
ar
X

iv
:1

00
9.

22
33

v1
  [

m
at

h.
C

O
] 

 1
2 

Se
p 

20
10

Labeled Ballot Paths and the Springer Numbers

William Y.C. Chen1, Neil J.Y. Fan2, Jeffrey Y.T. Jia3

Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China

1chen@nankai.edu.cn, 2fjy@cfc.nankai.edu.cn, 3jyt@cfc.nankai.edu.cn.

Abstract. The Springer numbers are defined in connection with the irreducible root
systems of type Bn, which also arise as the generalized Euler and class numbers in-
troduced by Shanks. Combinatorial interpretations of the Springer numbers have been
found by Purtill in terms of André signed permutations, and by Arnol’d in terms of
snakes of type Bn. We introduce the inversion code of a snake of type Bn and establish a
bijection between labeled ballot paths of length n and snakes of type Bn. Moreover, we
obtain the bivariate generating function for the number B(n, k) of labeled ballot paths
starting at (0, 0) and ending at (n, k). Using our bijection, we find a statistic α such
that the number of snakes π of type Bn with α(π) = k equals B(n, k). We also show
that our bijection specializes to a bijection between labeled Dyck paths of length 2n and
alternating permutations on [2n].

Keywords: Springer number, snake of type Bn, labeled ballot path, labeled Dyck path,
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1 Introduction

The Springer numbers are introduced by Springer [10] in the study of irreducible root
system of type Bn. Let Sn denote the n-th Springer number. The sequence {Sn}n≥0 is
listed as entry A001586 in OEIS [9]. The first few values of Sn are

1, 1, 3, 11, 57, 361, 2763, 24611, . . . .

To be more specific, Sn can be defined as follows. Let V be a real vector space, R be a
root system of type Bn in V , and W be the Weyl group of R. It is known that for a fixed
simple root set S of R, any α ∈ R is either a positive or a negative linear combination
of elements of S, denoted by α > 0 or α < 0. For a subset I ⊂ S, let σ(I, S) denote
the number of elements w ∈ W such that wα > 0 for any α ∈ I and wα < 0 for any
α ∈ S−I. Then the Springer number Sn can be defined as the maximum value of σ(I, S)
among I ⊂ S. Springer derived the following generating function,

∑

n≥0

Sn

xn

n!
=

1

cosx− sin x
. (1.1)
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On the other hand, Hoffman [5] pointed out that the Springer numbers also arise as
the generalized Euler and class numbers sm,n (n ≥ 0) for m = 2, where the numbers sm,n

are introduced by Shanks [8] based on the Dirichlet series

Lm(s) =
∞
∑

k=0

( −m

2k + 1

)

1

(2k + 1)s
.

Note that the above notation (−m/(2k + 1)) is the Jacobi symbol. To be precise, the
generalized Euler and class numbers s2,n are defined by

s2,n =

{

c2,n
2
, if n is even;

d2,n+1

2

, if n is odd,

where the numbers c2,n and d2,n are given by

c2,n =
(2n)!√

2

(π

4

)−2n−1

L2(2n + 1),

d2,n =
(2n− 1)!√

2

(π

4

)−2n

L−2(2n).

According to the following recurrence relations for c2,n and d2,n derived by Shanks
[8],

n
∑

i=0

(−4)i
(

2n

2i

)

c2,n−i = (−1)n,

n−1
∑

i=0

(−4)i
(

2n− 1

2i

)

d2,n−i = (−1)n−1,

one sees that the numbers s2,n are integers. In fact, the above recurrence relations lead
to the following formulas

∑

n≥0

c2,n
x2n

(2n)!
= sec 2x cosx,

∑

n≥1

d2,n
x2n−1

(2n− 1)!
= sec 2x sin x.

Shanks raised the question of finding combinatorial interpretations for the Euler and
class numbers sm,n. For m = 2, s2,n is the n-th Springer number. Purtill [6] gave an
interpretation of the Springer numbers in terms of the André signed permutations on
[n] = {1, 2, . . . , n}. Arnol’d [1] found another interpretation of the Springer numbers
in terms of snakes of type Bn. Recall that a snake of type Bn is an alternating signed
permutation π = π1π2 . . . πn on [n] such that

0 < π1 > π2 < π3 > π4 < · · ·πn. (1.2)
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For example, 13̄2 is a snake of type B3. Intuitively, a signed permutation on [n] can
be viewed as an ordinary permutation π1π2 · · ·πn with some elements associated with
minus signs. An element i with a minus sign is often written as ī. The above alternating
or up-down condition (1.2) is based on the following natural order:

n̄ < . . . < 1̄ < 1 < . . . < n.

