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0 FROM WZW MODELS TO MODULAR FUNCTORS

EDUARD LOOIJENGA

ABSTRACT. In this survey paper we give a relatively simple and coordinate free
description of the WZW model as a local system whose base is theGm-bundle
associated to the determinant bundle on the moduli stack of pointed curves. We
derive its main properties and show how it leads to a modular functor in the
spirit of Segal. The approach presented here is almost purely algebro-geometric
in character; it avoids the Boson-Fermion correspondence,operator product ex-
pansions as well as Teichmüller theory.

The tumultuous interaction between mathematicians and theoretical physicists
that began more than two decades ago left some of us hardly time to take stock.
It is telling for this era that it took physicists (Witten, mainly) to point out in the
late eighties that there must exist a bridge between two, at the time hardly con-
nected, mathematical land masses,viz. algebraic geometry and knot theory, and it
is equally telling that it was only recently that this was materialized with math-
ematically rigorous underpinnings (and strictly speakingnot even in the desired
form yet). We are here referring on the algebro-geometric side to a subject that has
its place in the present handbook, namely moduli spaces of vector bundles over
curves, and on the other side to the kind of knot invariants (like the Jones polyno-
mial) that are furnished by Chern-Simons theory. The bridgemetaphor is actually
a bit misleading, because on either side the roads leading toit had yet to be con-
structed. Let us use the remainder of this introduction to survey very briefly the
part this route that involves algebraic geometry (stoppingshort at the point were
the crossing is made), then say which segment is covered by this paper and con-
clude in the customary manner by commenting on the various sections.

To set the stage, letC be a compact Riemann surfaceC andG a (say, sim-
ply connected) complex algebraic group with simple Lie algebrag. Then there is
a moduli stackM(C,G) of G-principal bundles overC. With a few exceptions
(where one has to resort to a compactification) this stack carries a natural ample
line bundleΘ(C,G), which in fact generates its Picard group, and for which the
vector spaceHℓ(G)C of sections ofΘ(C,G)⊗ℓ, the so-calledVerlinde space of
level ℓ, is finite dimensional for allℓ. Its dimension is independent ofC and in-
deed, if we varyC over a baseS, then we get a vector bundleHℓ(G)C/S over that
base. Although we requiredG to be simply connected, one can makes sense of
this for reductive groups as well, although some care is needed. For instance, for
G = C×, we letM(C,C×) not be the full Picard variety Pic(C) of C, but pick
the component Pic(C)g−1 parameterizing line bundles of degree(g− 1), as this is
the one which carries a natural line bundle that can play the role ofΘ(C,C×) (and
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which is indeed known as the theta bundle). ThenHℓ(G)C is just the space of theta
functions of degreeℓ. These satisfy a heat equation and it is our understanding that
Mumford was the first to observe that this property may be interpreted as defining
a flat connection for the associated projective space bundle. Hitchin [7] proved that
this is also the case here: the projectivized Verlinde bundles come naturally with
a flat connection. But if one aims for flat connections on the bundles themselves,
then one should work on the total space of aC×-bundle overS (which allows for
nontrivial monodromy in a fiber). For the line bundle attached to thisC×-bundle
we can take the determinant bundle of the direct image of the sheaf of relative dif-
ferentials onC/S. For many purposes—certainly for topological applications—it
is desirable to allow for certain ‘impurities’ of the principal bundle, in the form
of a parabolic structure. Such a structure is specified by giving onC a finite set
of points (xi ∈ C)i∈I, and for each such point a finite dimensional irreducible
representationVi of G. It was shown by Scheinost-Schottenloher [14] that in this
setting there are still corresponding Verlinde bundles that come with a flat con-
nection after a pull-back to aC×-bundle. There is an infinitesimal counterpart of
the above construction via holomorphic conformal field theory where the groupG
enters only via its Lie algebrag, known as the Wess-Zumino-Witten model. This
centers on the affine Lie algebra associated tog and its representation theory and
leads to similar constructs such as the Verlinde bundles with a projectively flat
connection. Its mathematically rigorous treatment began with the fundamental pa-
per by Tsuchiya-Ueno-Yamada [18] with subsequent extensions and refinements,
mainly by Andersen-Ueno [1], [2]. It was however not a prioriclear that this led
to the same local system as the global approach. Indeed, thisturned out to be
not trivial at all: after partial results by Beauville-Laszlo and others, Laszlo-Sorger
[12] proved that the Verlinde bundles can be identified and Laszlo [11] showed that
via this identification the two connections are the same as well, at least when no
parabolic structure is present.

The bridge is now crossed as follows: a nonzero point of the determinant line
overC can be topologically specified by means of the choice of Lagrangian sublat-
tice inH1(C;Z). This enables us to understand the existence of the flat connection
on the Verlinde bundles as telling us that these spaces only depend on the iso-
topy class of the complex structure ofC. In particular, they receive naturally the
structure of a projective representation of the mapping class group of the pointed
surface. This puts these spaces into the topological realm and we thus arrive at an
example of a topological quantum field theory, more precisely, at one of Segal’s
modular functors [15].

Let us now turn to the central goal of this paper, which is to define the Wess-
Zumino-Witten connection and to derive its principal properties, to wit its flatness,
factorization, the relation with the KZ-system,. . . , in short, to recover all the prop-
erties needed for defining the underlying (topological) modular functor as found in
the papers above mentioned by Tsuchiya-Ueno-Yamada and Andersen-Ueno. For
an audience of algebraic geometers knowing (or willing to accept) some rather ba-
sic facts about affine Lie algebras our presentation is essentially self-contained. It
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is also shorter and possibly at several points more transparent than the literature
we are aware of. This is to a large extent due to our consistentcoordinate free
approach, which not only has the advantage of making it unnecessary to constantly
check for gauge invariance, but is also conceptually more satisfying. Cases in point
are our definition of the WZW-connection and our treatment ofthe Fock represen-
tation (leading up to Corollary 8) which enables us to avoid resorting to the infinite
wedge representation and allied techniques.

Let us take the occasion to point out that what makes the WZW-story still in-
complete is an explanation of the duality property and the unitary structure that the
associated modular functor should possess.

We finish with brief comments on the contents of the separate sections. The
rather short Section 1 essentially elaborates on the notionof a projectively flat con-
nection. Logically, this material should have its place later in the paper, but as it
has some motivating content for what comes right after it, wefelt it best to put it
there. Section 2 introduces in a canonical way the Virasoro algebra and its Fock
representation and the associated Segal-Suguwara construction in a relative setting.
New is the last subsection about symplectic local systems, where we see the deter-
minant bundle appear in a canonical fashion. The Lie algebrag enters in section
3. We found it helpful to present this material in an abstractalgebraic setting, re-
placing for instance the ring of complex Laurent polynomials by a complete local
field containingQ (or rather a direct sum of these), which is then also allowed to
‘depend on parameters’. Our extension 13 of the Sugawara representation to a rel-
ative situation involving a Leibniz rule in the horizontal direction serves here as the
origin of WZW-connection and its projective flatness. We keep that setting in Sec-
tion 4, where the connection itself is defined. In the subsequent section we derive
the coherence of the Verlinde sheaf and establish what is called the propagation
of covacua. Special attention is paid to the genus zero case and it shown how the
WZW-connection is then related to the one of Knizhnik-Zamolodchikov. Section
6 is devoted to the basic results associated to a double pointdegeneration such as
local freeness, factorization and monodromy. In the final section 7 we establish
the conversion into a modular functor. Notice that the approach described here is
elementary and does not resort to Teichmüller theory.

We finally remark that this paper is based on (but substantially supersedes) our
arXiv preprintmath.AG/0507086.

We find it convenient to work over an algebraically closed field k of character-
istic zero (but when we make comparisons with topological quantum field theory
we takek = C). As an intermediate base we use a regulark-algebra, denotedR.

1. FLAT AND PROJECTIVELY FLAT CONNECTIONS

A central notion of this article is that of a flat projective connection. Although it
enters the scene much later in the paper, some of the work donein the first part is
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motivated by the particular way this notion appears here. Sowe start with a brief
section discussing it.

If H is a rankr vector bundle over a smooth baseS (in other words, is a locally a
freeOS-module of rankr), then a flat connection in the associated projective space
bundlePS(H) is obtained by giving a Lie subalgebrâD of the Lie algebraD1(H) of
first order differential operatorsH→ H whose subalgebra of zero order operators
is OS (acting onH in the obvious manner) and is such that the map which assigns
to D̂ ∈ D̂ thek-derivationφ ∈ OS 7→ [D̂, φ] ∈ OS defines a Lie-isomorphism
D̂/OS

∼= θS. This clearly makeŝD an extension ofθS by OS. Any OS-linear
sectionσ of D̂ → θS defines a connection∇σ in H whose curvature formR(∇σ)
is a closed2-form onS. Any other sectionσ ′ differs fromσ by aOS-linear map
θS → OS, in other words, by a differentialω, and we haveR(∇σ ′

) = R(∇σ)+dω.
So this indeed gives rise to a flat connection inPS(H) and it is easily seen that this
connection is independent of the choice of the section. Locally on S, R(∇σ) is
exact, and so we can always find a local sectionσ such that∇σ is flat. Any other
local sectionσ ′ with that property is then necessarily of the formσ + dφ with
φ ∈ O and conversely, any such local section has that property. The Lie algebra
sheafD̂ itself does not determine a connection onH; this is most evident whenH
is a line bundle, for then we must havêD(H) = D1(H).

In the above situation we let̂D act on the determinant bundle det(H) = ∧r
OS

H
by means of the formula

D̂(e1 ∧ · · ·∧ er) :=

r∑

i=1

e1 ∧ · · ·∧ D̂(ei)∧ · · · ∧ er.

This is indeed well-defined, and identifiesD as a Lie algebra with the Lie algebra
of first order differential operatorsD1(det(H)). But notice that this identification
makesf ∈ OS ⊂ D̂ act on det(H) as multiplication byrf.

Let us next observe that ifλ is a line bundle onS andN is a positive integer,
then a similar formula identifiesD1(λ) with D1(λ

⊗N) (both asOS-modules and as
k-Lie algebras), but induces multiplication byN onOS. This leads us to make the
following

Definition 1. Let be given a smooth base varietyS over which we are given a
line bundleλ and a locally freeOS-moduleH of finite rank. Aλ-flat connection
on H is homomorphism ofOS-modulesu : D1(λ) → D1(H) that is also a Lie
homomorphism overk and commutes with the symbol maps toθS.

It follows from the preceding that such a homomorphismu determines a flat
connection on the projectivization ofH. The mapu preservesOS and since this
restriction isOS-linear, it is given by multiplication by some regular function w on
S. If D ∈ θS is lifted to D̂ ∈ D1(λ), thenD(w) = [u(D̂), u(1)] = [D̂, 1] = 0.
This shows thatw must be locally constant; we call this theweightof u. So in the
above discussion,̂D comes with det(H)-flat connection of weightr−1.

It is clear that if the weight ofu is constant zero, thenu factors throughθS, so
that we get a flat connection inH. This is also the case whenλ = OS, for then
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D1(OS) containsθS canonically as a direct summand (both asOS-module and as
a sheaf ofk-Lie algebras) and the flat connection is then given by the action of θS.
This has an interesting consequence: ifπ : Λ× → S is the geometric realization
of theGm-bundle defined byλ, thenπ∗λ has a ‘tautological’ generating section
and thus gets identified withOΛ× . Hence aλ-flat connection onH defines a flat
connection onπ∗H. One checks that ifw is the weight ofu, then the connection
is homogeneous of degreew along the fibers. So in casek = C, s ∈ S ands̃ ∈ Λ×

lies overs ∈ S, then the multivalued map(z, h) ∈ C××Hs 7→ (zs̃, zwh) ∈ Λ×
s ×

Hs is flat, and so the monodromy of the connection inΛ×
s is scalar multiplication

by e2π
√
−1w.

We will also encounter a logarithmic version. Here we are given a closed sub-
variety∆ ⊂ S of lower dimension (usually a normal crossing hypersurface). Then
the θS-stabilizer of the ideal defining∆, denotedθS(log∆), is a coherentOS-
submodule ofθS closed under the Lie bracket. If in Definition 1 we haveu only
defined on the preimage ofθS(log∆) ⊂ θS in D1(λ) (which we denote here by
D1(λ)(log∆)), then we say that we have alogarithmic λ-flat connection relative
to∆ onH.

2. A CANONICAL CONSTRUCTION OF THEV IRASORO ALGEBRA

In this section we fix anR-algebraO isomorphic to the formal power series ring
R[[t]]. In other words,O comes with a principal idealm so thatO is complete
for the m-adic topology and the associated gradedR-algebra⊕∞

j=0m
j/mj+1 is a

polynomial ring overR in one variable. The choice of a generatort of the idealm
identifiesO with R[[t]]. We denote byL the localization ofO obtained by inverting
a generator ofm. ForN ∈ Z, mN has the obvious meaning as aO-submodule of
L. The m-adic topologyon L is the topology that has the collection of cosets
{f+mN}f∈L,N∈Z as a basis of open subsets. We sometimes writeFNL for mN. We
further denote byθ theL-module of continuousR-derivations fromL into L and by
ω theL-dual ofθ. TheseL-modules come with filtrations (making them principal
filteredL-modules):FNθ consists of the derivations that takem to mN+1 andFNω
consists of theL-homomorphismsθ → L that takeF0θ to mN. So in terms of the
generatort above,L = R((t)), θ = R((t)) d

dt
, FNθ = R[[t]]tN+1 d

dt
, ω = R((t))dt

andFNω = R[[t]]tN−1dt.
The residue map Res: ω → R which assigns to an element ofR((t))dt the

coefficient oft−1dt is canonical, i.e., is independent of the choice oft. TheR-
bilinear map

r : L×ω→ R, (f, α) 7→ Res(fα)

is a topologically perfect pairing of filteredR-modules: we haver(tk, t−l−1dt) =

δk,l and so anyR-linearφ : L → R which is continuous (i.e.,φ zero onmN for
someN) is definable by an element ofω (namely by

∑
k>Nφ(t−k)tk−1dt) and

likewise for anR-linear continuous mapω→ R.

