
Generalized Eigenvalue Problems with Prespecified

Eigenvalues

Daniel Kressner∗ Emre Mengi† Ivica Nakic‡ Ninoslav Truhar§

July 30, 2010

Abstract

We consider the distance from a pencil A−λB (square or non-square) to the nearest
pencil (A + ∆A∗) − λB in 2-norm that has the prespecified eigenvalues λ1, . . . , λ` with
algebraic multiplicities summing up to r or greater. A singular value optimization char-
acterization is derived for this problem under mild linear independence and multiplicity
assumptions. The corollaries of the singular value optimization characterization are sig-
nificant. First this provides a singular value formula to determine the nearest pencil
whose eigenvalues lie in a compact region in the complex plane. Secondly this partially
solves the problem posed in [4] regarding the distance from a non-square n ×m pencil
with n < m to the nearest pencil with n eigenvalues. The derived singular value opti-
mization problems are solved by means of BFGS and Lipschitz-based global optimization
algorithms.
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1 Introduction

Given a pencil A− λB where A,B ∈ Cn×m with n ≤ m. We call a scalar λ̃ an eigenvalue if
there exists a nonzero vector ṽ ∈ Cn such that

ṽ∗(A− λ̃B) = 0. (1)

The vector ṽ is said to be a (left) eigenvector associated with λ̃ and the pair (λ̃, ṽ) is said to
be an eigenpair of the pencil. Throughout this text we will always assume that B has full
row-rank.
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†Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450 Sarıyer-İstanbul, Turkey
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In the square n × n case the pencil A − λB has exactly n eigenvalues counting their
multiplicities. In the non-square case the pencil can have at most n eigenvalues. It is possible
that A − λB has full row-rank for all λ meaning that the pencil has no eigenvalues at all.
Indeed this is generically the case, since a necessary condition for the satisfaction of (1) is that
m!/ ((m− n)!n!) polynomials (each corresponding to the determinant of a pencil obtained by
picking n columns of A− λB out of m columns) have a common root.

The contribution of this work is two-fold. First given a set of complex scalars λ̃1, . . . , λ̃` and
an integer r. We derive a singular value optimization characterization for the 2-norm of the
smallest perturbation ∆A∗ so that the pencil (A+ ∆A∗)− λB has the eigenvalues λ̃1, . . . , λ̃`
with the sum of their algebraic multiplicities at least equal to r, i.e. for the quantity

τ Λ̃
r (A,B) := inf{‖∆A‖2 : λ̃1, . . . , λ̃` are eigenvalues of (A+ ∆A)− λB with

algebraic multiplicities summing up to r or greater}

where Λ̃ = {λ̃1, λ̃2, . . . , λ̃`}. In control theory it is often of interest to design a system whose
eigenvalues lie in a certain region in the complex plane. At the very least one desires a
control system to be stable. For a stable linear system the distance to a nearest unstable
system is introduced in [10] and consequently a singular value optimization characterization
is provided. A corollary of the first contribution addresses the converse; for an unstable linear
system determine a stable system as close to the original system as possible. Notice that this
problem is intrinsically harder than the distance to instability. For the distance to instability
it suffices to perturb the system so that one of the eigenvalues is in the undesired region. On
the other hand to make an unstable system stable one needs to perturb the system so that
all eigenvalues lie in the region of stability.

The second contribution concerns a question posed in [4]; for the non-square pencil A−λB
what is the smallest perturbation to A and B so that the perturbed pencil has exactly n eigenval-
ues? Here we allow perturbations to A only, however we derive a singular value optimization
characterization for the more general problem of finding the smallest perturbation to A so
that (A + ∆A) − λB has r ≤ n eigenvalues. Specifically given a non-square n × m pencil
A− λB with m > n the quantity for which a singular value characterization is sought is

τr(A,B) := inf{‖∆A‖2 : (A+ ∆A)− λB has r eigenvalues }.

In the definition above multiple eigenvalues are counted as many times as their algebraic
multiplicities. Suppose (A − λB) is rank deficient at λ̃k and the algebraic multiplicity of λ̃k
is mk for k = 1, . . . , `. Then the pencil has

∑`
k=1mk eigenvalues.