Arnol’d [1] proved that the Springer number Sn equals the number of snakes of type Bn.
Hoffman [5] showed that the exponential generating function for the number of snakes
of type Bn also equals the right hand side of (1.1), that is, the generating function of the
Springer numbers. Recently, Chen, Fan and Jia [3] obtained a formula for the generating
function of sm,n for arbitrarym, which in principle leads to a combinatorial interpretation
of the numbers sm,n in terms of alternating augmentedm-signed permutations. Note that
for m = 2, alternating augmented 2-signed permutations are exactly snakes of type Bn.

The objective of this paper is to give a combinatorial interpretation for the Springer
numbers in terms of labeled ballot paths. In fact, we shall introduce the inversion code
of a snake of type Bn. By using the inversion code, we construct a bijection between
the set of snakes of type Bn and the set of labeled ballot paths of length n. Let B(n, k)
denote the number of labeled ballot paths starting at (0, 0) and ending at (n, k). Then
the numbers B(n, k) can be viewed as a refinement of the Springer numbers. Using
the recurrence relation of B(n, k), we obtain the generating function for B(n, k) for any
given n.

Using our bijection, we find a statistic α on snakes of type Bn such that the number
of snakes π of type Bn with α(π) = k equals B(n, k). A labeled ballot path that
eventually returns to the x-axis is called a labeled Dyck path. When k = 0, B(2n, 0) is
the number of labeled Dyck paths of length 2n. We find that B(2n, 0) and the number
E2n of alternating permutations on [2n] have the same generating function, and we show
that our bijection for labeled ballot paths and snakes of type Bn reduces to a bijection
between labeled Dyck paths and alternating permutations.

The paper is organized as follows. In Section 2, we give descriptions of the map Φ
from snakes of type Bn to labeled ballot paths of length n, and the map Ψ from labeled
ballot paths of length n to snakes of type Bn. In Section 3, we prove that the maps Φ
and Ψ are well defined, and they are inverses of each other. The last section is devoted
to the bivariate generating function for the numbers B(n, k) and the classification of
snakes of type Bn in accordance with the numbers B(n, k). We also show that the map
Ψ restricted to labeled Dyck paths serves as a combinatorial interpretation of the fact
that B(2n, 0) equals E2n.

2 The bijection

In this section, we define a class of labeled ballot paths and establish a bijection between
such labeled ballot paths of length n and snakes of type Bn. Recall that a ballot path of
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length n is a lattice path with n steps from the origin consisting of up steps u = (1, 1)
and down steps d = (1,−1) that do not go below the x-axis. As a special case, a Dyck
path is a ballot path of length 2n that ends at the x-axis. A ballot path is also called a
partial Dyck path [2]. The height of a step of a ballot path is defined to be the smaller
y-coordinate of its endpoints. By a labeled ballot path we mean a ballot path for which
each step is endowed with a nonnegative integer that is less than or equal to its height.
A labeled ballot path P = p1p2 · · · pn for which step pi is labeled by wi is denoted by
(P ;W ), where W = w1w2 · · ·wn.

For example, for a ballot path P = uuudduu, there are 216 labelings. Figure 1 gives
a labeling of the ballot path P .

s��0
s��1

s��1
s

@@0 s

@@
1
s��
1
s��
2
s

Figure 1: A labeled ballot path (uuudduu; 0110112) of length 7.

For n = 3, there are 3 ballot paths P1 = uuu, P2 = uud and P3 = udu. There are 6
labelings for P1, 4 labelings for P2 and 1 labeling for P3. On the other hand, there are
11 snakes of type B3 as listed below:

12̄3, 13̄2, 13̄2̄, 213, 21̄3, 23̄1, 23̄1̄, 312, 31̄2, 32̄1, 32̄1̄.

In order to establish a bijection between ballot paths of length n and snakes of type
Bn, we introduce the inversion code of a snake π of type Bn. Write π = π1 · · ·πn. We
define ci(π) as follows

ci(π) =

{

#{(π2k, π2k+1)|1 ≤ k ≤ (n− 1)/2, i < 2k, π2k < πi < π2k+1}, if n is odd;

#{(π2k−1, π2k)|1 ≤ k ≤ n/2, i < 2k − 1, π2k < πi < π2k−1}, if n is even.

