicular to the
boundary, and that in the second (cuspidal) case it mapsut¢l &orbit in the
tangent space.

This somewhat unconventional definition is in part motidaby the following
observation. A conformal structure on a manifold is just ar®ann metric given
up to multiplication by a continuous function. More pretysd is a section of the
bundle of positive quadratic forms modulo positive scatarghe tangent bundle.
As the fibers of this bundle have a convex structure, so hapése of sections.
This also holds in the present case with the given boundarglitons, in particular
the space of admissible conformal structures is contlactibnd this is still true
if we restrict ourselves to the admissible conformal sticest that are cuspidal at
a prescribed union of boundary components. This makesaicéatnle notion from
the point of view of homotopy.

Definition 39. A g-marking of a surfaceX consists of giving a mapyy that as-
signs to every boundary componentioé finite dimensional irreducible represen-
tion of g and the choice of anrientedsublatticel C H;(X,9X) in the image of
H;(X) — H;(X,0X) (or what amounts to the same,liy (i)), that is Lagrangian
(i.e., maximally isotropic) for the intersection paiririye then denote the resulting
set of data byf X, V, I). We say that thg-marking is of level< { if V takes values
in representations of leved {.

Let (X, V,I) beg-marked surface. We first suppase&ndowed with an infinites-
imal collaring. Choose an admissible purely cuspidal confd structureC with
respect to this infinitesimal collaring. Theéhacquires a conformal structure and
hence (sinc& is ariented) the structure of a compact Riemann surfacequixve
alently, a nonsingular complex projective curve. We homerdader forgives us
for denoting that curve by’ as well. It comes with an injection,(9X) — C.

If V takes values in representations of leyell, then we have defined the space
of covacuaH,(V)c; otherwise we setl;(V)c = 0. For another choice of purely
cuspidal admissible conformal structuté, we can find a path of such structures
(Ct)o<t<1 connectingC with C’. The projectively flat connection can be used to
identify the corresponding projective spaces, and thistitieation is independent
of the choice of path since they belong to the same homot@sscl

In order to lift this to the actual vector spaces, we needrigging’ of £ by the
oriented Lagrangian lattice(here viewed as a sublattice df (£)). A Lagrangian
lattice may arise from a cobordism: i is written as the boundary of a compact
oriented3-manifold W, then the kernel oH;(X) — H;(W) is this type. We note
that every regular differential o@ defines by integration a linear map— C and
the basic theory or Riemann surfaces tells us that we thasnoatcomplex-linear
isomorphismH®(C, w¢) = Hom(I, C). The orientation of defines a generator of
det(I), and hence a generathiC,) of detH°(C, w¢). Likewise the ar¢Cy)o<t<1
lifts to a sectiont € [0,1] — I(Cy) € detH°(Cy, wc,) of the determinant bundle
and this in turn yields via Theorem127 an identification&f V)¢ with H, (V).
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As this identification is canonical, we now have attachedhéottiple (Z, V, 1) and
the infinitesimal collaring o a well-defined finite dimensional complex vector
spaceH; (L, V,I). Actually, the infinitesimal collaring is irrelevant, fdané infini-
tesimal collarings make up an affine space over the vectaesplavector fields on
0Z and hence form a contractible set. We then find:

Theorem 40. Letf : (L, V,I) — (X’,V/,T') be an isomorphism af-marked
surfaces, by which we mean that © — X’ is an orientation preserving dif-
feomorphism such that the induced map$dX) — my(0LX’) andH;(Z,0%) —
H;(Z’,0%’), takeV’ to V andI to I’. Thenf induces an isomorphism of finite di-
mensional complex vector spadgs: Hy(Z, V, 1) — He(X’, V/,1’). This isomor-
phism only depends on the relative isotopy clas& dfloreover, this construction
is functorial with respect to Lie algebra isomorphisms sat flor everyo € Aut(g)
we have a natural isomorphisiiy (Z, °V, 1) = H(Z, V, I).

Proof. The dependence via the isotopy clas$ @dllows from the quoted theorem
above. The last assertion follows from the last clause obidra 27 . O

Remark4l The natural involution ofy with respect to a choice of root data takes
every finite dimensiongj-representation into one equivalent to its contra-gradien
So for such an involutiorr we obtain an isomorphism betweéh(Z, V*,1) and
H¢(Z, V, 1), but beware that this involution is only unique up to innetoawor-
phism. However, one expects that there exists a canonicgbgairing (which
therefore does not involve a choice@fH,(Z, V*,1) ® H¢(Z, V, 1) — C, whereZ
stands foiZ with the opposite orientation.