A trivial Lie algebra. If we think of L× as an algebraic group overR (or rather, as
a group object in a category of ind schemes overR), then its Lie algebra, denoted
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here byl, is L, regarded as aR-module with trivial Lie bracket. It comes with a
decreasing filtrationF•l (as a Lie algebra) defined by the valuation. The univer-
sal enveloping algebraUl is clearly the symmetric algebra ofl as anR-module,
Sym•

R(l). The idealU+l ⊂ Ul generated byl is also a rightO-module (sincel is).
We complete itm-adically: given an integerN ≥ 0, then anR-basis of the trunca-
tionU+l/(Ul ◦ FNl) is the collectiontk1 ◦ · · · ◦ tkr with k1 ≤ k2 ≤ · · · ≤ kr < N.
So elements of the completion

U+l→ U+l := lim
←−
N

U+l/Ul ◦ FNl

are series of the form
∑

∞

i=1 rit
ki,1 ◦ · · · ◦ tki,ri with ri ∈ R, c ≤ k1,i ≤ k2,i ≤

· · · ≤ ki,ri for some constantc. We putUl := R⊕U+l, which we could of course
have defined just as well directly as

Ul→ Ul := lim
←−
N

Ul/Ul ◦ FNl.

We will refer to this construction as them-adic completion on the right, although
in the present case there is no difference with the analogously definedm-adic com-
pletion on the left, asl is commutative.

Any continuous derivationD ∈ θ defines anR-linear mapω → L which is
self-adjoint relative the residue pairing:r(〈D,α〉, β) = r(α, 〈D,β〉). We use that
pairing to identifyD with an element of the closure of Sym2 l in Ul. LetC(D) be
half this element, so that in terms of the above topological basis,

C(D) = 1
2

∑

i,j∈Z
r(〈D, t−i−1dt〉, t−j−1dt)ti ◦ tj.

In particular forD = Dk = tk+1 d
dt , C(Dk) =

1
2

∑
i+j=k t

i ◦ tj. Observe that the

mapC : θ→ Ul is continuous.

Oscillator and Virasoro algebra. The residue map defines a central extension of
l, theoscillator algebrâl, which as anR-module is simplyl ⊕ R. If we denote the
generator of the second summand by ¯h, then the Lie bracket is given by

[f + h̄r, g + h̄s] := Res(gdf)h̄.

So[tk, t−l] = h̄kδk,l and the center of̂l is Re⊕ Rh̄, wheree = t0 denotes the unit
element ofL viewed as an element ofl. It follows thatUl̂ is anR[e,h̄]-algebra.
As anR[h̄]-algebra it is obtained as follows: take the tensor algebra of l (over
R) tensored withR[h̄], ⊗•

Rl ⊗R R[h̄], and divide that out by the two-sided ideal
generated by the elementsf ⊗ g − g ⊗ f − Res(gdf)h̄. The obvious surjection
π : Ul̂→ Ul = Sym•

R(l) is the reduction modulo ¯h.
We filter l̂ by letting FN l̂ be FNl for N > 0 andFNl + Rh̄ for N ≤ 0. This

filtration is used to completeUl̂ m-adically on the right:

Ul̂→ Ul̂ := lim
←−
N

Ul̂/Ul̂ ◦ FNl.
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Notice that this completion has the collectiontk1 ◦ · · · ◦ tkr with r ≥ 0, k1 ≤
k2 ≤ · · · ≤ kr, as topologicalR[h̄]-basis. Sincêl is not abelian, the left and
right m-adic topologies now differ. For instance,

∑
k≥1 t

k ◦ t−k does not converge

in Ul̂, whereas
∑

k≥1 t
−k ◦ tk does. The obvious surjectionπ : Ul̂ → Ul is

still given by reduction modulo ¯h. We also observe that the filtrations ofl and l̂
determine decreasing filtrations of their (completed) universal enveloping algebras,
e.g.,FNUl̂ =

∑
r≥0

∑
n1+···+nr≥N Fn1 l̂ ◦ · · · ◦ Fnr l̂.

Let us denote byl2 the image ofl ⊗R l ⊂ l̂ ⊗R l̂ → Ul̂. Under the reduction
moduloh̄, l2 maps onto Sym2R(l) ⊂ Ul with kernelRh̄. Its closurēl2 in Ul̂ maps
onto the closure of Sym2R(l) in Ul with the same kernel.

The generatort defines a continuousR-linear mapD ∈ θ 7→ Ĉ(D) ∈ l̄2 char-
acterized by

Ĉ(Dk) :=
1
2

∑

i+j=k

: ti ◦ tj : .

We here adhered to thenormal ordering convention, which prescribes that the fac-
tor with the highest index comes last and hence acts first (here the exponent serves
as index). This map is clearly a lift ofC : θ → Sym2 l, but is otherwise non-
canonical.

Lemma 2. We have

(i) [Ĉ(D), f] = −h̄D(f) as an identity inUl̂ (wheref ∈ l ⊂ l̂) and
(ii) [Ĉ(Dk), Ĉ(Dl)] = −h̄(l − k)Ĉ(Dk+l) + h̄2 1

12
(k3 − k)δk+l,0.

Proof. For the first statement we compute[Ĉ(Dk), t
l]. If we substituteĈ(Dk) =

1
2

∑
i+j=k : ti ◦ tj :, then we see that only terms of the form[tk+l ◦ t−l, tl] or

[t−l ◦ tk+l, tl] (depending on whetherk + 2l ≤ 0 or k + 2l ≥ 0) can make a
contribution and then have coefficient1

2
if k+ 2l = 0 and1 otherwise. In all cases

the result is−h̄ltk+l = −h̄Dk(t
l).

Formula (i) implies that

[Ĉ(Dk), Ĉ(Dl)] = lim
N→∞

∑

|i|≤N

1
2

(
Dk(t

i) ◦ tl−i + ti ◦Dk(t
l−i)
)

= −h̄ lim
N→∞

∑

|i|≤N

(
itk+i ◦ tl−i + ti ◦ (l − i)tk+l−i

)
.

This is up to a reordering equal to−h̄(l − k)Ĉ(Dk+l). The terms which do not
commute and are in the wrong order are those for which0 < k + i = −(l − i)
(with coefficienti) and for which0 < i = −(k + l − i) (with coefficient(l − i)).
This accounts for the extra term ¯h2 1

12 (k
3 − k)δk+l,0. �

This lemma shows that−h̄−1Ĉ behaves better than̂C (but requires us of course
to assume that ¯h be invertible). In fact, it suggests to consider the setθ̂ of pairs
(D,u) ∈ θ × h̄−1 l̄2 for whichC(D) ∈ Sym2 l is the modh̄ reduction of−h̄u, so
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that we have an exact sequence

0→ R→ θ̂→ θ→ 0

of R-modules. A non-canonical section is given byD 7→ D̂ := (D,−h̄−1Ĉ(D)).
In order to avoid confusion, we denote the generator of the copy of R by c0.

Corollary-Definition 3. This defines a central extension of Lie algebras, called
the Virasoro algebra(of theR-algebraL). Precisely, ifT : θ̂ → Ul̂[1h̄ ] is given
by the second component, thenT is injective and mapŝθ onto a Lie subalgebra of
Ul̂[1h̄ ] that sendsc0 to 1. If we transfer the Lie bracket tôθ, then in terms of our
non-canonical section,

[D̂k, D̂l] = (l − k)D̂k+l +
k3 − k

12
δk+l,0c0.

Moreover,adT(D̂) leavesl invariant (as a subspace ofUl̂) and acts on that subspace
by derivation with respect toD ∈ θ.

Remark4. An alternative coordinate free definition of the Virasoro algebra, based
on the algebra of pseudo-differential operators onL, can be found in [5].

Fock representation. It is clear thatF0̂l = Rh̄ ⊕ O is an abelian subalgebra ofl̂.
We letF0̂l = O ⊕ Rh̄ act on a free rank one moduleRvo by lettingO act trivially
andh̄ as the identity. The induced representation ofl̂ overR,

F := Ul̂⊗Ul̂◦F0 l̂ Rvo,

will be regarded as aUl[h̄−1]-module. It comes with an increasing PBW (Poincaré-
Birkhoff-Witt) filtration W•F by R-submodules, withWrF being the image of
⊕s≤r̂l

⊗s⊗Rvo. Since the scalarsR ⊂ l are central in̂l and killF (becauseR ⊂ O),
they act trivially in all ofF. As anR-module,F is free with basis the collection
t−kr ◦ · · · ◦ t−k1 ⊗ vo, wherer ≥ 0 and1 ≤ k1 ≤ k2 ≤ · · · ≤ kr (for r = 0, read
vo). (In fact, GrW

•
F can be identified as a gradedR-module with the symmetric

algebra Sym•(l/F0l).) This also shows thatF is even aUl̂[h̄−1]-module. ThusF
becomes a representation ofθ̂ overR, called itsFock representation.

It follows from Lemma 2 that for anyD ∈ θ,

T(D̂)t−kr ◦ · · · ◦ t−k1 ⊗ vo =

=

(
r∑

i=1

t−kr ◦ · · · ◦D(t−ki) ◦ · · · ◦ t−k1

)
⊗ vo + t−kr ◦ · · · ◦ t−k1 ◦ T(D̂)vo.

SinceT(D̂)vo = 0 whenD ∈ F0θ, it follows thatF0θ acts onF by coefficient-wise
derivation. This observation has an interesting consequence. Consider the module
of k-derivationsR → R (denoted here simply byθR instead of the more accurate
θR/k) and the moduleθL,R of k-derivations ofL that are continuous for them-adic
topology and preserveR ⊂ L. SinceL ∼= R((t)) as anR-algebra, everyk-derivation
R→ R extends to one fromL to L. So we have an exact sequence

0→ θ→ θL,R → θR → 0.
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The following corollary essentially says that we have defined in theL-moduleF
a Lie algebraθ̂L,R of first order (k-linear) differential operators which contains
R as the degree zero operators and for which the symbol map (which is just the
formation of the degree one quotient) has imageθL,R.

Corollary 5. The actions onF of F0θL,R = mθO,R ⊂ θL,R (given by coefficient-
wise derivation, killing the generatorvo) and θ̂ coincide onF0θ and generate a
central extension of Lie algebraŝθL,R → θL,R byRco. Its defining representation
onF (still denotedT ) is faithful and has the property that for every lift̂D ∈ θ̂L,R
of D ∈ θL,R and f ∈ l we have[T(D̂), f] = Df (in particular, it preserves every
Ul̂-submodule ofF).

Proof. The generatort can be used to define a section ofθL,R → θR: the set of
elements ofθL,R which kill t is ak-Lie subalgebra ofθL,R which projects isomor-
phically ontoθR. Now if D ∈ θL,R, write D = Dvert + Dhor with Dvert ∈ θ

andDhor(t) = 0 and define anR-linear operator̂D in F as the sum ofT(D̂vert) and
coefficient-wise derivation byDhor. This map clearly has the properties mentioned.

As to its dependence ont: another choice yields a decomposition of the form
D = (Dhor+D0) + (Dvert −D0) with D0 ∈ F0θ and in view of the abovêD0 acts
in F by coefficient-wise derivation. �

The Fock representation for a symplectic local system.In Section 4 we shall
run into a particular type of finite rank subquotient of the Fock representation and
it seems best to discuss the resulting structure here. We start out from the following
data:

(i) a freeR-moduleH of finite rank endowed with a symplectic form〈 , 〉 :

H ⊗R H → R, which is nondegenerate in the sense that the induced map
H→ H∗, a 7→ 〈 , a〉 is an isomorphism ofR-modules,

(ii) an R-submoduleD ⊂ θR closed under the Lie bracket for which the inclu-
sion is an equality over the generic point and a Lie actionD 7→ ∇D of D
onH by k-derivations which preserves the symplectic form,

(iii) a Lagrangian submoduleF ⊂ H.

Property (ii) means thatD ∈ D 7→ ∇D ∈ Endk(H) is R-linear, obeys the Leibniz
rule: ∇D(ra) = r∇D(a) +D(r)a and satisfies〈∇Da, b〉+ 〈a,∇Db〉 = D〈a, b〉.
In the cases of interest,D will be theθR-stabilizer of a principal ideal inR (and
often be all ofθR). One might think of∇ as a flat meromorphic connection on the
symplectic bundle represented byH.

In this setting, a Heisenberg algebra is defined in an obviousmanner: it isĤ :=

H ⊕ Rh̄ endowed with the bracket[a + Rh̄, b + Rh̄] = 〈a, b〉h̄. We also have
defined a Fock representationF(H, F) of Ĥ as the induced module of the rank one
representation of̂F = F + Rh̄ onR given by the coefficient of ¯h. Notice that if we
gradeF(H, F) with respect to the PBW filtration, we get a copy of the symmetric
algebra ofH/F overR. We aim to define a projective Lie action ofD onF(H, F).

We begin with extending theD-action toĤ by stipulating that it killsh̄. This
action clearly preserves the Lie bracket and hence determines one ofD on the
universal enveloping algebraUĤ. This does not however induce one inF(H, F),
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as∇D will not respect the right ideal inUĤ generated by ¯h − 1 andF. We will
remedy this by means of a ‘twist’.

We shall use the isomorphismσ : H⊗R H ∼= EndR(H) of R-modules defined by
associating toa ⊗ b the endomorphismσ(a ⊗ b) : x ∈ H 7→ a〈b, x〉 ∈ H. If we
agree to identify an element in the tensor algebra ofH, in particular, an element of
H, as the operator inUĤ or F(H, F) given by left multiplication, then it is ready
checked that forx ∈ H,

[a ◦ b, x] = σ(a⊗ b+ b⊗ a)(x).

We choose a Lagrangian supplement ofF in H, i.e., a LagrangianR-submodule
F ′ ⊂ H that is also a section ofH → H/F. SinceF ′ is an abelian Lie subalgebra
of Ĥ, we have a natural map Sym•R(F

′) → F(H, F). It is clearly an isomorphism
of Sym•

R(F
′)-modules. Now write∇D according to the Lagrangian decomposition

H = F ′ ⊕ F:

∇D =

(
∇F ′

D σ ′
D

σD ∇F
D

)

Here the diagonal entries represent the induced connections onF ′ andF, whereas
σD ∈ HomR(F

′, F) andσ ′
D ∈ HomR(F, F

′). Sinceσ identifiesF⊗R F resp.F ′⊗R F
′

with HomR(F
′, F) resp. HomR(F, F ′), we can writeσD = σ(sD) with sD ∈ F⊗R F

andσ ′
D = σ(s ′D) ands ′D ∈ F ′ ⊗R F ′. These tensors are symmetric and represent

the second fundamental form ofF ′ ⊂ H resp.F ⊂ H. Notice that ifa ∈ F, then

[∇D, a] = ∇D(a) = ∇F
D(a) + σF

F ′(a) = ∇F
D(a) +

1
2 [s

′
D, a]

and similarly, ifa ′ ∈ F ′, then[∇D, a
′] = ∇F ′

D (a ′) + 1
2 [sD, a

′]. This suggests to
assign toD ∈ D the first order differential operatorTF ′(D) in F(H, F) ∼= Sym• F ′

defined by

TF ′(D) := ∇F ′

D + 1
2sD + 1

2s
′
D.