The sequence (c1(π), c2(π), . . . , cn(π)), denoted c(π), is called the inversion code of π. For
example, let n = 7 and π = 35̄2147̄6. Then the inversion code of π is (2, 1, 2, 1, 1, 0, 0).
For n = 8 and π = 5382̄1̄4̄76, the inversion code of π is (1, 1, 0, 1, 0, 0, 0, 0).

We are now ready to describe the map Φ from a snake π = π1π2 · · ·πn of type Bn to
a labeled ballot path (P ;W ) = (p1p2 · · · pn;w1w2 · · ·wn). Suppose that p1, p2, . . . , pk−1

and their labels w1, w2, . . . , wk−1 have been determined, we proceed to demonstrate how
to determine pk and its label wk. If we were in Step 1, namely, for k = 1, we would
locate the element n or n̄ in π, and would assume that πi = n or n̄. Suppose that we are
in Step k. Now we look for the element n− k + 1 or n− k + 1 in π. Here are two cases.

Case 1. Assume that πi = n − k + 1. If i is odd, then set pk = u; if i is even, then set
pk = d. Set wk = ci(π).
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Case 2. Assume that πi = n− k + 1. If i is odd, then set pk = d; if i is even, then set
pk = u. Set wk = hk−ci(π), where hk denotes the height of the k-th step pk in the ballot
path p1p2 · · · pk.

For example, let n = 7 and π = 21̄5476̄3̄. The construction of Φ(π) is illustrated in
Figure 2.

=⇒
s��0

s��1
s��1

s

@@0 s
@@1s��1

s

=⇒
s��0

s��1
s��1

s

@@0 s

@@1 s��
1
s��2

s

s��0
s

=⇒
s��0

s��1
s

=⇒
s��0

s��1
s��1

s

=⇒
s��0

s��1
s��1

s

@@0 s

=⇒
s��0

s��1
s��1

s

@@0 s

@@1 s

Figure 2: The construction of Φ(π) for π = 21̄5476̄3̄.

We now turn to the inverse map Ψ from a labeled ballot path (P ;W ) = (p1p2 · · · pn;
w1w2 · · ·wn) to a snake π = π1π2 · · ·πn of type Bn.

We shall construct a sequence of permutations Γ0,Γ1,Γ2, . . . ,Γn, such that Γ0 = ∅
and Γn = π is the desired snake of type Bn. To reach this goal, we generate a sequence
of labeled ballot paths (P1;W1), (P2;W2), · · · , (Pn−1;Wn−1), where (P1;W1) = (P ;W ),
and Pi+1 is obtained from Pi by contracting a certain step pri of Pi into a single point,
and Wi+1 is obtained from Wi by deleting the label of the step pri and updating the
labels of the other steps. Notice that Pi has n− i+1 steps and Wi has n− i+1 elements
for 1 ≤ i ≤ n. Below is a procedure to determine (Pi+1;Wi+1) and Γi from (Pi;Wi) and
Γi−1. Let us consider two cases.

Case 1: Pi has an odd number of steps.

If there exists a down step in Pi whose label equals its height, then we assume that pri
is the leftmost among such down steps. Contract pri into a single point to form a ballot
path Pi+1 and add 1 to the labels of all down steps of Pi+1. Let (Pi+1;Wi+1) denote the
resulting labeled ballot path and set Γi = n− ri + 1Γi−1.

For the case that the label of any down step Pi is less than its height, as will be
shown, there must exist at least one up step labeled by 0. We assume that pri is the
rightmost among such up steps. Contract pri into a single point to form a ballot path
Pi+1. Then subtract 1 from the labels of up steps of Pi+1 that are originally to the right
of pri and add 1 to the labels of down steps of Pi+1 that are originally to the left of pri.
Denote the resulting labeled ballot path by (Pi+1;Wi+1) and set Γi = (n− ri + 1)Γi−1.

Case 2: Pi has an even number of steps.
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If there exists a down step of Pi whose label equals 0, we assume that pri is the
leftmost among such down steps. Contract pri into a single point to form a ballot path
Pi+1. Then add 1 to the labels of up steps of Pi+1 which are originally to the right of pri
and subtract 1 from the labels of down steps of Pi+1 which are originally to the left of pri.
Denote the resulting labeled ballot path by (Pi+1;Wi+1) and set Γi = (n− ri + 1)Γi−1.

For the case that there are no down steps in Pi labeled by 0, as can be seen, there
must exist at least one up step whose label equals its height. We assume that pri is the
rightmost among such up steps. Contract pri into a single point to form a ballot path
Pi+1. Then subtract 1 from the labels of all down steps of Pi+1. Denote the resulting
path by (Pi+1;Wi+1) and set Γi = n− ri + 1Γi−1.