Action of a mapping class group. Let us now assume connected and of positive
genus. We denote bly(X) the part of the mapping class group(Aut(X)) that
leaves each boundary component invariant (but not nedgspaint-wise). This
is isomorphic the usual mapping class group of the pair stingi of £ and its
finite subset that appears as the imagag®X). The above lemma shows that if
(X, V,1) is ag-marked surface, then every mapping clé$se I'(X) gives rise an
isomorphismf, : He(X, V, 1) — Hy(Z, V, f,I). Domain and range can be identified
as follows. 5

Consider the subspagec A9IH;(Z;R) consisting of generators of the determi-
nant of a real Lagrangian subspacdﬁf(i;R). This is an orbit of the symplectic
group SpH; (£;R). It is known thatZ is connected and has infinite cyclic funda-
mental group (with a canonical generator). Every orientadrangian sublattice
of H;(X) defines an elemenrtI) € £ and the way such a sublattice assigns to an
admissible conformal structu@on £ a generator of déi°(w) also makes sense
for an arbitrary element of. So a homotopy clasy] of paths inC from 6(I) to
*8(I) produces for every admissible conformal structlren £ a homotopy class
of paths in detH®(w¢) — {0} from I(C) to (f,I)(C). Another choice fofy] yields
an identification which differs from this one by a scalar, astfby a root of unity
whose order divideg({ + h). Since the fundamental group gfis infinite cyclic
and has a canonical generator, the possible choicel/fare permuted simply
transitively byZ.
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Let us now fix an oriented Lagrangian sublattigeof H; (%) and consider pairs
f = (f, [y]) as above foil = I,. These can be composed in an obvious manner
and thus define a central extensiofL) — I'(Z) of the mapping class group I
Note that we have arranged things in such a manner that ttess@n now acts
onH¢ (%, V I,) with in fact the central eleme{({ + h) € Z acting trivially. The
central extension is clearly one that already lives on theraarphism group of
H;(X) (an integral symplectic group of gengs The latter is known to produce the
universal central extension of the symplectic group. Itdwasbstract description
in terms of @-cocyle, known as the Maslov index. The latter comes witlcice,
S0 we cannot expect it to enter in the description of a functor

A choice forl, may be avoided by introducing the groupdidvhose objects
are the oriented Lagrangian sublatticestof(X) and whose morphisms are the
homotopy classel] as above, for then we have defined a fundtiefZ, V) : I
7 — He(Z, V, 1) on whichT'(X) acts.

When X has genus zero, thdnis of course irrelevant (or more precisely,is
reduced to the singleton defined by= 0). Propositiori 2B tells us what we get in
some of these cases:

Proposition 42. For X a disk (resp. a cylinder)H,(%, V) is zero unlesd/ is the
trivial representation (resp. the two representationsaeltted to the boundary are
each other’s contra-gradient), in which case it is canotlicequal toC.

The glueing property. Let us analyze what happens if two boundary components
B.,B_ of £ are welded by means of a glueing mép B, — B_. We assume
here given the data needed to have defirgd 4, V; I). So we assume given a map
V :m(0Xy) = mo(0X) — {{B4},{B_}} — P¢ and an oriented Lagrangian lattice
I C Hi((X4)). We then obtain an oriented Lagrangian sublatifte H; (i) as
follows. First notice that there is natural mép,) — X which simply collapses
the embedded circle ifiZ4 ) that is the common image &, andB_. This map
induces a surjection on homology with kernel spanned by thes¢B ] that is
the image ofB, and we letI® simply be the preimage df under this map. If
[B,] = 0 (which happens precisely whenBf, andB_ lie on different connected
components of), thenI® — T is an isomorphism and hendé@ is automatically
oriented. Otherwise, we oriefi? by taking as oriented basis one that begins with
[B, ] and for which its successors map to an oriented badis of

If we combine the discussion in RemarK 32 with Theofein 35, biain

Theorem 43(Glueing property) For i € Py, denote by,, ;- : mp(0Z) — P, the
extension ol which assigns t®., resp.B_ the valueA resp.A*. Then we have
a natural identificatiomug, : ©acp,He(Z, Vi, 1) — He(Z¢, V,1). Under this
isomorphism, the mapping class Df obtained by the glueing mag&d}.cun)
(a Dehn twist) acts on the summahid(Z, V,, .+, I1%) as scalar multiplication by
exp(— —,—”ﬁ"“).

It is easy to see that by repeated application of Thedrém 48awehus obtain
anyH, (X, V,I) from the basic building blocks: a sphere with 1,2 or 3 holese T
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first two cases are covered by Proposifioh 42 and for threzshwé have by virtue
of Remark 29 a concrete description as well. In particulaoiin a formula, at
least in principle, for its dimension, known as Nerlinde formula This process is
nicely formalized by the notion of a fusion ring (séé [4]).tBuwve wish to deal to
the modular functor itself, then we are led to the represiemtaheory of quantum
groups. As we mentioned in the introduction, this has apfibos in knot theory
via a threedimensional topological quantum field theory. rRost of this we refer
to the monograph of Turaev [19].
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