Proposition 6. The mapTF ′ : D → Endk(Sym• F ′) is R-linear and has the prop-
erty that [TF ′(D), a] = ∇D(a) for everyD ∈ D and a ∈ Ĥ. Any other map
D → Endk(Sym• F ′) enjoying these properties differs fromTF ′ by a multiple of
the identity operator, in other words, is of the formD 7→ TF ′(D) + η(D) for some
η ∈ HomR(D, R).

Proof. That TF ′(D) has the stated property follows from the preceding. Letη :

D → Endk(Sym• F ′) be the difference of two such maps. Then for everyD ∈
D, η(D) ∈ EndR(F(H, F)) commutes with all elements of̂H. SinceF(H, F) is
irreducible as a representation ofĤ, it follows thatη(D) is a scalar inR. �

Notice that ifu1, . . . , ur ∈ Ĥ, then

TF ′(D)(ur ◦ · · · ◦ u1 ⊗ vo) =

=

(
r∑

i=1

ur ◦ · · · ◦ ∇D(ui) ◦ · · · ◦ u1 + ur ◦ · · · ◦ u1 ◦ 1
2
s ′D

)
⊗ vo.
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So this looks like the operatorTD̂ acting inF with s ′D playing the role of−Ĉ(D).
Here is the key result about the ‘curvature’ ofTF ′ .

Lemma 7. GivenD,E ∈ D, then [TF ′(D), TF ′(E)] − TF ′([D,E]) is scalar mul-
tiplication by 1/2 times the value on of the∇F-curvature ondet(F) on the pair
(D,E).

Proof. The fact that∇ preserves the Lie bracket is expressed by the following
identities:

∇F
D∇F

E −∇F
E∇F

D −∇F
[D,E] = σEσ

′
D − σDσ

′
E,

∇F ′

D∇F ′

E −∇F ′

E ∇F ′

D −∇F ′

[D,E] = σ ′
EσD − σ ′

DσE,

∇Hom(F ′,F)
D (σE) −∇Hom(F ′,F)

E (σD) = σ[D,E],

∇Hom(F,F ′)
D (σ ′

E) −∇Hom(F,F ′)
E (σ ′

D) = σ ′
[D,E].

The first two give the curvature of∇F and∇F ′

on the pair(D,E). The last two can
also be written as operator identities in Sym• F ′:

[∇F ′

D , sE] − [∇F ′

E , sD] = s[D,E],

[∇F ′

D , s ′E] − [∇F ′

E , s ′D] = s ′[D,E].

If we feed these identities in:

[TF ′(D), TF ′(E)] − TF ′([D,E]) =

= [∇F ′

D + 1
2
sD + 1

2
s ′D,∇F ′

E + 1
2
sE +

1
2
s ′E] − (∇F ′

[D,E] +
1
2
s[D,E] +

1
2
s ′[D,E]) =

=
(
[∇F ′

D ,∇F ′

E ] −∇F ′

[D,E]

)
+ 1

2

(
[∇F ′

D , sE] − [∇F ′

E , sD] − s[D,E])
)

+ 1
2

(
[∇F ′

D , s ′E] − [∇F ′

E , s ′D] − s ′[D,E])
)
+ 1

4

(
[sD, s

′
E] − [sE, s

′
D]
)

(where we identifiedF(H, F) with Sym• F ′), we obtain

[TF ′(D), TF ′(E)] − TF ′([D,E]) =
(
σ ′
EσD + 1

4
[sD, s

′
E]) −

(
σ ′
DσE +

1
4
[sD ′ , sE]

)
.

We must show that the right hand side is equal to1
2

Tr(σEσ
′
D − σDσ

′
E), or perhaps

more specifically, thatσ ′
EσD + 1

4 [sD, s
′
E] = − 1

2 Tr(σDσ
′
E) (and similarly if we

exchangeD andE). This reduces to the following identity in linear algebra:if
a ∈ F andβ ∈ F ′, then in Sym• F ′ we have

σ(β⊗ β)σ(a⊗ a) + 1
4 [a ◦ a,β ◦ β] = − 1

2 TrF ′(σa⊗aσβ⊗β),

Indeed, a straightforward computation shows that

[a ◦ a,β ◦ β] = 2〈a,β〉(a ◦ β + β ◦ a) = 4〈a,β〉β ◦ a + 2〈a,β〉2.
If we interpret〈a,β〉β ◦ a as an operator in Sym• F ′, then applying it tox ∈ F ′

yields 〈a,β〉β〈a, x〉 = −σ(β ⊗ β)σ(a ⊗ a)(x). We also find that〈a,β〉2 =

−TrF ′(σ(a⊗ a)σ(β ⊗ β). �

If N is a freeR-module of rank one, then by asquare root ofN we mean a free
R-moduleΘ of rank one together with an isomorphism ofΘ⊗R Θ ontoN.
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Corollary 8. Let Θ be a square root ofdetR(F). Then the twisted Fock module
HomR(Θ,F(H, F)) comes with a natural action ofD by derivations.

Proof. Given the Lagrangian supplementF ′ of F in H, then endowΘ with the
uniqueD-module structure that makes the given isomorphismΘ⊗R Θ ∼= detR(F)
one ofD-modules: ifw ∈ Θ is a generator and∇detF

D (w ⊗ w) = rw ⊗ w, then
∇Θ

D(w) = 1
2rw. This ensures that theD-action on HomR(Θ,Sym• F ′) preserves

the Lie bracket. It remains to show that this action is independent ofF ′. This can
be verified by a computation, but rather than carrying this out, we give an abstract
argument that avoids this. It is based on the well-known factthat if Ho is a fixed
symplectick-vector space of finite dimension2g, andFo ⊂ Ho is Lagrangian,
then the set of Lagrangian supplements ofFo in Ho form in the Grassmannian of
Ho an affine space over Sym2k Fo (and hence is simply connected). Now by doing
the preceding construction universally over the corresponding affine space over
Sym2

R F, we see that the flatness on the universal example immediately gives the
independence. �

Remark9. We will use this corollary mainly via the following reformulation. First
we observe that the Lie algebra of first orderk-linear differential operatorsΘ→ Θ
projects toθR (this is the symbol map) with kernel the scalarsR. Denote byD(Θ)

the preimage ofD. This is clearly a Lie subalgebra. Then the above corollary
can be understood as saying that there is a natural Lie actionof D(Θ) onF(H, F)
by first order differential operators, acting, in the terminology of Section 1, with
weight1. The image in Endk(F(H, F)) is theR-submodule of Endk(F(H, F)) gen-
erated by theTF ′(D) and the identity operator. We may also useD(detR(F)) in-
stead, although then the weight will be12 . Note that our discussion of projectively
flat connections at the beginning now suggests a formulationin more geometric
terms, namely that the pull-back ofF(H, F) to the geometric realization of theGm-
bundle over Spec(R) defined by detR(F) acquires a flat meromorphic connection
with fiber monodromy minus the identity.

Remark10. The preceding follows the presentation of Boer-Looijenga [6] rather
closely. The quadratic terms that enter in the definition ofTF ′ are in a way a relict
of the heat operator of which the theta functions associatedto this symplectic local
system are solutions (flat sections are expansions of theta functions relative to an
unspecified lattice).

3. THE SEGAL-SUGAWARA CONSTRUCTION

In this section, we fix a simple Lie algebrag over k of finite dimension. We
retain the data and the notation of Section 2.

Loop algebras. We identify the space of bilinear formsg∗ × g∗ → k with g ⊗ g.
The subspacec := (g ⊗ g)g of g-invariants (relative to the adjoint action on both
factors) is of dimension one and consists of symmetric tensors. Sinceg is reductive,
we have a uniqueg-equivariant projectiong⊗g→ c. There is a canonical generator
c of c, referred to here as theCasimir element, characterized by the property that it
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takes the value2 on the longest roots (relative to a choice of Cartan subalgebra h

of g; the roots then lie in the zero Eigen space ofh in g∗). This element is in fact
invariant under the full automorphism group of the Lie algebrag, not just the inner
ones. It is nondegenerate when viewed as a symmetric bilinear form ong∗ and so
the inverse form ong is defined. If we denote the latter byč, then the equivariant
projectiong⊗ g→ c is given byX⊗ Y 7→ č(X, Y)c.

It is well-known and easy to prove thatc maps to the center ofUg. This implies
that c acts in any irreducible representation ofg by a scalar. In the case of the
adjoint representation half this scalar is called thedual Coxeter numberof g and
is denoted by̌h. So if we choose an orthonormal basis{Xκ}κ of g relative toč, so
thatc takes the form

∑
κ Xκ ⊗ Xκ, then
∑

κ

[Xκ, [Xκ, Y]] = 2ȟY for all Y ∈ g.

Let Lg stand forg⊗k L, but considered as a filteredR-Lie algebra (so we restrict
the scalars toR): FNLg = g ⊗k m

N. An argument similar as forr shows that the
pairing

rg : (g⊗k L)× (g⊗k ω)→ c⊗k R =: cR

which assigns to(Xf, Yα) the natural image ofX ⊗ Y ⊗ Res(fα) in c ⊗k R (in
other words,cRes(fα)č(X, Y)) is topologically perfect; the basis dual to(Xκt

l)κ,l
is (Xκt

−l−1dt)κ,l.
For an integerN ≥ 0, the quotientULg/ULg ◦ FNLg is a freeR-module (a set

of generators isXκ1t
k1 ◦ · · · ◦ Xκrt

kr , k1 ≤ · · · ≤ kr < N). We completeULg
m-adically on the right:

ULg := lim
←−
N

ULg/ULg ◦ FNLg.

A central extension̂Lg of Lg by c ⊗k R is defined by endowing the sumLg ⊕ cR
with the Lie bracket

[Xf + cr, Yg + cs] := [X, Y]fg + rg(Yg, Xdf).

We filter L̂g by letting forN > 0, FNL̂g = FNLg and forN ≤ 0, FNL̂g = FNLg +

cR. ThenUL̂g is a filteredR[c]-algebra whose reduction moduloc is ULg. Since
the residue is zero onO, the inclusion ofF0Lg in L̂g is a homomorphism of Lie
algebras. The Aut(g)-invariance ofc implies that the tautological action of Aut(g)

ong extends tôLg.
Them-adic completion on the right

UL̂g := lim
←−
N

UL̂g/(UL̂g ◦ FNLg)

is still aR[c]-algebra and the obvious surjectionUL̂g→ ULg is the reduction mod-
ulo c. These (completed) enveloping algebras not only come with the (increasing)
Poincaré-Birkhoff-Witt filtration, but also inherit a (decreasing) filtration fromL.
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Segal-Sugawara representation.Tensoring withc ∈ g⊗k g defines theR-linear
map

l⊗R l→ Lg⊗R Lg, f⊗ g 7→ c · f⊗ g =
∑

κ

Xκf⊗ Xκg,

which, composed withLg ⊗R Lg ⊂ L̂g ⊗R L̂g → UL̂g, yields a mapγ : l ⊗R l →

UL̂g. Sinceγ(f ⊗ g − g ⊗ f) =
∑

κ[Xκf, Xκg] = cdimgRes(gdf), γ drops and

extends naturally to anR-module homomorphism̂γ : l2 → UL̂g which sends ¯h to
cdimg. This, in turn, extends continuously to a map from the closure l̄2 of l2 in Ul̂

to UL̂g. As l̄2 contains the image of̂C : θ → Ul̂, and sincec is Aut(g)-invariant,
we get aR-homomorphism

Ĉg := γ̂Ĉ : θ→ (UL̂g)Aut(g).

We may also describêCg in the spirit of Section 2: givenD ∈ θ, then theR-linear
map

1⊗D : g⊗k ω→ g⊗k L

is continuous and selfadjoint relative torg and the perfect pairingrg allows us to
identify it with an element ofULg; this element produces our̂Cg(D). Thus the
choice of the parametert yields

Ĉg(Dk) =
1
2

∑

κ,l

: Xκt
k−l ◦ Xκt

l : .

This formula can be used to definêCg, but this approach does not exhibit its natu-
rality.

Lemma 11. For X ∈ g andf ∈ L we have

[Ĉg(Dk), Xf] = −(c+ ȟ)XDk(f)

(an identity inUL̂g) and upon a choice of a parametert, then with the preceding
notation

[Ĉg(Dk), Ĉg(Dl)] = (c + ȟ)(k− l)Ĉg(Dk+l) + c(c + ȟ)δk+l,0
k3 − k

12
dimg.

For the proof (which is a bit tricky, but not very deep), we refer to Lecture 10
of [9] (our Cg(D̂k) is their Tk). This formula suggests that we make the central

elementc+ ȟ of UL̂g invertible (its inverse might be viewed as a rational function
on c∗), so that we can state this lemma in a more natural manner as follows.