For the labeled ballot path (P ;W ) = (uuudduu; 0110112) in Figure 1, the construc-
tion of Ψ(P ;W ) is shown in Figure 3. The indices of the steps pri that are contracted
are listed below: r1 = 5, r2 = 2, r3 = 1, r4 = 4, r5 = 3, r6 = 7, r7 = 6. The labeled ballot
paths (Pi;Wi) are given in Figure 3, and the permutations Γi are given as follows:

Γ0 = ∅,Γ1 = 3̄,Γ2 = 6̄3̄,Γ3 = 76̄3̄,Γ4 = 476̄3̄,Γ5 = 5476̄3̄,Γ6 = 1̄5476̄3̄,Γ7 = 21̄5476̄3̄.

=⇒
s��0

s��1
s��1

s

@@1 s��1
s��2

s

P2 = p1p2p3p4p6p7

=⇒
s��0

s��1
s��1

s

@@0 s

@@1 s��1
s��2

s

P1 = p1p2p3p4p5p6p7

=⇒
s��0

s��1
s

@@0 s��1
s��2

s

P3 = p1p3p4p6p7

=⇒
s��0

s

@@0 s��0
s��1

s

P4 = p3p4p6p7

=⇒
s��0

s��1
s��2

s

P5 = p3p6p7

=⇒
s��0

s��1
s

P6 = p6p7

s��0
s

P7 = p6

Figure 3: The construction of Ψ(P ;W ) for the labeled ballot path in Figure 1.

3 The proof

In this section, we shall show that the map Φ described in the previous section is indeed
a bijection.

Theorem 3.1 The map Φ is a bijection between labeled ballot paths of length n and

snakes of type Bn.
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Proof. As the first step, we verify that Φ is well-defined, that is, for any snake π =
π1π2 · · ·πn of type Bn, Φ(π) is a labeled ballot paths.

Before we show that Φ(π) = (P ;W ) is a labeled ballot path, it is necessary to prove
that P = p1p2 · · ·pn is a ballot path, that is, for any 1 ≤ k ≤ n, the number of up steps is
not less than the number of down steps among the first k steps of P . By the definition of
Φ, we have p1 = u. Assume that in Step k in the implementation of Φ, we have already
constructed p1, p2, . . . , pk−1 which form a ballot path. The task of this step is to locate
n− k + 1 or n− k + 1 in π in order to get pk. We consider two cases.

If πi = n − k + 1 and i is odd or πi = n− k + 1 and i is even, then we set pk = u.
Clearly, p1p2 · · ·pk is a ballot path. Otherwise, we set pk = d and we wish to show
that the height hk of pk is nonnegative. Consider the case πi = n− k + 1 and i is odd.
Observe that the height of pk is the number of up steps among p1, p2, · · · , pk−1 subtracts
the number of down steps among p1, p2, · · · , pk. By the definition of Φ, we have

hk = #{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is odd}
+#{1 ≤ j ≤ n | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj | and j is odd}
−#{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is even}. (3.3)

In view of the alternating property of π, if there is a negative element π2i+1 at an odd
position of π, then π2i must be negative as well and π2i+1 > π2i. Consequently,

#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj| and j is odd}
≤ #{1 ≤ j ≤ n | πj < 0, n− k + 1 < |πj | and j is even}.

On the other hand, if there is a positive element π2i at an even position of π, then π2i−1

must be positive as well and π2i < π2i−1. This yields that

#{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is even}
≤ #{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is odd}.

Thus we deduce that whenever there is a negative term contributing to hk, there is at
least one positive term. So we conclude that hk ≥ 0. A similar argument applies to the
case that πi = n− k + 1 and i is even. Hence we have shown that P is a ballot path.