The outline of this paper is as follows. In the next section we remind how one can naturally
define the algebraic multiplicity of an eigenvalue for a rectangular pencil. Specifically we make
a connection between the eigenvalues of a non-square pencil and the eigenvalues of a relevant
matrix. In §3 and §4 we derive rank characterizations for a matrix and a pencil to have
the eigenvalues λ̃1, . . . , λ̃` with the sum of their algebraic multiplicities equal to r or greater.
The rank characterizations depend on the matrix and the pencil linearly, which is crucial for
the derivation of the singular value characterizations. In §5 and §6 we deduce the singular

value characterizations for τ Λ̃
r (A,B) and τr(A,B) exploiting the linear rank characterizations.

Finally in §7 a numerical technique to solve the singular value optimization problems is briefly
outlined and in §8 the numerical technique is applied to examples. We do not claim that the
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numerical technique outlined here is as efficient as it could be, neither do we claim that it
is reliable. Our mere motivation in describing a numerical technique is to illustrate that the

singular value characterizations facilitate the computation of τ Λ̃
r (A,B) and τr(A,B).

2 Algebraic multiplicity of an eigenvalue for a non-square
pencil

As it is well-known for a square pencil the algebraic multiplicity of an eigenvalue can exceed
its geometric multiplicity (the dimension of the eigenspace). The definition of the geometric
multiplicity of an eigenvalue naturally extends to the non-square case. It can be defined as
the dimension of the subspace of left eigenvectors associated with the eigenvalue. However,
the definition of the algebraic multiplicity of an eigenvalue for a non-square pencil is more
subtle. It appears natural that it must involve the Kronecker canonical form for a rectangular
pencil1. Kronecker canonical form is rather technical. Below we provide an equivalent simpler
definition in terms of characteristic polynomials of square pencils.

Since the matrix B is assumed to have full-rank, the Kronecker canonical form of the
pencil A− λB must be of the form [6]

TL(A− λB)TR = diag
(
Lε1(λ), . . . , Lεµ(λ), J

(1)
λ1

(λ), . . . , J
(r1)
λ1

(λ), . . . , J
(1)
λν

(λ), . . . , J
(rν)
λν

(λ)
)
(2)

Above TL ∈ Cn×n and TR ∈ Cm×m are non-singular matrices. The rectangular fat and
short matrices Lεj (λ) are the elementary Kronecker blocks that do not have any eigenvalues.

The square matrices J
(i)
λj

(λ) for i = 1, . . . , rj denote the Jordan blocks associated with the
eigenvalue λj of the pencil A−λB. The algebraic multiplicity of the eigenvalue λj of the pencil

A− λB can be defined as the sum of the sizes of the Jordan blocks J
(i)
λj

(λ) for i = 1, . . . , rj .
Following the conventions for the square case we now provide an equivalent definition for

the algebraic multiplicity of an eigenvalue in terms of the multiplicity of the associated root
of a characteristic polynomial. Let us denote the characteristic polynomial associated with

the Jordan blocks J
(i)
λj

(λ) for i = 1, . . . , rj by pj(λ) in the Kronecker canonical form (2). If we
append rows to the Kronecker form so that it becomes square, the determinant of the resulting
square pencil would be either p(λ) = 0 or p(λ) = q(λ)

∏ν
j=1 pj(λ) for some polynomial q(λ).

This implies that the eigenvalue λj is a root of p(λ) of multiplicity mj at least unless p(λ) = 0,

where mj is the sum of the sizes of blocks J
(i)
λj

(λ) for i = 1, . . . , rj . More formally consider
the polynomial

p(A,B,C)(λ) = det

([
A− λB
C

])
where C ∈ C(m−n)×m and denote the multiplicity of λ̃ as a root of p(A,B,C)(λ) bymult

(
p(A,B,C), λ̃

)
unless p(A,B,C)(λ) = 0. Clearly the following definition for the algebraic multiplicity is equiv-
alent to the definition in terms of the Jordan blocks in the Kronecker canonical form.

1Thanks to Volker Mehrmann for pointing this out during a relevant talk at the workshop IWASEP 8, that
was held in Berlin in 2010
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Definition 2.1 (Algebraic Multiplicity of an Eigenvalue for Non-square Pencils). Let A−λB
be a pencil of size n×m with m > n. Then we define the algebraic multiplicity of an eigenvalue
λ̃ of A− λB as

minimum
{
mult

(
p(A,B,C), λ̃

)
: C ∈ C(m−n)×m s.t. p(A,B,C)(λ) 6= 0

}
.