Corollary 12 (Sugawara representation). The mapD̂k 7→ −1
c+ȟ

Ĉg(Dk) induces a
natural homomorphism ofR-Lie algebras

Tg : θ̂→
(
UL̂g[ 1

c+ȟ
]
)Aut(g)

which sends the central elementc0 ∈ θ̂ to c(c + ȟ)−1 dimg. Moreover, ifD̂ ∈ θ̂,
thenadTg(D̂) leavesLg invariant (as a subspace ofUL̂g) and acts on that subspace

by derivation with respect to the image ofD̂ in θ.
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A representation for L̂g. We fix ℓ ∈ k with ℓ 6= −ȟ. Let F1Lg ⊕ Rc act on the
freeR-module of rank oneRvℓ via the projection onto the second factorRc with c

acting as multiplication byℓ. We regardF1Lg⊕ Rc as a subalgebra ofUL̂g so that
we can form the induced module

Fℓ(g, L) := UL̂g⊗U(F1Lg⊕Rc) Rvℓ,

which we often simply denote byFℓ(g). We usevℓ also to denote its image in this
module. As anR-moduleFℓ(g) is generated byXκrt

−kr ◦· · · ◦Xκ1t
−k1 ⊗vℓ, where

r ≥ 0, 0 ≤ k1 ≤ k2 ≤ · · · ≤ kr and where(Xκ)κ is a givenk-basis ofg. If we let
θ̂ act onFℓ(g) via Tg, then it follows from Corollary 12 that if̂∈θ̂ lifts D ∈ θ, then

Tg(D̂)Xκrt
−kr ◦ · · · ◦ Xκ1t

−k1 ⊗ vℓ =

=

r∑

i=1

Xκrt
−kr ◦ · · ·XκiD(t−ki) ◦ · · · ◦ Xκ1t

−k1 ⊗ vℓ+

+ Xκrt
−kr ◦ · · · ◦ Xκ1t

−k1 ◦ Tg(D̂)vℓ.

Thus θ̂ is faithfully represented as a Lie algebra ofR-linear endomorphisms of
Fℓ(g). If D ∈ F0θ, then clearlyTg(D̂)vℓ = 0 and hence we have the following
counterpart of Corollary 5 (with the same proof). It tells usthat θ̂L,R acts inFℓ(g)

as a Lie algebra of first order differential operators, but with its degree zero partR
acting with weight(c + ȟ)−1cdimg:

Corollary 13. The Sugawara representationTg of θ̂ on Fℓ(g) extends tôθL,R in
such a manner thatF0θL,R acts by coefficientwise derivation (killing the generator
vℓ), [Tg(D̂), Xf] = X(Df) for X ∈ g, f ∈ L and Tg(D̂) is Aut(g)-invariant. In

particular, this action preserves everyUL̂g-submodule ofFℓ(g).

Semi-local case.This refers to the situation where we allow theR-algebraL to
be a finite direct sum ofR-algebras isomorphic toR((t)): L = ⊕i∈ILi, where
I is a nonempty finite index set andLi as before. We then extend the notation
employed earlier in the most natural fashion. For instance,O, m, ω, l are now the
direct sums overI (as filtered objects) of the items suggested by the notation.If
r : L × ω → R denotes the sum of the residue pairings of the summands, then
r is still topologically perfect. However, we take for the oscillator algebrâl not
the direct sum of thêli, but rather the quotient of⊕îli that identifies the central
generators of the summands with a single ¯h. We thus get a Virasoro extension̂θ
of θ by c0R and a (faithful) oscillator representation ofθ̂ in Ul̂. The decreasing
filtrations are the obvious ones. We shall denote byF the Fock representationF
of l̂ that ensures that the unit of every summandOi acts the identity; it is then the
induced representation of the rank one representation ofF0̂l = O ⊕ Rh̄ in Rvo.

In likewise manner we definêLg (a central extension of⊕i∈ILgi by cR) and
construct the associated Sugawara representation. The representationFℓ(g) of L̂g
is as before. We have definedθ̂L,R and Corollaries 12 and 13 continue to hold.
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4. THE WZW CONNECTION: ALGEBRAIC ASPECTS

From now on we place ourselves in the semi-local case, soL = ⊕i∈ILi with I
nonempty and finite andLi ∼= R((t)). For the sake of transparency, we begin with
an abstract discussion that will lead us to the Fock representation of a symplectic
local system.

Abstract spaces of covacua I.LetA be aR-subalgebra ofL and letθA/R have the
usual meaning as the Lie algebra ofR-derivationsA→ A. We denote byA⊥ ⊂ L
the annihilator ofA relative to the residue pairing. We assume that:

(A1) as anR-algebra,A is flat and of finite type andA ∩ O = R,
(A2) theR-modulesL/(A+O) andF := A⊥ ∩O are free of finite rank and the

residue pairing induces a perfect pairingL/(A+O)⊗R F→ R.
(A3) the universal continuousR-derivationd : L→ ω mapsA toA⊥ and theA-

dual of the resultingA-homomorphismΩA/R → A⊥ is anR-isomorphism
HomA(A

⊥, A) ∼= θA/R.

Remark14. The example to keep in mind is the following. SinceR is regular
localk-algebra, it represents a smooth germ(S, o). Suppose we are given a family
π : C → S of smooth projective curves of genusg over this germ, endowed with
pairwise disjoint sections(xi)i∈I. We letOi be is the formal completion ofOC
alongxi, let Li be obtained fromOi by inverting a generator for the ideal defining
xi(S), and take forA the R-algebra of regular functions onC◦ := C − ∪ixi(S)
(or rather its isomorphic image inL = ⊕iLi). It is a classical fact that the three
propertiesA1, A2, A3 are then satisfied. For instance,L/(A+O) has according to
Weil the interpretation ofR1π∗OC and hence is free of rankg. It is also classical
that the annihilator ofA in ω is precisely the image of the space relative rational
differentials onC/S that are regular onC◦ (so in this caseΩA/R → A⊥ is already
an isomorphism before dualizing).

We putH := A⊥/A. It follows from properties (A1) and (A2), that the natural
mapF → H is an embedding with image a Lagrangian subspace. Recall that θA,R

denotes the Lie algebra ofk-derivationsA → A which preserveR. The kernel of
the natural mapθA,R → θR is θA/R and its image, is by definition theR-submodule
of k-derivationsR→ R that extend to one ofA. We denote this image byθAR ⊂ θR
and refer to it as the module ofliftable derivations. This module is clearly closed
under the Lie bracket. We shall assume that we have equality in the generic point,
so thatθAR is as ourD. According to (A3) any element ofθA/R induces the zero
map inH and soθA,R acts inH (as ak-Lie algebra) throughθA,R. It is clear that
θA,R ⊂ θL,R.

(In the above example,H would represent the first De Rham cohomology mod-
ule of C/S, F the module of relative regular differentials, and we would have
θAR = θR, as every vector field germ on(S, o) lifts to rational vector field onC
that is regular onC◦. The Lie action is then that of covariant derivation of relative
cohomology classes. The reason for us to allowθAR 6= θR is because we want to
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admit the central fibers ofC → S to have modest singularities; in that caseθAR is
theθR-stabilizer of a principal ideal inR, thediscriminantideal ofπ.)

We writeθ̂A,R for the preimage ofθA,R in θ̂L,R and byθ̂AR the quotient̂θA,R/θA/R.
These are extensions ofθA,R resp.θAR by c0R. They can be split, but not canonically
so.

SinceAd(A) ⊂ A⊥, the residue pairing vanishes onA× Ad(A) and henceA
is contained in̂l as an abelian Lie subalgebra. LetFA := F/AF denote the space
of A-covariants.

Theorem 15. The following properties hold:

(i) The space of covariantsFA is naturally identified with the Fock represen-
tationF(H, F),

(ii) for everyD ∈ θA/R there exists a lift̂D ∈ θ̂A/R such thatT(D̂) lies in the

closure ofA ◦ l̂ in Ul̂,
(iii) the representation of the Lie algebrâθA,R on F preserves the submodule

AF andθ̂A,R acts inFA throughθ̂AR by differential operators of degree≤ 1
(with c0 acting as the identity),

(iv) if Θ is a square root ofdetR(F), then the image of this action onFA is equal
to the image of the Lie algebra of first order differential operators θAR (Θ)

(as described in Remark 9).

Proof. The proof of the first assertion is straightforward and left to the reader.
SinceL/(A + O) is finitely generated as aR-module, we can choose a finite

subsetM ⊂ L such thatL = A+
∑

f∈M Rf+O.
Now let D ∈ θA/R. According to (A3), we may viewD as aL-linear map

ω → L which mapsA⊥ to A. This implies thatĈ(D̂) lies in the closure of the
image ofA⊗R l̂+l̂⊗RA in Ul̂. It follows thatĈ(D̂) has the form ¯hr+

∑
n≥1 fn◦gn

with r ∈ R, one offn, gn ∈ L being inA and the order offn smaller than that of
gn for almost alln. In view of the fact that the nonzero elements ofA are of lower
order than those ofO andfn ◦ gn ≡ gn ◦ fn (modh̄R), we can assume that allfn
lie in A and so we can arrange thatĈ(D̂) lies in the closure ofA ◦ l̂.

For (iii) we observe that ifD ∈ θA,R andf ∈ A, then[D, f] = Df lies in A.
This shows thatT(D̂) preservesAF and hence acts inFA. WhenD ∈ θA/R and if
we choosêD ∈ θ̂A/R as in (ii), thenT(D̂) is clearly zero inFA. Thusθ̂A,R acts in
FA throughθ̂AR .

Property (iv) follows from the observation that the action of θ̂A,R on FA
∼=

F(H, F) evidently has the properties described in Proposition-Definition 6. �

Abstract spaces of covacua II.We continue with the setting of the previous sub-
section. Withg as before we have definedFℓ(g). We first consider the space of
Ag-covariants inFℓ(g),

Fℓ(g)Ag := Fℓ(g)/AgFℓ(g).

Proposition 16. For D̂ ∈ θ̂A/R, Tg(D̂) lies in the closure ofAg ◦ L̂g in UL̂g. The

Sugawara representation of the Lie algebraθ̂A,R onFℓ(g) preserves the submodule
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AgFℓ(g) ⊂ Fℓ(g) and acts in the space ofAg-covariants inFℓ(g), Fℓ(g)Ag, via θ̂AR ;
this representation is one by differential operators of degree≤ 1 (with c0 acting as
multiplication by(c + ȟ)−1cdimg).

Proof. The proof is similar to arguments used to prove Theorem 15. SinceD maps
A⊥ to A ⊂ L, 1 ⊗ D maps the submoduleg ⊗ A⊥ of g ⊗ ω to the submodule
g ⊗ A = Ag of g ⊗ L = Lg. It is clear thatg ⊗ A⊥ andAg are each others
annihilator relative to the pairingrg. This implies thatĈ(D̂) lies in the closure of
the image ofAg ⊗k Lg + Lg ⊗k Ag in UL̂g. It follows that Ĉ(D̂) has the form
cr +

∑
κ

∑
n≥1 Xκfκ,n ◦ Xκgκ,n with r ∈ R, one offκn , gκ,n ∈ L being inA and

the order offκn smaller than that ofgκ,n for almost allκ, n. Since the elements
of A have order≤ 0 andXκfκ,n ◦ Xκgκ,n ≡ Xκgκ,n ◦ Xκfκ,n (mod cR), we can
assume that allfκ,n lie in A and so the first assertion follows.

If D ∈ θA,R, then forX ∈ g andf ∈ A, we have[D,Xf] = X(Df), which is
an element ofAg (sinceDf ∈ A). This shows thatTg(D̂) preservesAgFℓ(g). If
D ∈ θA/R, then it follows from the proven part thatTg(D̂) mapsFℓ(g) to AgFℓ(g)

and hence induces the zero map inFℓ(g)Ag. Soθ̂A,R acts onFℓ(g)Ag via θ̂AR . �

For what follows we need to briefly review from [8] the theory of highest weight
representations of a loop algebra such asL̂g. According to that theory, the natural
analogues for̂Lg of the finite dimensional irreducible representations of the finite
dimensional semi-simple Lie algebras are obtained as follows, assuming thatI is a
singleton. Fix an integerℓ ≥ 0 and letV be a finite dimensional irreducible repre-
sentation ofg. MakeV ak-representation ofF0Lg by lettingc act as multiplication
by ℓ and by lettingg⊗k O act via its projection ontog. If we induce this up tôLg
we get a representatioñHℓ(V) of L̂g which clearly is a quotient ofFℓ(g). Its irre-
ducible quotient is denoted byHℓ(V). This is integrable as âLg-module: ifY ∈ g

is nilpotent andf ∈ L, thenYf acts locally nilpotently inHℓ(V) (which means that
the latter is a union of finite dimensionalYf-invariant subspaces in whichYf acts
nilpotently). We can be more precise if we fix a Cartan subalgebra h ⊂ g and a
system of positive roots(α1, . . . , αr) in h∗. Letθ ∈ h∗ the highest root,̌θ ∈ h the
corresponding coroot andX ∈ g a generator of the root spacegθ.

Lemma 17. If λ ∈ h∗ be the highest weight ofV , thenHℓ(V) is zero unlessλ(θ̌) ≤
ℓ. Assuming this inequality, thenHℓ(V) can be obtained as the quotient ofUL̂g by
the left ideal generated byg⊗k m, c− ℓ and(Xf)1+ℓ−λ(θ̌), where we can take forf
anyO-generator ofF−1l. In fact, the image ofV in Hℓ(V) (which generatesHℓ(V)

as aL̂g-representation) is annihilated by all expressions of the formXfN ◦· · · ◦Xf1
with fk ∈ F−1l andN > ℓ − λ(θ̌).

Proof. The first assertion is in the literature in the form of an Exercise (12.12 of
[8]). As to the second statement: choose variablesu1, . . . , uN and observe that
fu := f +

∑
k ukfk is anO-generator ofF−1l for genericu. SoV is killed by

(Xfu)
N for genericu and hence for allu. By taking the coefficient ofu1 · · ·uN

(and using that theXfk’s commute with each other), we find thatXfN ◦ · · · ◦ Xf1
annihilatesV . �
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Let us call thek-span of anX as above ahighest root line. Since the Cartan
subalgebras ofg are all conjugate under the adjoint representation, the same is true
for the higest root lines.

Definition 18. Thelevelof a finite dimensional representationV of g is the smallest
integerℓ for which some (or equivalently, any) highest root linen, has the property
thatnℓ+1 ⊂ Ug kills V . We denote it byℓ(V).

It is clear that in terms of the above root data, the setPℓ of equivalence classes
of irreducible representations of level≤ ℓ can be identified with the set of integral
weights in a simplex, hence is finite. Notice thatPℓ is invariant under dualization
and more generally, under all outer automorphisms ofg.

Returning to the general case in whichI need not be a singleton, we putHℓ(V) :=
⊗i∈IHℓ(Vi). So this is zero unless everyVi is of level≤ ℓ. Inspired by the physi-
cists terminology, theR-moduleHℓ(V)Ag is called the space ofcovacuaattached
to A. The following proposition says that it is of finite rank and describes the
WZW-connection.