We next prove that the label of any step in Φ(π) is nonnegative and it does not exceed
its height. Let π = π1 · · ·πi · · ·πn. Assume we are in the Step k and we have determined
(p1 . . . pk−1;w1, . . . , wk−1), which is a labeled ballot path of length k − 1. We proceed to
locate n − k + 1 or n− k + 1 in π in order to determine pk and its label wk. Suppose
that πi = n− k + 1 and i is odd. In this case, by the definition of Φ, we have pk = d
and wk = hk− ci(π). We claim that ci(π) ≤ hk. In computing hk by using formula (3.3),
we shall split the range of j into two cases: one case is 1 ≤ j ≤ i and the other case
is i + 1 ≤ j ≤ n. In other words, we shall consider the contributions of π1π2 . . . πi and
πi+1 . . . πn to the value of hk.
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We claim that ci(π) is less than or equal to the contribution of πi+1 . . . πn to hk.
Suppose that n is odd. By the definition of ci(π), a pair (π2j , π2j+1) of consecutive
elements of π with i < 2j ≤ n−1 contributes 1 to the value of ci(π) if π2j < πi < π2j+1 < 0
or π2j < πi < 0 and π2j+1 > 0. If there is a pair (π2j , π2j+1) with π2j < πi < π2j+1 < 0,
then this pair contributes 1 to both hk and ci(π). If there is a pair (π2j , π2j+1) with
π2j < πi < 0 and π2j+1 > 0, then this pair contributes 1 or 2 to hk (depends on whether
|π2j+1| is greater than n−k+1), while contributes exactly 1 to ci(π). It is straightforward
to check that if a pair (π2j , π2j+1) does not contribute to ci(π), then it contributes 0 or
1 to hk. On the hand hand, because π1 . . . πi contributes 0 to ci(π), it remains to show
that the contribution of π1 . . . πi to hk is nonnegative. Let

gi(π) = #{1 ≤ j ≤ i | πj > 0, n− k + 1 < πj and j is odd}
+#{1 ≤ j ≤ i | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ i | πj < 0, n− k + 1 ≤ |πj | and j is odd}
−#{1 ≤ j ≤ i | πj > 0, n− k + 1 < πj and j is even}.

By the same reasoning as in the proof of hk ≥ 0, we can verify that gi(π) ≥ 0. Thus we
have completed the proof for the case that πi = n− k + 1 and both n, i are odd. All the
other cases depending on the sign of πi and the parities of n and i can be treated in the
same manner. Hence the details are omitted.

Our next task is to show that the map Ψ is well-defined, namely, for any labeled
ballot path (P ;W ) of length n, the signed permutation π = Γn = π1π2 · · ·πn is a snake
of type Bn, i.e., 0 < π1 > π2 < π3 > · · ·πn.

Suppose that at the i-th step we have already constructed a labeled ballot path
(Pi;Wi). We first consider the case that Pi has an odd number of steps. In this case we
aim to show that after contracting a certain step of Pi, we can get a ballot path Pi+1.
By our construction of Ψ, if there is a down step in Pi whose label equals its height,
then we contract the leftmost such down step in Pi. In this case, we automatically get a
ballot path Pi+1. Otherwise, we consider the case that there exist no such down steps. In
particular, this implies that there are no down steps with height 0. By our construction
Ψ, we shall contract the rightmost up step labeled by 0. After we contract this up step,
it is easily seen that every step in Pi+1 has nonnegative height since we know that there
are no down steps that touch the x-axis. So we also get a ballot path Pi+1 in this case.
One can check that after we update the labels of the steps in Pi+1, each step will have
a nonnegative label that is less than or equal to its height.

The case that Pi has an even number of steps can be dealt with by the same argument
as for the case that Pi has an odd number of steps. Thus we conclude that once we have
accomplished the mission in step i, we are led to a labeled ballot path (Pi+1,Wi+1) and
a signed permutation Γi.

We now turn to the proof of the alternating property of π. It is apparent from the
construction of Ψ that π1 > 0. Now we prove that π1 > π2 < π3 > . . . πn. Suppose
that in step i− 1 we have already constructed a signed permutation Γi−1 and a labeled
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ballot path (Pi;Wi). To determine Γi, by our construction, we are supposed to contract
a certain step pri in Pi to form a ballot path Pi+1 and to set Γi = (n − ri + 1)Γi−1 or
Γi = n− ri + 1Γi−1 depending on whether pri is an up step or a down step.

To determine Γi+1, by our construction, we are supposed to contract a certain step
pri+1

of Pi+1 to form a ballot path Pi+2 and to set Γi+1 = (n − ri+1 + 1)Γi or Γi+1 =
n− ri+1 + 1Γi depending on whether pri+1

is an up step or a down step. For notational
convenience, set ti = n− ri + 1 and ti+1 = n− ri+1 + 1. There are four possibilities for
the construction of Γi+1, namely, ti+1tiΓi−1, t̄i+1t̄iΓi−1, t̄i+1tiΓi−1 and ti+1t̄iΓi−1.