Proposition 19 (Finiteness). The spaceHℓ(V) is finitely generated as aUAg-
module (so thatHℓ(V)Ag is a finitely generatedR-module). The Lie algebrâθAR
acts onHℓ(V)Ag via the Segal-Sugawara representation withc0 acting as multipli-
cation by ℓ

ℓ+ȟ
dimg.

Proof. Choose a generatorti of mi. SinceR is a local ring we can find a finite set
Φ of negativepowers of these generators mapping to anR-basis set ofL/(O+A).
The nilpotent elements ofg span a nontrivial subspace that is invariant under the
adjoint action and hence span all ofg. Let Ξ ⊂ g be ak-basis ofg consisting of
nilpotent elements. Then for pair(X, f) ∈ Ξ × Φ, Xf acts locally nilpotently in
Hℓ(V) and so there exists a positive integerN such that theNth power of any such
element kills the image of⊗i∈IVi in Hℓ(V).

The Poincaré-Birkhoff-Witt theorem implies thatHℓ(V) is the sum of the sub-
spaces

Ag ◦ (Xrfr)
◦nr ◦ · · · ◦ (X1f1)

◦n1 ⊗ (⊗i∈IVi) ⊂ Hℓ(V)

with (Xi, fi) ∈ Ξ × Φ pairwise distinct fori = 1, . . . , r, andn1 ≥ · · · ≥ nr ≥
0. Since we get a nonzero element only whenn1 < N, we thus obtain a finite
collection ofR-module generators ofHℓ(V)Ag. The remaining statements follow
from 16. �

Remark20. We expect theR-moduleHℓ(V)Ag to be flat as well and this to be a
consequence of a related property for theUAg-moduleHℓ(V)). Such a result, or
rather an algebraic proof of it, might simplify the argumentin [18] (see Section 6
for our version) which shows that the sheaf of covacua attached to a degenerating
family of pointed curves is locally free.

Remark21. It is clear from the definition that a system ofg-equivariant isomor-
phisms(φi : Vi

∼= V ′
i )i∈I of finite dimensional irreducible representations induces

an isomorphismφ∗ : Hℓ(V)Ag
∼= Hℓ(V

′)Ag. By Schur’s lemma, eachφi is unique
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up to scalar ink and hence the same is true forφ∗. We may rigidify the situa-
tion by fixing in each representationVi andV ′

i involved a highest weight orbit for
the closed connected subgroup of linear transformations whose Lie algebra is the
image ofg: if we require that everyφi respects these orbits, thenφi is unique.

We can also say something if we are given aσ ∈ Aut(g). This turns every
representationV of g into another one (denotedσV) that has the same underlying
vector spaceV , by lettingX ∈ g act asσ(X) onV . The extension̂σ of σ to L̂g does
the same withHℓ(V). It follows that we have an identification of̂Lg-modules:

Yrfr ◦ · · · ◦ Y1f1σ⊗ (⊗i∈Ivi) ∈ Hℓ(
σV) 7→

σ(Yr)fr ◦ · · · ◦ σ(Y1)f1 ⊗ (⊗i∈Ivi) ∈ σ̂Hℓ(V).

Sinceσ preservesAg, this descends to an identificationHℓ(V
σ)Ag

∼= Hℓ(V)Ag of
R-modules. It is clear from the definition above that this is also equivariant for the
Segal-Sugawara representation and hence is an isomorphismof θ̂AR -modules.

Propagation principle. The following proposition is a bare version of what is
known as thepropagation of vacua; it essentially shows that trivial representations
may be ignored (as long as some representations remain: if all are trivial, then we
can get rid of all but one of them). If we do not care about the WZW-connection,
then this is even true for nontrivial representations (a fact that can be found in
Beauville [4]) so that we then essentially reduce the discussion to the case whereI
is a singleton.

Proposition 22. Let J ( I be such thatA maps onto⊕j∈JLj/Oj. Denote byB ⊂
A the kernel of the mapA → ⊕j∈JLj/mj

∼= RJ (evidently an ideal) so that we
have a surjective Lie homomorphismBg → (R ⊗k g)

J via whichBg acts onR ⊗k

(⊗j∈JVj). Then the map ofBg-modulesHℓ(V |I−J)⊗k (⊗j∈JVj)→ Hℓ(V) induces
an isomorphism on covariants:

(Hℓ(V |I− J)⊗k (⊗j∈JVj))Bg
∼=−−−−→ Hℓ(V)Ag.

If θA,B
R ⊂ θAR denotes the module ofk-derivationsR → R that lift to k-derivations

A→ A which preserveB (or equivalently,⊕j∈Jmj), andθ̂A,B
R ⊂ θ̂AR stands for the

corresponding extension, then the above isomorphism of covariants is compatible
with the action ofθ̂A,B

R on both sides, provided that the representationsVj are
trivial for j ∈ J.

Proof. For the first assertion it suffices to do the case whenJ is a singleton{o}. The
hypotheses clearly imply thatHℓ(V |I− {o})⊗ Vo → Hℓ(V)Ag is onto. The kernel
is easily shown to beBg(Hℓ(V |I− {o})⊗ Vo).

The second assertion follows in a straightforward manner from our definitions:
if D̄ ∈ θ̂A,B

R , then lift D̄ to ak-derivationD : A → A which preservesB. This
implies thatD preserves eachOj, j ∈ J. If we choose a parametertj for Oj so that

Oj = R((tj)), thenD takes inOj the formD
(j)
hor+D

(j)
vert, with D

(j)
hor the extension of

D̄ which kills tj andD(j)
vert = c(j)∂/∂tj plus higher order terms withc(j) ∈ R. The

Sugawara action ofD(j)
vert on the subspaceVj ⊂ Hℓ(Vj) is up to a factor inR given
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by
∑

κ t
−1
j Xκ ◦Xκ. But if Vj is the trivial representation, then this is evidently zero.

The second assertion now follows. �

Remark23. Our discussion of the genus zero case will show that the isomorphism
of covariants generally fails to be compatible relative to the θ̂A,B

R -action.

Remark24. The proposition is sometimes used in the opposite direction: if mo ⊂
A is a principal ideal with the property that for a generatort ∈ mo, themo-adic
completion ofA gets identified withR((t)), then letĨ be the disjoint union ofI
and{o}, Ṽ the extension ofV to Ĩ which assigns too the trivial representation and
Ã := A[t−1]. With (Ĩ, {o}) taking the role of(I, J), we then find thatHℓ(V)Ag

∼=

Hℓ(Ṽ)Ãg.

5. BUNDLES OF COVACUA

Spaces of covacua in families.We specialize the discussion of Section 4 to a
more concrete geometric situation. This leads us to sheafifymany of the notions
we introduced earlier and in such cases we shall modify our notation (or its mean-
ing) accordingly. Suppose given a proper and flat morphism betweenk-varieties
π : C → S whose baseS is smooth and connected and whose fibers are reduced
connected curves that have complete intersection singularities only (but we do not
assume thatC is smooth overk). Since the family is flat, the arithmetic genus
of the fibers is locally constant, hence constant, say equal to g. We also suppose
given disjoint sectionsxi of π, indexed by the finite nonempty setI whose union
∪i∈Ixi(S) lies in the smooth part ofC and meets every irreducible component of a
fiber. The last condition ensures that ifj : C◦ := C−∪i∈Ixi(S) ⊂ C is the inclusion,
thenπj is an affine morphism.

We denote by(Oi,mi) the formal completion ofOC along xi(S), by Li the
subsheaf of fractions ofOi with denominator a local generator ofmi and byO, m
andL the corresponding direct sums. But we keep on usingω, θ, θ̂ etc. for their
sheafified counterparts. So these are now allOS-modules and the residue pairing
is also one ofOS-modules:r : L×ω→ OS. We writeA for π∗j∗j∗OC (a sheaf of
OS-algebras that is also equal to the direct image ofOC◦ on S) and often identify
this with its image inL. We denote byθA/S the sheaf ofOS-derivationsA → A
and byωA/S for the sheafπ∗j∗j∗ωC/S (which is also the direct image onS of the
relative dualizing sheaf ofC◦/S; if C◦ is smooth, this is simply the sheaf of relative
differentials). SoωA/S is torsion free and embeds therefore inω.

Lemma 25. The propertiesA1, A2 andA3 hold for the sheafA. Precisely,

(A1) A is as a sheaf ofOS-algebras flat and of finite type,
(A2) A ∩O = OS andR1π∗OC = L/(A+O) is locally free of rankg,
(A3) we haveθA/S = HomA(ωA/S,A) andωA/S is the annihilator ofA with

respect to the residue pairing.

Proof. PropertyA1 is clear. It is also clear thatOS = π∗OC → A ∩ O is an
isomorphism. The long exact sequence defined by the functorπ∗ applied to the
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short exact sequence

0→ OC → j∗j
∗OC → L/O→ 0

tells us thatR1π∗OC = L/(A +O); in particular, the latter is locally free of rank
g. HenceA2 holds as well.

In order to verifyA3, we note thatπ∗ωC/S is theOS-dual of R1π∗OS, and
hence is locally free of rankg. The first part ofA3 follows from the corresponding
local propertyθC/S = HomOC

(ωC/S,OC) by applyingπ∗j∗ to either side. This
local property is known to hold for families of curves with complete intersection
singularities. (A proof under the assumption thatC is smooth—which is does not
affect the generality, sinceπ is locally the restriction of that case and both sides
are compatible with base change—runs as follows: ifj ′ : C ′ ⊂ C denotes the
locus whereπ is smooth, then its complement is of codimension≥ 2 everywhere.
Clearly, θC/S is theOC-dual ofωC/S on C ′ and since both are inert underj ′∗j

′∗,
they are equal everywhere.)

The last assertion essentially restates the well-known fact that the polar part of a
rational section ofωC/S must have zero residue sum, but can otherwise be arbitrary.
More precisely, the image ofωA/S in ω/F1ω is the kernel of the residue map
ω/F1ω → OS. The intersectionωA/S ∩ F1ω is π∗ωC/S and is hence locally free
of rankg. Since(F1ω)⊥ = O, it follows that(ωA/S)

⊥∩O andL/((ωA/S)
⊥+O)

are locally free of rank 1 andg respectively. SinceA has these properties also and
is contained in(ωA/S)

⊥, we must haveA = (ωA/S)
⊥. �

For what follows one usually supposes that the fibers are stable I-pointed curves
(meaning that every fiber ofπj has only ordinary double points as singularities and
has finite automorphism group) and is versal (so that the discriminant∆π of π is
a reduced normal crossing divisor), but we shall not make these assumptions yet.
Instead, we assume the considerable weaker property that the sections of the sheaf
θS(log∆π) of vector fields onS tangent to∆π lift locally on S to vector fields onC.
(This is for instance the case ifC is smooth andπ is multi-transversal with respect
to the (Thom) stratification of Hom(TC, π∗TS) by rank [13].) Notice that we have
a restriction homomorphismθS(log∆π)⊗O∆π

→ θ∆π
.

Let θC,S ⊂ θC denote the sheaf of derivations which preserveπ∗OS. If we apply
π∗j∗j∗ to the exact sequence0 → θC/S → θC,S → θC,S/θC/S → 0 and use our
liftability assumption and the fact thatπj is affine, we get the exact sequence

0→ θA → θA,S → θS(log∆π)→ 0.

We definedθ̂A,S as the preimage ofθA,S in θ̂L,S and θ̂S(log∆π) as the quotient
θ̂L,S/θA. These extendθA,S andθS by c0OS. If we denote theHodge bundle

λ := λ(C/S) := det(π∗ωC/S),

then we see that̂θS(log∆π) may be identified with the Lie sheafD1(λ)(log∆π)

of first order differential operatorsλ → λ which preserve the subsheaf of sections
vanishing on∆π.
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Observe thatLg = g ⊗k L is now a sheaf of Lie algebras overOS. The same
applies tôl and so we have a Virasoro extensionθ̂S of θS by c0OS. We have also
definedAg = g⊗kA, which is a Lie subsheaf ofLg as well as of̂Lg and the Fock
type L̂g-moduleFℓ(g). The will also consider the sheaf ofAg-covariants in the
latter,

Fℓ(g)C/S := Fℓ(g)Ag = AgFℓ(g)\Fℓ(g).

From Proposition 16 we get:

Corollary 26. The representation of the Lie algebrâθA,S on Fℓ(g) preserves
AgFℓ(g) and acts onFℓ(g)C/S via θ̂(log∆π) with c0 acting as multiplication by

(ℓ + ȟ)−1ℓdimg. This construction has a base change property along any smooth
part S ′ of the discriminant in the sense that the residual action ofθ̂(log∆π) on
Fℓ(g)CS ′/S ′

∼= Fℓ(g)C/S ⊗OS ′ factors througĥθS ′ .

The bundle of integrable representationsHℓ(V) overS is defined in the expected
manner: it is obtained as a quotient ofFℓ(g) in the wayHℓ(V) is obtained from
Fℓ(L̂g). We writeHℓ(V)C/S for Hℓ(V)Ag. The following theorem, which is mostly
a summary of what we have done so far, is one of the main resultsof the theory.

Theorem 27(WZW-connection). TheOS-moduleHℓ(V)C/S is of finite rank; it is
also locally free overS − ∆π and the Lie action ofD1(λ)(log∆π) on Hℓ(V)C/S
defines a logarithmicλ-flat connection relative to∆π of weight ℓ

2(ℓ+ȟ)
dimg. The

same base change property holds along the smooth part of the discriminant as
in Corollary 26. Furthermore, anyσ ∈ Aut(g) determines an isomorphism of
D1(λ)(log∆π)-modulesHℓ(

σV)C/S ∼= Hℓ(V)C/S.

Proof. The first assertion follows from 19. The action ofθ̂ factors (locally) through
D1(

√
λ)(log∆π) for some square root

√
λ of λ and has then weight(ℓ+ȟ)−1ℓdimg.

This amounts to an action ofD1(λ)(log∆π) of half that weight. The last assertion
follows from Corollary 13. The rest is clear except perhaps the local freeness of
Hℓ(V)C/S onS − ∆π. But this follows from the local existence of a connection in
theOS-moduleHℓ(V)C . �

So if Λ× → S denotes theGm-bundle that is associated toλ, then we have a
flat connection on the pull-back ofHℓ(V)C/S toΛ×|S−∆π with fiber monodromy
scalar multiplication by a root of unity of order ℓ

2(ℓ+ȟ)
dimg.

Propagation principle continued. In the preceding subsection we made the as-
sumption throughout that a union of sections ofC → S is given to ensure that
its complement is affine overS. However, the propagation principle permits us to
abandon that assumption. In fact, this leads us to letV stand for any map which
assigns to everyS-valued pointx of C an irreducibleg-representationVx of level
≤ ℓ, subject to the condition that itssupport, Supp(V) (i.e., the union of thex(S)
for which Vx is generically not the trivial representation), is a trivial finite cover
overS and contained in the locus whereπ : C → S is smooth. We then might write
Hℓ(V) for Hℓ(V|Supp(V)), but sinceC−Supp(V) need not be affine overS, this does
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not yield the right notion of conformal block. We can find however, at least locally
overS, additional pairwise disjoint sections ofC → S so that the complementC◦

of their support and that ofV is affine overS. Then we can formHℓ(V|C−C◦) and
Proposition 22 shows that the resulting bundle of covacuaHℓ(V|C − C◦)(π∗OC◦ )g

with the projective connection is independent of the choices made. This suggests
that we letHℓ(V) resp.Hℓ(V)C/S stand for the sheaf associated to the presheaf

S ⊃ U 7→ lim−→
S̃

Hℓ(V|S̃) resp. lim−→
S̃

Hℓ(V|S̃)CU/U,

whereS̃ runs over the unions of pairwise disjoint sections as above.The latter,
when twisted with the dual of det(C/S), has, being a limit of presheaves with flat
connections, a flat connection as well. It is clear that in this set-up there is also no
need anymore to insist that the fibers ofπ be connected.

The genus zero case and the KZ-connection.We here assumeC to be isomor-
phic toP1. Let x1, . . . , xn ∈ C be distinct and contain Supp(V). Choose an affine
coordinatez onC (which identifiesC with P1) whose domain contains thexi’s and
write zi for z(xi). Notice thatt∞ := z−1 may serve as a parameter for the local

field atz =∞. So ifHℓ(k) denotes the representation of̂g((z−1)) attached to the

trivial representationk of ̂g((z−1)), then by the propagation principle 22 we have
Hℓ(V)C = (V1 ⊗ · · · ⊗ Vn ⊗ Hℓ(k))g[z], whereg[z] acts onVi for i ≤ n via its
evaluation atzi. According to [8], theg[z]-homomorphismU(g[z]) → Hℓ(k) is
surjective and its kernel is the left ideal generated by(zX)1+ℓ, whereX ∈ g gener-
ates a highest root line. This implies thatHℓ(V)P1 can be identified with a quotient
of the space ofg-covariants(V1⊗· · ·⊗Vn)g, namely its biggest quotient on which
(
∑n

i=1 ziX
(i))1+ℓ acts trivially (whereX(i) acts onVi asX and on the other tensor

factorsVj, j 6= i, as the identity). Now regardz1, . . . , zn as variables. Our first
observation is that a translation inC does not affectHℓ(V)C: if a ∈ C, then the
actions of

∑n
i=1(zi + a)X(i) and

∑n
i=1 ziX

(i) on V1 ⊗ · · · ⊗ Vn differ the action
of aX ∈ g. So we always arrange thatz1 + · · · + zn = 0. Consider inCn the
hyperplaneSn−1 defined byz1 + · · ·+ zn = 0 and denote byS◦n−1 the open subset
of pairwise distinctn-tuples. Then the trivial family overS◦n−1, C := P1 × S◦n−1,
comes withn + 1 ‘tautological’ sections (including the one at infinity) so that we
also have definedC◦. This determines a sheafHℓ(V)C/S◦

n−1
overS◦n−1. According

to the preceding, we have an exact sequence

(V1 ⊗ · · · ⊗ Vn)g ⊗k OS◦
n−1
→ (V1 ⊗ · · · ⊗ Vn)g ⊗k OS → Hℓ(V)C/S◦

n−1
→ 0,

where the first map is given by(
∑n

i=1 ziX
(i))1+ℓ. We identify its WZW connec-

tion, or rather, a natural lift of that connection toV1 ⊗ · · · ⊗ Vn ⊗k OS◦
n−1

. In

order to compute the covariant derivative with respect to the vector field∂i := ∂
∂zi

on S◦n−1, we follow our recipe and lift it toC × S◦n−1 in the obvious way (with
zero component alongC). We continue to denote that lift by∂i and determine its
(Sugawara) action onHℓ(V). We first observe that∂i is tangent to all the sections,
except theith. Near that section we decompose it as( ∂

∂z + ∂i)−
∂
∂z , where the first
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term is tangent to thei-th section and the second term is vertical. The action of the
former is easily understood: its lift toV1 ⊗ · · · ⊗ Vn ⊗k OS◦

n−1
acts as derivation

with respect tozi. The vertical term,− ∂
∂z , acts via the Sugawara representation,

that is, it acts on theith slot as− 1
ℓ+ȟ

∑
κ Xκ(z − zi)

−1 ◦ Xκ and as the identity on

the others, in other words, acts as− 1
ℓ+ȟ

∑
κ X

(i)
κ (z− zi)

−1 ◦ X(i)
κ . This action does

not induce one inV1⊗ · · · ⊗Vn⊗kOS◦
n−1

. To make it so, we add to this the action

by an element ofg[C◦]UL̂g (which of course will act trivially inHℓ(V)C/S◦
n−1

),
namely

1

ℓ + ȟ

∑

κ

Xκ(z − zi)
−1 ◦ X(i)

κ =
1

ℓ+ ȟ

∑

j,κ

1

z− zi
X
(j)
κ ◦ X(i)

κ .

Doing this for everyi, then the modification acts inV1 ⊗ · · · ⊗ Vn ⊗k OS◦
n−1

as

1

ℓ + ȟ

∑

j 6=i

1

zj − zi
X
(j)
κ X

(i)
κ .

Let us regard the Casimir elementc as an element ofg ⊗k g, and denote byc(i,j)

its action inV1 ⊗ · · · ⊗ Vn on theith andjth factor (sincec is symmetric, we have
c(i,j) = c(j,i), so that we need not worry about the order here). We conclude that
the WZW-connection is induced by the connection onV1 ⊗ · · · ⊗ Vn ⊗k OS◦

n−1

whose connection form is

1

ℓ + ȟ

n∑

i=1

∑

j 6=i

dzi

zj − zi
c(i,j) = −

1

ℓ+ ȟ

∑

1≤i<j≤n

d(zi − zj)

zi − zj
c(i,j)

It commutes with the Lie action ofg onV1⊗· · ·⊗Vn and so the connection passes
to one on(V1 ⊗ · · · ⊗ Vn)g ⊗k OS◦

n−1
. This lift of the WZW-connection is known

as theKnizhnik-Zamolodchikov connection. It is not difficult to verify that it is flat
(see for instance [10]), so that we have not just a projectively flat connection, but a
genuine one.

Proposition 28. The map(V1 ⊗ · · · ⊗ Vn)g ⊗k OS◦
n−1
→ Hℓ(V)C/S◦

n−1
is an

isomorphism forn = 1, 2. Hence forn = 1 (resp.n = 2), Hℓ(V)C/S◦
n−1

is zero
unlessV0 is the trivial representation (resp.V0 andV1 are each others dual), in
which case it can be identified withOS◦

n−1
.

Proof. Forn = 1 this is clear. Forn = 2, the stalk ofHℓ(V)C/S◦
1

at(z,−z), z 6= 0,

can be identified with the image in(V1 ⊗ V2)g of the kernel of(zX(1) − zX(2))1+ℓ

acting inV1 ⊗ V2. SinceX(1) + X(2) is zero in(V1 ⊗ V2)g and(X(1))1+ℓ is zero in
V1, this (V1 ⊗ V2)g. �

Remark29. A 3-pointed genus zero curve(C ∼= P1; x1, x2, x3) has no moduli, and
so we expect in this case an identification ofHℓ(V)C also. Indeed, as is shown in
[4], if V1, V2, V3 are the associated irreducibleg-representations of level≤ ℓ, then
Hℓ(V)C is naturally identified with the biggest quotient ofV1 ⊗ V2 ⊗ V3 on which
both g and the endomorphisms(z1X(1) + z2X

(2) + z3X
(3))1+ℓ act trivially for all
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values of(z1, z2, z3). This last condition is of course equivalent to requiring that
Xp ⊗ Xq ⊗ Xr induces the zero map wheneverp+ q+ r > ℓ.

6. FACTORIZATION

In this section we consider the case when we are given a familyπo : Co → So
of pointed curves of genusg with a smooth base germSo = Spec(Ro) (soRo is
a regular local ring) and for which we are given a sectionx0 along whichπo has
an ordinary double point. We assume that the fibers have no other singularities,
in other words, thatπo is smooth outsidex0. After possibly making an étale base
change of degree two we find a partial normalizationν : C̃o → Co which separates
the branches in the (strong) sense thatν is an isomorphism over the complement
of x0(So) andx0 has two disjoint lifts toCo (which we shall denote byx+ and
x−). In what follows we simply assume this to be already the case. There are two
basic cases: thenonseparating case, whereC̃o/So is connected—in that case the
fibers have genusg− 1—and theseparating case, wherex+ andx− take values in
different components̃C± of C̃o such that the fiber generag± of C̃±/So add up to
g. Since the natural base of the WZW-connection is theGm-bundle defined by a
determinant bundle (or a fractional power thereof), let us first recall what we get in
the present case. The bundle of which we take the determinantis the direct image
of the relative dualizing sheafπo∗ωCo/So . This bundle contains the direct image
of ωC̃o/So and the two differ only atxo: an element ofωC̃o/So,xo when pulled back
underν may have a simple pole atx+ andx− whose residues add up to zero. So
we have a natural exact sequence

0→ ν∗ωC̃o/So → ωCo/So → OSo → 0,

where the last map is defined by taking the residue atx+. If we take the direct image
underπo, we see that we have a natural injection(πoν)∗ωC̃o/So → πo∗ωCo/So . It
is in fact an isomorphism in the separating case, whereas it has a cokernel naturally
isomorphic toRo in the nonseparating case. So after taking determinants we get in
either case thatλ(Co/So) = λ(C̃o/So), where it is understood that in the separating
case the right hand side equalsλ(C̃+/So)⊗ λ(C̃−/So).

We now also assume given a representation valued mapVo on the smooth part
of Co whose support is contained in a finite union of sectionsSo so that we have
definedHℓ(Vo)Co/So . A coarse version of thefactorization principleexpresses this
Ro-module in terms of a space of covacua attached to the normalizationC̃o/So. The
more refined form describes it as a residue of a module of covacua on a smoothing
of πo and takes into account the flat connection.

Throughout this sectionΣo ⊂ Co is a finite union of sections ofCo/So contained
in the smooth part ofCo, which contains the support ofVo and has the additional
property that its complementC◦

o := Co − Σo is affine overSo (this can always
be arranged by adding some ‘dummy’ sections to the support ofVo). We often
identify Σo with its preimage inC̃o. Notice thatC̃◦

o := ν−1C◦
o = C̃o − Σo is also

affine overSo, being the normalization of an affineSo-scheme. We writeAo resp.
Ão for their (coordinate)Ro-algebras.
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Coarse version of the factorization property. Recall thatPℓ denotes the set of
isomorphism classes of irreducible representations ofg of level≤ ℓ and is invariant
under dualization: ifµ ∈ Pℓ, thenµ∗ ∈ Pℓ. Let Vµ be ag-representation in the
equivalence classµ ∈ Pℓ and chooseg-equivariant dualities

bµ : Vµ ⊗ Vµ∗ → k,

where we assume thatbµ∗ is the transpose ofbµ. Its transpose inversěbµ ∈ Vµ ⊗
Vµ∗ then spans the line ofg-invariants inVµ ⊗ Vµ∗ .

Proposition 30. Let Ṽµ,µ∗ be the representation valued map onC̃o which is con-
stant equal toVµ resp.Vµ∗ on x+ resp.x− and is elsewhere equal toVo (via the
obvious identification defined byν). Then the contractionsbµ : Vµ ⊗ Vµ∗ → k
define an isomorphism

⊕µ∈PℓHℓ(Ṽµ,µ∗)C̃o/So
∼=−−−−→ Hℓ(Vo)Co/So .

This is almost a formal consequence of:

Lemma 31. Let M be a finite dimensional representation ofg × g which is of
level≤ ℓ relative to both factors. IfMδ denotes that same space viewed asg-
module with respect to the diagonal embeddingδ : g→ g×g, then the contraction
⊕µ∈PℓM⊗ (Vµ⊠V∗

µ)→M that on each summand is defined bybµ (the symbol⊠
stands for the exterior tensor product of representations)induces an isomorphism
between covariants:

⊕µ∈Pℓ
(
M⊗ (Vµ ⊠ V∗

µ)
)
g×g

∼=−−−−→ Mδ
g.

Proof. Without loss of generality we may assume thatM is irreducible, or more
precisely, equal toVλ⊠Vλ ′ for someλ, λ ′ ∈ Pℓ. ThenMδ = Vλ⊗Vλ ′ . By Schur’s
lemma,Mδ

g is one-dimensional ifλ ′ = λ∗ and trivial otherwise. That same lemma
applied tog× g shows that(M⊗ (Vµ ⊠ V∗

µ))g×g is zero unless(λ, λ ′) = (µ∗, µ),
in which case it is one-dimensional and maps isomorphicallyto Mδ. �

Proof of 30. Evaluation inx0 resp.x+, x− define epimorphismsAo → Ro resp.
Ão → Ro ⊕ Ro whose kernels may be identified by means ofν. We denote that
common kernel byI and byB the algebra of regular functions on the smooth part
of C◦

o. This is also the algebra of regular functions on the complement of the two
sectionsx± C̃◦

o. If Ig has the evident meaning, then the argument used to prove
Proposition 19 shows thatM := Hℓ(Vo|Σo)Ig is anRo-module of finite rank. It
underlies a representation ofg × g of level ≤ ℓ relative to both factors and is
such thatMδ

g = Hℓ(Vo)Aog = Hℓ(Vo)Co/So . The assertion now follows from
Lemma 31 and the argument used for the propagation principlewhich shows that
(M⊗ (Vµ ⊠ V∗

µ))Rog×Rog = H(Ṽµ,µ∗)Bg = Hℓ(Ṽµ,µ∗)C̃o/So . �

A smoothing construction. In order to motivate the algebraic discussion that will
follow, we choose generatorst± of the ideals of the completed localRo-algebras
of C̃o atx± and explain how they determine asmoothingof Co/So, that is, a way of
makingCo the restriction overSo×{o} of a flat morphismC → S, with S := So×k∆
(the spectrum ofR := Ro[[τ]]) which is smooth overS−So. The construction goes
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as follows: in the productC̃o × ∆, blow up x± × {o} and let C̃ be the formal
neighborhood of the strict transform ofC̃o × {o}. So at the preimage ofx± × {o}

we have on the strict transform ofC̃ × {o} the formalSo-chart(t±, τ/t±). Now let
C be the quotient of̃C obtained by identifying these formalSo-charts up to order:
(t+, τ/t+) = (τ/t−, t−), so that(s+, s−) := (t+, t−) is now a formalSo-chart
of C on which we haveτ = s+s− (in either domainτ represents the same regular
function). We thus have defined a flat morphismC → So × ∆ = S (with τ as
second component) with the stated properties.