We only consider the case that Pi has an odd number of steps and so ti is at an
odd position of π. To prove the alternating property of Γn, it is necessary to verify that
ti+1 < ti, t̄i+1 < t̄i and t̄i+1 < ti. And the situation that Γi+1 = ti+1t̄iΓi−1 can never
happen.

In this case, in the i-th step, suppose that we contract a down step pri of Pi, and in
the (i+1)-st step, suppose that we contract an up step pri+1

of Pi+1. By the construction
of Ψ, we have Γi+1 = t̄i+1t̄iΓi−1. We claim that ti < ti+1, i.e., ri > ri+1. Otherwise, we
may assume that ri < ri+1. Once the down step pri is contracted, the height of all steps
to the right of the step pri will increase by 1, but by the construction of Ψ, the labels of
up steps remain unchanged. This implies that the labels of up steps to the right of pri
cannot be equal to their heights. Therefore, the up step pri+1

cannot be chosen in the
(i + 1)-st step, which is a contradiction. So we deduce that t̄i+1 < t̄i. The discussions
for the cases that ti+1 < ti, t̄i+1 < ti and the situation that Γi+1 = ti+1t̄iΓi−1 can never
happen are similar.

We are now left with the case that the number of steps of Pi is even to complete the
proof of the alternating property. But the argument in this case is analogous to that for
the case that n− i is even. Hence we have reached the conclusion that Γn = π1π2 · · ·πn

is a snake of type Bn.

Finally, we wish to confirm that the maps Φ and Ψ are inverses of each other. Because
both Φ and Ψ are carried out in n steps, it suffices to verify that the i-th step of Φ and
the i-th step of Ψ are inverses of each other. Let π = π1π2 · · ·πn. For 1 ≤ i ≤ n,
let Πi = π1π2 · · ·πi. Define Φ(Πi) to be the labeled ballot path by applying Φ to the
standardization of Πi. The standardization of a snake Πi is a snake obtained by keeping
the sign of each element unchanged and replacing the smallest element by 1, the second
smallest element by 2, and so forth. Note that one can apply Φ to Π1, · · · ,Πn step
by step and finally obtain Φ(π) = Φ(Πn). By the construction of Ψ, one can check
that Φ(Πi) = (Pn−i+1;Wn−i+1) for 1 ≤ i ≤ n. That is, the inverse procedure to derive
Φ(Πi+1) from Φ(Πi) coincides with the procedure to construct Ψ(Pn−i+2;Wn−i+2) from
Ψ(Pn−i+1;Wn−i+1). Therefore Φ and Ψ are inverses of each other.

In summary, we have shown that that the map Φ is a bijection between labeled ballot
paths of length n and snakes of type Bn.
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4 A refinement

In this section, we obtain the bivariante generating function for the number B(n, k) of
labeled ballot paths of length n that end at a given point (n, k), where 0 ≤ k ≤ n.
The numbers B(n, k) can be considered as a refinement of the Springer numbers. By
restriction of the bijection Ψ, we also obtain a bijection between labeled Dyck paths of
length 2n and alternating permutations on [2n]. By considering the last step of a labeled
ballot path, it is easy to derive the following recurrence relation.

Theorem 4.1 For 1 ≤ k ≤ n, we have

B(n, k) = (k + 1)B(n− 1, k + 1) + kB(n− 1, k − 1). (4.4)

Note that in the above recurrence relation we need the convention that B(n, k) = 0
for n < k. Moreover, since a ballot path can never ends at a point (m,n) where m+ n
is odd, so B(n, k) = 0 if n+ k is odd.
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Figure 4: The recurrence relation for B(n, k)

Note that when k = 0, B(2n, 0) is the number of labeled Dyck paths of length 2n,
where a labeled Dyck path of length 2n is a labeled ballot path of length 2n that ends
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with a point on the x-axis. It is worth mentioning that the numbers B(2n, 0) are in
fact the secant numbers and they are closely related to alternate level codes of ballots,
see Strehl [12]. Recall that an alternate level code of ballots of length n is an integer
sequence λ = λ1λ2 · · ·λn such that λ1 = 1, and for 2 ≤ j ≤ n,

λj−1 + 1 ≥ λj ≥ 1.

Denote by Λn the set of alternate level codes of ballots of length n. For example,

Λ3 = {111, 112, 121, 122, 123}.