Remark32. If we were to work in the complex analytic category, then we could
take for∆ the complex unit disk. The fiber ofC/S over (s, τ) ∈ So × ∆ is then
obtained by removing fromCs the union of the two disks defined by|t±| ≤ |τ|,
followed by identification of the two closed annuli|τ| < |t±| < 1 by imposing the
identity t+t− = τ.

With a view toward a later application—namely, of extracting a topological
quantum field theory from the WZW model—we note that there is even a limit
if τ tends to zero if we keep its argument fixed. To see this, let us first observe that
for |τ| < 1

2
, the fiber is also obtained by removal of the union of the two open disks

defined by|t±| <
√

|2τ|, followed by the above identification of the two closed
annuli

√
|τ/2| ≤ |t±| ≤

√
|2τ|. Now do a real oriented blow up̂Cs → C̃s of the

pointsx±(s) ∈ C̃s. This means that the polar coordinates associated tot± are to
be viewed as coordinates for the preimage of its domain onĈs: t± = r±ζ± with
|ζ±| = 1 andr± ≥ 0 such that the exceptional set∂Ĉs is defined byr± = 0. No-
tice that∂Ĉs is indeed the boundary of a surface; it has two components, each of
which comes with a natural principalU(1)-action. If we writeτ = εζ accordingly
with |ζ| = 1 andε > 0, then for

√
ε/2 ≤ r± ≤

√
2ε, (r+, ζ+) must be identified

with (r−, ζ−) precisely whenr+r− = ε andζ+ζ− = ζ. This has indeed a con-
tinuous extension overε = 0, for then we just identify the two boundary circles
corresponding tor± = 0 by insisting thatζ+ζ− = ζ. We thus obtain a family
Ĉ → ∆̂ over the real oriented blow up̂∆ → ∆ of ∆ at its origin and whose fibers
over∂∆̂ are as just described. The dependence ofĈ|∂∆̂ is a priori on the coordi-
natest±, but it is clear from the construction this dependence is in fact only via the
(real) ray inTx+Ĉs⊗Tx−Ĉs defined by ∂

∂t+

∣∣
x+

⊗C
∂

∂t−

∣∣
x−

. The fibers of this family
just differ by the way we identified the boundary circles and we thus see that the
monodromy of the family is a positive Dehn twist defined by thewelding circle.
For later use we note that this construction takes place in theC1-category:Ĉ has a
naturalC1-structure such that the projection tô∆ isC1.

We should perhaps add that this has an algebro-geometric incarnation in terms
of log structures and thatTx+C̃s⊗Tx−C̃s can be understood as the tangent space of
the semi-universal deformation of the singular germ(Cs, x(s)) (equivalently, our
data define a smooth point of the boundary divisor of some moduli stackMg,n and
Tx+C̃s ⊗ Tx−C̃s can be identified with its normal space).

We will denote byΣ the image ofΣo × ∆ in bothC andC̃. In either case it is
a union of sections overS. The representation valued mapVo on Co is extended
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to C in the obvious way (so that ist support is contained inΣ) and we denote this
extension byV. We letA stand forR-algebra of regular functions onCo := C − Σ.
Notice thatAo = A/(τA) and thatA embeds inÃo[[τ]].

The glueing tensor. Suppose that in the regular subalgebraR we are given a sub-
algebraRo and an elementτ in the maximal ideal ofR such thatR = Ro[[τ]]. We
further assume givenR-algebrasL+ andL−, both isomorphic toR((t)). The ‘ideal’
in L± corresponding totR̃[[t]] is denoted bym±. LetL := L+ ⊕ L− the direct sum
asR-algebras. We assume given a closedR-subalgebraO0 ⊂ L with the property
that it can be topologically generated as aRo-algebra by two generatorss+, s− of
the following type: there exist generatorst± of m± such thats+ = (t+, τ/t−) and
s− = (τ/t+, t−). So an element ofO0 will then have the form

∑

m≥0,n≥0

am,ns
m
+ sn− =

∑

m≥0,n≥0

am,n(t
m−n
+ τn, tn−m

− τm) =

=
∑

k≥0

(∑

m≥0

am,kt
m−k
+ ,

∑

n≥0

ak,nt
n−k
−

)
τk =

=
∑

n>m≥0

an,mτnsm−n
+ +

∑

m≥0

am,mτ
m +

∑

m>n≥0

an,mτmsn−m
− ,

with an,m ∈ Ro. Clearly, the coefficientsan,m can be arbitrary inRo and the ele-
ment in question is zero only when allan,m are. SoO0 is a copy ofRo[[s+, s−]].
The last identity shows thatO0 is contained in theR-submodule generated by non-
positive powers ofs+ ands−. We shall use the generatorst± for auxiliary purposes
only. A similar argument yields the following lemma and so the proof is left as an
exercise.

Lemma 33. Any continuousRo-derivation ofO0 which preservesτ ∈ O0 extends
uniquely to one ofL. If we letD±

k stand fortk+1
±

∂
∂t±

, then it has there the form

(D+
0 , 0) +

∑

k≥0

τk
(∑

m≥0

am,kD
+
m−k,

∑

n≥0

ak,nD
−
n−k

)
,

with an,m ∈ Ro.

We have definedLg and its central extension̂Lg. Forµ ∈ Pℓ, letH±
ℓ (Vµ) denote

the representation attached toVµ of the central extension̂L±g of L±g, so that the
R-moduleH+

ℓ (Vµ) ⊗R H−
ℓ (Vµ∗) is one ofL̂g. These representations are defined

overRo (overk even) and so arise from a base change:H±
ℓ (Vµ) = R⊗Ro

H±
o,ℓ(Vµ)

and likewise for their tensor product. The Casimir elementc acts inVµ as a scalar,
a scalar we shall denote bycµ. Observe thatcµ∗ = cµ. Its value is best expressed
(and computed) in terms of a Cartan subalgebrah ⊂ g and a system of positive
roots relative toh: if we identify µ with its highest weight inh∗, then

cµ = c(µ, µ + 2ρ),

whereρ has the customary meaning as the half the sum of the positive roots. In
particular,cµ is a positive rational number (the denominator is in fact at most 3).
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Lemma 34. There exists a seriesεµ =
∑

∞

d=0 ε
µ
dτ

d ∈ H+
ℓ (Vµ) ⊗Ro

H−
ℓ (Vµ∗)[[τ]]

(the glueing tensor) with constant termεµ0 = b̌µ that is annihilated by the image

of O0g in L̂g. Moreover, any continuousR-derivationD of O0 which preservesτ
determines âD ∈ θ̂ (relative to the Fock construction on theR-algebraL) with the
property thatεµ is an eigenvector ofTg(D̂) with eigenvalue− cµ

2(ℓ+ȟ)
.

Proof. We first observe the generatorst± of m± define a grading on all the relevant
objects on which we have defined the associated filtrationF (e.g., the degree zero
summand ofHℓ(Vµ) is R ⊗k Vµ). It is known ([8], § 9.4) that the pairingbµ :

Vµ × Vµ∗ → k extends (in fact, in a unique manner) to a perfectR-pairing

bµ : H+
ℓ (Vµ)×H−

ℓ (Vµ∗)→ R

with the property thatbµ(Xt
n
+u,u

′)+bµ(u,Xt
−n
− u ′) = 0 for all X ∈ g andn ∈ Z.

This formula implies that the restriction ofbµ toH+
ℓ (Vµ)−d ×H−

ℓ (Vµ∗)−d ′ is zero
whend 6= d ′ and is perfect whend = d ′. So if εµd ∈ H+

ℓ (Vµ)−d ⊗ H−
ℓ (Vµ∗)−d

denotes the latter’s transpose inverse, then we have for alln ∈ Z, X ∈ g the
following identity inH+

ℓ (Vµ)d ×H−
ℓ (Vµ∗)−d−n:

(Xtn+ ⊗ 1)ε
µ
d+n + (1⊗ Xt−n

− )ε
µ
d = 0.

This just says that(Xtn+ ⊗ 1) + τn(1⊗ Xt−n
− ) kills εµ :=

∑
d≥0 ε

µ
dτ

d. Sincesn+ =

(tn+, τ
nt−n

− ), this amounts to saying thatXsn+ ∈ O0g ⊂ L̂g kills εµ. Likewise for
Xsn−. Since any element ofO0 lies in theR-submodule generated by the nonpositive
powers ofs+ ands−, it follows thatεµ is killed by all ofO0g.

The second statement is proved by a direct computation. If weuse Lemma 33
to writeD as an operator inL, then we find that it suffices to prove:

(i) τnTg(D̂
+
m−n) − τmTg(D̂

−
n−m) kills εµ for all m,n ≥ 0, and

(ii) Tg(D̂
+
0 )(ε

µ) = −
cµ

2(ℓ+ȟ)
εµ.

As to (i), if we substitute

Tg(D̂
+
m−n) = −

1

2(ℓ + ȟ)

∑

j∈Z

∑

κ

: Xκt
m−n−j
+ ◦ Xκt

j
+ :

and do likewise forTg(D̂−
n−m), then this assertion follows easily.

For (ii) we first observe thatTg(D̂
+
0 ) preserves the grading ofH+

ℓ (Vµ) and acts
onH+

ℓ (Vµ)0 = R⊗kVµ as−(2ℓ+2ȟ)−1
∑

κ Xκ◦Xκ. This is just multiplication by
−

cµ

2(ℓ+ȟ)
. For an elementu ∈ H+

ℓ (Vµ)−d of the formu = Yrt
−kr
+ ◦ · · · ◦ Y1t−k1

+ ◦ v
with v ∈ Vµ, andYρ ∈ g (so thatd = kr + · · · + k1), we have

Tg(D̂
+
0 )(u) = −du+ Yrt

−kr
+ ◦ · · · ◦ Y1t−k1

+ ◦ Tg(D̂+
0 )(v) = (−d−

cµ

2(ℓ + ȟ)
)u.

SinceD+
0 (τ

d) = dτd, it follows thatεµdτ
d is an eigenvector ofTg(D̂

+
0 ) with eigen-

value− cµ

2(ℓ+ȟ)
. �
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Finer version of the factorization property. It is clear that our smoothing identi-
fies theR-moduleHℓ(V)withHℓ(Vo)[[τ]]. According to Proposition 19,Hℓ(V)C/S =

Hℓ(V)Ag is a finitely generatedR-module. SinceAo = A/τA, the reduction of
Hℓ(V)Ag moduloτ yieldsHℓ(Vo)Aog = Hℓ(Vo)Co/So . Proposition 30 identifies
the latter with⊕µ∈PℓHℓ(Ṽµ,µ∗)C̃o/So . It is our goal to extend this identification to

one of the space of covacuaHℓ(V)C/S with the pull-back of⊕µ∈PℓHℓ(Ṽµ,µ∗)Co/So
along the projectionπSo : S→ So and to identify the connection on that pull-back.
This will imply among other things thatHℓ(V)C/S is a freeR-module.

Theorem 35. TheR-homomorphism defined by tensoring with the glueing tensor,

E = (Eµ)µ : Hℓ(V)→ ⊕µ∈PlHℓ(Ṽµ,µ∗)[[τ]],

U =
∑

k≥0

ukτ
k 7→

(
U⊗̂Rε

µ =
∑

k,d≥0

uk ⊗ ε
µ
dτ

k+d
)
µ
,

is also a map ofAg-representations if we letAg act on the right hand side via the
inclusionA ⊂ Ão[[τ]]. The resultingR-homomorphism of covariants,

EC/S : Hℓ(V)Ag → ⊕µ∈PlHℓ(Ṽµ,µ∗)Ãog
[[τ]],

is an isomorphism (so thatHℓ(V)Ag is a freeR-module). It is compatible with
covariant differentiation with respect toθS(logSo) = R[[τ]] ⊗Ro

θRo
+ R[[τ]]τ d

dτ

relative to the lift toθ̂S(logSo) of Lemma 34: it commutes with the action onθRo
,

whereasτ d
dτ respects each summandHℓ(Ṽµ,µ∗)Ãg[[τ]] and acts there as the first

order differential operatorτ d
dτ +

cµ

2(ℓ+ȟ)
.

Proof. The first statement is immediate from Lemma 34. So the map on covariants
is defined and isR-linear. If we reduceEC/S moduloτ, we get the map

Hℓ(Vo)Aog → ⊕µ∈PlHℓ(Ṽµ,µ∗)Ãog
, u 7→

∑

µ∈Pℓ

u⊗ ε
µ
0 ,

and observe that this is just the inverse of the isomorphism of Proposition 30. Since
the range ofEC/S is a freeR-module, this implies thatEC/S is an isomorphism.

The commutativity with the action ofθRo
is clear. According to Corollary 13

covariant derivation with respect toτ d
dτ in Hℓ(V)C/S is defined by means of ak-

derivationD of A which lifts τ d
dτ : if we write D = τ d

dτ +
∑

n≥0 τ
nD(n), where

D(n) is a vector field on the smooth part ofC/S, then the covariant derivative is
induced byTg(D̂) = τ d

dτ +
∑

n≥0 τ
nTg(D

(n)) acting onHℓ(Vo)[[τ]]. From the
last clause of Lemma 34 we get that whenU ∈ Hℓ(Vo)[[τ]],

Tg(D)Eµ(U) = Tg(D)(Uεµ) =

= Tg(D)(U)εµ −
cµ

2(ℓ + ȟ)
Uεµ = EµTg(D)(U) −

cµ

2(ℓ + ȟ)
Eµ(U).