Rosen [7] derived the following formula

∑

n≥0

(

∑

λ∈Λn

n
∏

i=1

λi(λi + 1)

)

xn

n!
= tan x. (4.5)

Strehl [12] deduced the secant companion equation of (4.5):

∑

n≥0

(

∑

λ∈Λn

n
∏

i=1

λ2
i

)

xn

n!
= sec x. (4.6)

To make a connection between labeled Dyck paths and alternate level codes of ballots,
we need the following bijection, see Stanley [11, Ex. 6.19].

Theorem 4.2 There is a bijection between the set of Dyck paths of length 2n and the

set of alternate level codes of ballots of length n.

Proof. Let λ = λ1λ2 · · ·λn ∈ Λn be an alternate level code of ballots of length n. For
convenience, we set λn+1 = 1. We shall construct a Dyck path P of length 2n from λ.
Let P = P1P2 · · ·Pn, where Pi = udk for some k ≥ 0, that is, Pi consists of an up step
followed by k down steps. For 1 ≤ i ≤ n, if λi = λi+1−1 then k = 0, Pi = u. If λi ≥ λi+1

then Pi = udλi−λi+1+1. It is necessary to show that the above construction generates a
Dyck path of length 2n. That is, after the i-th step, the number of down steps is less
than or equal to the number of up steps. That is, we wish to show that

i
∑

j=1

(λj − λj+1 + 1) ≤ i.

Since λ1 = 1 and λi+1 ≥ 1, the above inequality is apparently true. Moreover, it is easy
to check that there are n down steps, namely,

n
∑

j=1

(λj − λj+1 + 1) = n.

11



Conversely, given a Dyck path of length 2n, let λi be the height of the i-th up step plus
one. It is readily verified that λ = λ1λ2 · · ·λn is an alternate level code of ballots of
length n. This completes the proof.

For instance, let λ = 122 ∈ Λ3. Then the Dyck path corresponding to λ is uududd.
Using the above bijection we are led to a connection between the number B(2n, 0) and
alternate level codes of ballots.

Corollary 4.3 We have

B(2n, 0) =
∑

λ∈Λn

n
∏

i=1

λ2
i . (4.7)

Proof. Relation (4.7) follows from the observation that for a given Dyck path, the
number of labelings equals the product of squares of the elements of the corresponding
alternate level code of ballots.

In passing, we mention that Getu, Shapiro and Woen [4] have considered a general-
ization of the formula of Rosen [7] on tangent numbers, namely, equation (4.5). More
precisely, for a given ballot path, they defined the weight of the path to be the product
of the y-coordinate of all the endpoints, except for the last point. Let T (n, k) denote the
sum of weights of ballot paths from (1, 1) to (n, k). It is easily checked that

T (n, k) = (k − 1)T (n− 1, k − 1) + (k + 1)T (n− 1, k + 1).

When k = 1, T (n, 1) is the tangent number, that is,

∑

n≥1

T (n, 1)
xn

n!
= tan x.

They gave a table for T (n, k) similar to the table in Figure 4, where the first column
consists of the tangent numbers. For k ≥ 1, they obtained the generating function

∑

n≥1

T (n, k)
xn

n!
=

tank x

k
.

By replacing the first column of their table by the secant numbers they introduced
another number E(n, k), and they considered the following recurrence relation

E(n, k) = (k − 1)E(n− 1, k − 1) + kE(n− 1, k + 1),

where E(0, 1) = 1, E(1, 2) = E(2, 1) = 1 and E(n, k) = 0 for n < k − 1 or k < 1. When
k = 1, E(n, 1) is the secant number. However, no combinatorial interpretation was given
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for the numbers E(n, k). Using the recurrence relation of E(n, k), Getu, Shapiro and
Woen [4] derived the exponential generating function

∑

n≥k

E(n, k)
xn

n!
= tank−1 x sec x. (4.8)

Comparing the recurrence relations and initial values of B(n, k) and E(n, k), it became
apparent that

B(n, k) = E(n, k + 1).

Therefore B(n, k) can be viewed as a combinatorial explanation for E(n, k). Moreover
we obtain the generating functions Gn(y) for the rows of the table for B(n, k). Let

Gn(y) =
∑

0≤k≤n

B(n, k)yk. (4.9)

Note that
Gn(1) =

∑

0≤k≤n

B(n, k)

equals the n-th Springer number. Let B(x, y) be the generating function for Gn(y), that
is,

B(x, y) =
∑

n≥0

Gn(y)
xn

n!
.

Then we have the following formula.

Theorem 4.4

B(x, y) =
1

cosx− y sin x
. (4.10)

Proof. Let

Fk(x) =
∑

n≥k

B(n, k)
xn

n!
=
∑

n≥k

E(n, k + 1)
xn

n!
= tank x sec x.

Therefore,

B(x, y) =
∑

n≥0

∑

0≤k≤n

B(n, k)yk
xn

n!
=
∑

k≥0

Fk(x)y
k =

1

cos x− y sin x
,

as required.

To conclude this paper, we give two applications of the bijection Φ. More precisely,
we obtain a classification of snakes of type Bn, and we establish a connection between
labeled Dyck paths and alternating permutations.
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Define the following statistic

α(π) = #{1 ≤ j ≤ n | πj > 0 and j is odd}
+#{1 ≤ j ≤ n | πj < 0 and j is even}
−#{1 ≤ j ≤ n | πj < 0 and j is odd}
−#{1 ≤ j ≤ n | πj > 0 and j is even}.

Then we have the following classification of snakes of type Bn.

Theorem 4.5 For 0 ≤ k ≤ n, B(n, k) equals the number of snakes π = π1π2 · · ·πn with

α(π) = k.

In particular, let us consider the implication of the above theorem for k = 0. Recall
that B(2n, 0) is the number of labeled Dyck paths of length 2n. By (4.6) and (4.7), we
have

∑

n≥0

B(2n, 0)
xn

n!
= sec x.

It now comes to our mind that sec x is the generating function for the number E2n of
alternating permutations on [2n]. This indicates that B(2n, 0) equals E2n. The following
theorem asserts that the restriction of the bijection Φ to labeled Dyck paths serves as a
combinatorial interpretation of the fact that B(2n, 0) = E2n. Roughly speaking, when
restricted to labeled Dyck paths the map Ψ does not involve any negative elements and
when restricted to alternating permutations the map Φ generates labeled Dyck paths.

The following theorem is concerned with the restriction of the map Ψ. It is not diffi-
cult to see that the restriction of Ψ to labeled Dyck path is the inverse of the restriction
of Φ to alternating permutations.

Theorem 4.6 The map Ψ induces a bijection between labeled Dyck paths of length 2n
and alternating permutations on [2n].

Proof. Let (P ;W ) = (p1 . . . p2n;w1 . . . w2n) be a labeled Dyck path of length 2n. We wish
to show that π = Ψ(P ;W ) = π1 . . . π2n contains no negative elements. In the first step of
Ψ, since (P ;W ) is a labeled Dyck path, there must exist down steps labeled by 0. Assume
that pr1 is the leftmost among such down steps. Applying the map Ψ, we are supposed
to contract pr1 into a single point to form a ballot path P2. Then we are supposed to
add 1 to the labels of up steps of P2 which are originally to the right of pr1 and subtract
1 from the labels of down steps of P2 which are originally to the left of pr1 . Hence we
get a labeled ballot path (P2;W2) and a permutation Γ1 = (n− r1 +1)Γ0 = (n− r1 +1),
which contains no negative elements.

Similarly, in Step 2, in the labeled ballot path (P2;W2), there does not exist any
down step of P2 whose label equals its height. So we can find an up step of P2 labeled
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by 0. Suppose that pr2 is the leftmost up step of P2 with label 0. Contracting pr2 gives
a ballot path P3. Then subtract 1 from the labels of up steps of P3 that are originally
to the right of pr2 and add 1 to the labels of down steps of P3 that are originally
to the left of pr2 . Thus we obtain a labeled ballot path (P3;W3) and a permutation
Γ2 = (n− r2 + 1)Γ1 = (n− r2 + 1)(n− r1 + 1) without negative elements.

Since P1 is a Dyck path of length 2n, and an up step in P1 and a down step in P2

are contracted, there are n − 1 up steps and n − 1 down steps in P3. It follows that
(P3;W3) is a labeled Dyck path. Continuing the above process, we eventually obtain an
alternating permutation.

Conversely, given an alternating permutation π = π1π2 . . . π2n of length 2n, we wish
to show that Φ(π) = p1 . . . p2n is a labeled Dyck path of length 2n. Since Φ(π) is a
labeled ballot path already, it is enough to show that it has the same number of up steps
as down steps. In Step k of the map Φ, we are supposed to find the location of the
element n − k + 1 in π. Assume that πi = n − k + 1. Carrying out the construction of
Φ(π), this is what happens: if i is odd, then we have pk = u, and if i is even, then we
have pk = d. Since π has 2n elements, so we conclude with n up steps as well as n down
steps. Therefore Φ(π) is a labeled Dyck path. This completes the proof.
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