SinceTg(D) acts onHℓ(Ṽµ,µ∗)Ãog
[[τ]] as derivation byτ d

dτ
, the last clause follows.

�
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Corollary 36. The monodromy of the WZW connection acting onHℓ(V)C/S has
finite order and acts in the summandHℓ(Ṽµ,µ∗)C̃/So [[τ]] as multiplication by the

root of unityexp(−π
√
−1

cµ

ℓ+ȟ
).

Proof. The multivalued flat sections ofHℓ(V)C/∆ decompose underEC/∆ as a di-
rect sum labeled byPℓ. The summand corresponding toµ is the set of solutions
of the differential equationτ d

dτU +
cµ

2(ℓ+ȟ)
U = 0. These are clearly of the form

uτ−cµ/2(ℓ+ȟ) with u ∈ Hℓ(Ṽµ,µ∗)Ãog
. If we let τ run over the unit circle, then we

see that the monodromy is as asserted. Sincecµ

ℓ+ȟ
∈ Q, it has finite order. �

Remark37. We use here the convention that the monodromy of the multivalued
function zα is exp(2πα

√
−1) (rather than exp(−2πα

√
−1)). More pedantically:

for us the monodromy is acovariant rather than a contra-variant functor from the
fundamental groupoid to a linear category.

7. THE MODULAR FUNCTOR ATTACHED TO THEWZW MODEL

We show here that the results of Section 6 lead to topologicalcounterparts that
take the form of (what is called) a modular functor in topological quantum field
theory.

Defining the functor. We will work here in theC1-category. The main objects will
becompact orientedsurfaces endowed with aC1-structure, possibly with bound-
ary, but where we assume that each boundary component comes with a principal
action of the unit circleU(1) that is compatible with the orientation it receives from
the surface. In the rest of this paper, we will simply refer tosuch an object as a
surface.

An infinitesimal collarof a surface is a inward pointing (nowhere zero) vector
field defined on the boundary only. The choice of such a vector field determines
a basis for each tangent space (the second tangent vector field being the derivative
of theU(1)-action) and so we may think of this as a first order extension of the
givenU(1) action. Suppose given such an infinitesimally collared surfaceΣ and
two of its boundary componentsB+, B−. Let us call aglueing mapfor this pair an
anti-isomorphismφ : B− → B+, that is, aC1-diffeomorphism with the property
thatφ(ub) = u−1φ(b) for all b ∈ B− andu ∈ U(1). We call it thus, because if
we use it to identifyB− with B+, we get a new (infinitesimally collared) surfaceΣφ

without the need of making any further choices: theC1-structure must be such that
the normal vector fields become each others antipode. Similarly, the topological
quotient Σ̌ of Σ obtained by contracting each of its boundary components also
acquires aC1-structure: a function oňΣ is differentiable precisely when its lift
to Σ is C1 and is such that its derivative evaluated on the infinitesimal collar of a
boundary component is the representation of a linear map in polar coordinates.

Definition 38. We call a conformal structure on the interior of the infinitesimally
collared surfaceΣ admissibleif it is compatible with the givenC1-structure as
well as with the infinitesimal collaring: for every boundarycomponent either the
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conformal structure extends to the boundary or extends across its image iňΣ and
we demand that in the first case the infinitesimal collaring beperpendicular to the
boundary, and that in the second (cuspidal) case it maps to aU(1)-orbit in the
tangent space.

This somewhat unconventional definition is in part motivated by the following
observation. A conformal structure on a manifold is just a Riemann metric given
up to multiplication by a continuous function. More precisely, it is a section of the
bundle of positive quadratic forms modulo positive scalarson the tangent bundle.
As the fibers of this bundle have a convex structure, so has itsspace of sections.
This also holds in the present case with the given boundary conditions, in particular
the space of admissible conformal structures is contractible. And this is still true
if we restrict ourselves to the admissible conformal structures that are cuspidal at
a prescribed union of boundary components. This makes it a tractable notion from
the point of view of homotopy.

Definition 39. A g-marking of a surfaceΣ consists of giving a mapV that as-
signs to every boundary component ofΣ a finite dimensional irreducible represen-
tion of g and the choice of anorientedsublatticeI ⊂ H1(Σ, ∂Σ) in the image of
H1(Σ) → H1(Σ, ∂Σ) (or what amounts to the same, inH1(Σ̌)), that is Lagrangian
(i.e., maximally isotropic) for the intersection pairing.We then denote the resulting
set of data by(Σ,V, I). We say that theg-marking is of level≤ ℓ if V takes values
in representations of level≤ ℓ.

Let (Σ,V, I) beg-marked surface. We first supposeΣ endowed with an infinites-
imal collaring. Choose an admissible purely cuspidal conformal structureC with
respect to this infinitesimal collaring. TheňΣ acquires a conformal structure and
hence (sincěΣ is oriented) the structure of a compact Riemann surface, or equiv-
alently, a nonsingular complex projective curve. We hope the reader forgives us
for denoting that curve byC as well. It comes with an injectionπ0(∂Σ) → C.
If V takes values in representations of level≤ ℓ, then we have defined the space
of covacuaHℓ(V)C; otherwise we setHℓ(V)C = 0. For another choice of purely
cuspidal admissible conformal structureC ′, we can find a path of such structures
(Ct)0≤t≤1 connectingC with C ′. The projectively flat connection can be used to
identify the corresponding projective spaces, and this identification is independent
of the choice of path since they belong to the same homotopy class.

In order to lift this to the actual vector spaces, we need the ‘rigging’ of Σ by the
oriented Lagrangian latticeI (here viewed as a sublattice ofH1(Σ̌)). A Lagrangian
lattice may arise from a cobordism: ifΣ̌ is written as the boundary of a compact
oriented3-manifoldW, then the kernel ofH1(Σ̌) → H1(W) is this type. We note
that every regular differential onC defines by integration a linear mapI → C and
the basic theory or Riemann surfaces tells us that we thus obtain a complex-linear
isomorphismH0(C,ωC) ∼= Hom(I,C). The orientation ofI defines a generator of
det(I), and hence a generatorI(Ct) of detH0(C,ωC). Likewise the arc(Ct)0≤t≤1

lifts to a sectiont ∈ [0, 1] 7→ I(Ct) ∈ detH0(Ct,ωCt
) of the determinant bundle

and this in turn yields via Theorem 27 an identification ofHℓ(V)C with Hℓ(V)C ′ .
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As this identification is canonical, we now have attached to the triple(Σ,V, I) and
the infinitesimal collaring ofΣ a well-defined finite dimensional complex vector
spaceHℓ(Σ,V, I). Actually, the infinitesimal collaring is irrelevant, for the infini-
tesimal collarings make up an affine space over the vector space of vector fields on
∂Σ and hence form a contractible set. We then find:

Theorem 40. Let f : (Σ,V, I) → (Σ ′, V ′, I ′) be an isomorphism ofg-marked
surfaces, by which we mean thatf : Σ → Σ ′ is an orientation preserving dif-
feomorphism such that the induced mapsπ0(∂Σ) → π0(∂Σ

′) andH1(Σ, ∂Σ) →
H1(Σ

′, ∂Σ ′), takeV ′ to V andI to I ′. Thenf induces an isomorphism of finite di-
mensional complex vector spacesf∗ : Hℓ(Σ,V, I) → Hℓ(Σ

′, V ′, I ′). This isomor-
phism only depends on the relative isotopy class off. Moreover, this construction
is functorial with respect to Lie algebra isomorphisms so that for everyσ ∈ Aut(g)
we have a natural isomorphismHℓ(Σ,

σV, I) ∼= Hℓ(Σ,V, I).

Proof. The dependence via the isotopy class off follows from the quoted theorem
above. The last assertion follows from the last clause of Theorem 27. �

Remark41. The natural involution ofg with respect to a choice of root data takes
every finite dimensionalg-representation into one equivalent to its contra-gradient.
So for such an involutionσ we obtain an isomorphism betweenHℓ(Σ,V

∗, I) and
Hℓ(Σ,V, I), but beware that this involution is only unique up to inner automor-
phism. However, one expects that there exists a canonical perfect pairing (which
therefore does not involve a choice ofσ) Hℓ(Σ,V

∗, I)⊗Hℓ(Σ,V, I)→ C, whereΣ
stands forΣ with the opposite orientation.

Action of a mapping class group. Let us now assumeΣ connected and of positive
genus. We denote byΓ(Σ) the part of the mapping class groupπ0(Aut(Σ)) that
leaves each boundary component invariant (but not necessarily point-wise). This
is isomorphic the usual mapping class group of the pair consisting of Σ̌ and its
finite subset that appears as the image ofπ0(∂Σ). The above lemma shows that if
(Σ,V, I) is ag-marked surface, then every mapping class[f] ∈ Γ(Σ) gives rise an
isomorphismf∗ : Hℓ(Σ,V, I)→ Hℓ(Σ,V, f∗I). Domain and range can be identified
as follows.

Consider the subspaceL ⊂ ∧gH1(Σ̌;R) consisting of generators of the determi-
nant of a real Lagrangian subspace ofH1(Σ̌;R). This is an orbit of the symplectic
group Sp(H1(Σ̌;R). It is known thatL is connected and has infinite cyclic funda-
mental group (with a canonical generator). Every oriented Lagrangian sublatticeI
of H1(Σ̌) defines an elementδ(I) ∈ L and the way such a sublattice assigns to an
admissible conformal structureC onΣ a generator of detH0(ωC) also makes sense
for an arbitrary element ofL. So a homotopy class[γ] of paths inL from δ(I) to
f∗δ(I) produces for every admissible conformal structureC onΣ a homotopy class
of paths in detH0(ωC) − {0} from I(C) to (f∗I)(C). Another choice for[γ] yields
an identification which differs from this one by a scalar, in fact by a root of unity
whose order divides2(ℓ + ȟ). Since the fundamental group ofL is infinite cyclic
and has a canonical generator, the possible choices for[γ] are permuted simply
transitively byZ.
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Let us now fix an oriented Lagrangian sublatticeIo of H1(Σ̌) and consider pairs
f̃ = (f, [γ]) as above forI = Io. These can be composed in an obvious manner
and thus define a central extensionΓ̃(Σ)→ Γ(Σ) of the mapping class group byZ.
Note that we have arranged things in such a manner that this extension now acts
onHℓ(Σ,V, Io) with in fact the central element2(ℓ + ȟ) ∈ Z acting trivially. The
central extension is clearly one that already lives on the automorphism group of
H1(Σ̌) (an integral symplectic group of genusg). The latter is known to produce the
universal central extension of the symplectic group. It hasan abstract description
in terms of a2-cocyle, known as the Maslov index. The latter comes with a section,
so we cannot expect it to enter in the description of a functor.

A choice forIo may be avoided by introducing the groupoidI whose objects
are the oriented Lagrangian sublattices ofH1(Σ̌) and whose morphisms are the
homotopy classes[γ] as above, for then we have defined a functorHℓ(Σ,V) : I ∈
I 7→ Hℓ(Σ,V, I) on whichΓ(Σ) acts.

WhenΣ has genus zero, thenI is of course irrelevant (or more precisely,I is
reduced to the singleton defined byI = 0). Proposition 28 tells us what we get in
some of these cases:

Proposition 42. For Σ a disk (resp. a cylinder),Hℓ(Σ,V) is zero unlessV is the
trivial representation (resp. the two representations attached to the boundary are
each other’s contra-gradient), in which case it is canonically equal toC.

The glueing property. Let us analyze what happens if two boundary components
B+, B− of Σ are welded by means of a glueing mapφ : B+ → B−. We assume
here given the data needed to have definedHℓ(Σφ, V, I). So we assume given a map
V : π0(∂Σφ) = π0(∂Σ) − {{B+}, {B−}} → Pℓ and an oriented Lagrangian lattice
I ⊂ H1((Σφ)̌). We then obtain an oriented Lagrangian sublatticeIφ ⊂ H1(Σ̌) as
follows. First notice that there is natural map(Σφ)̌ → Σ̌ which simply collapses
the embedded circle in(Σφ)̌ that is the common image ofB+ andB−. This map
induces a surjection on homology with kernel spanned by the class [B+] that is
the image ofB+ and we letIφ simply be the preimage ofI under this map. If
[B+] = 0 (which happens precisely when ifB+ andB− lie on different connected
components ofΣ), thenIφ → I is an isomorphism and henceIφ is automatically
oriented. Otherwise, we orientIφ by taking as oriented basis one that begins with
[B+] and for which its successors map to an oriented basis ofI.

If we combine the discussion in Remark 32 with Theorem 35, we obtain

Theorem 43(Glueing property). For µ ∈ Pℓ, denote byVµ,µ∗ : π0(∂Σ) → Pℓ the
extension ofV which assigns toB+ resp.B− the valueλ resp.λ∗. Then we have
a natural identificationuφ : ⊕λ∈PℓHℓ(Σ,Vµ,µ∗ , Iφ) → Hℓ(Σφ, V, I). Under this
isomorphism, the mapping class ofΣφ obtained by the glueing maps{ζφ}ζ∈U(1)

(a Dehn twist) acts on the summandHℓ(Σ,Vµ,µ∗ , Iφ) as scalar multiplication by

exp
(
−

π
√
−1cµ

ℓ+ȟ

)
.

It is easy to see that by repeated application of Theorem 43 wecan thus obtain
anyHℓ(Σ,V, I) from the basic building blocks: a sphere with 1,2 or 3 holes. The
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first two cases are covered by Proposition 42 and for three holes we have by virtue
of Remark 29 a concrete description as well. In particular weobtain a formula, at
least in principle, for its dimension, known as theVerlinde formula. This process is
nicely formalized by the notion of a fusion ring (see [4]). But if we wish to deal to
the modular functor itself, then we are led to the representation theory of quantum
groups. As we mentioned in the introduction, this has applications in knot theory
via a threedimensional topological quantum field theory. For most of this we refer
to the monograph of Turaev [19].
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