We remark that for invertible matrices TL ∈ Cn×n and TR ∈ Cm×m the transformation

A− λB −→ TL(A− λB)TR

preserves the eigenvalues of A− λB and their algebraic multiplicities. This is apparent from
the Kronecker canonical form as well as the equivalent definition provided above, i.e.

det

([
A− λB
C

])
= 0 ⇐⇒ det

([
TL 0
0 I

] [
A− λB
C

]
TR

)
= 0

⇐⇒ det

([
TL(A− λB)TR

CTR

])
= 0.

Now since B has full rank, the matrices TL and TR (for instance elementary matrices
corresponding to row and column operations on the matrix B) can be chosen so that

TL(A− λB)TR =
[
A1 A2

]
− λ

[
In 0

]
(3)

where A1 ∈ Cn×n, A2 ∈ Cn×(m−n).
Next we benefit from the controllability canonical form [3, Theorem 2.12, p.70] to conclude

with a neat characterization for the eigenvalues of the pencil A− λB. Suppose

rank
([

A2 A1A2 A2
1A2 . . . An−1

1 A2

])
= r.

Then there exists an invertible transformation T ∈ Cn×n such that

Ã1 = TA1T
−1 =

[
Ã11 Ã12

0 Ã22

]
and Ã2 = TA2 =

[
Ã21

0

]
. (4)

where Ã11 ∈ Cr×r, Ã12 ∈ Cr×(n−r), Ã22 ∈ C(n−r)×(n−r) and Ã21 ∈ Cr×(m−n). Furthermore
the pencil [

Ã11 Ã21

]
− λ

[
Ir 0

]
has full rank for all λ. We call the eigenvalues of Ã22 as the uncontrollable eigenvalues of the
pair (A1, A2). This terminology is motivated by the dynamical system x′(t) = A1x(t)+A2u(t)
where x(t) and u(t) denote the state and input functions, respectively. Transform the state-
space of the system by x̃(t) = Tx(t). Then the eigenvectors associated with the uncontrollable
eigenvalues constitute those states that cannot be reached by the transformed system x̃′(t) =
Ã1x̃(t) + Ã2u(t) no matter what u(t) is chosen starting from zero initial conditions.

By further applying similarity transformations defined in terms of the state transformation
T to (3) we obtain

TTL(A− λB)TR

[
T−1 0

0 I

]
= T

([
A1 A2

]
− λ

[
In 0

]) [ T−1 0
0 I

]
=

[
Ã11 Ã12 Ã21

0 Ã22 0

]
− λ

[
Ir 0 0
0 In−r 0

]
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Now since the pencil
[
Ã11 Ã21

]
− λ

[
Ir 0

]
has full rank for all λ, it follows that the

eigenvalues of A − λB are precisely the eigenvalues of the matrix Ã22. Therefore the pencil
A − λB has exactly n − r eigenvalues given by the uncontrollable eigenvalues of the pair
(A1, A2) as summarized by the following theorem.

Theorem 2.2 (Nonsquare Eigenvalue Problem and Uncontrollable Eigenvalues). Let A−λB
be an n×m pencil with n < m and such that B has full rank. Suppose also that A− λB has
n− r eigenvalues counting their algebraic multiplicities. Then

(i) there exist invertible T̂L ∈ Cn×n and T̂R ∈ Cm×m satisfying

T̂L(A− λB)T̂R =

[
Ã11 Ã12 Ã21

0 Ã22 0

]
− λ

[
Ir 0 0
0 In−r 0

]
where Ã11 ∈ Cr×r, Ã12 ∈ Cr×(n−r), Ã22 ∈ C(n−r)×(n−r) and Ã21 ∈ Cr×(m−n) such that
the pencil [

Ã11 Ã21

]
− λ

[
Ir 0

]
has full rank for all λ,

(ii) furthermore the eigenvalues of A−λB are same as the eigenvalues of Ã22 with the same
algebraic multiplicities.

3 Rank Characterization for Matrices with Prespecified
Eigenvalues

We will first derive a singular value characterization for the distance to the nearest pencil with
prespecified eigenvalues whose algebraic multiplicities sum up to r. (The quantity τr(A,B)
is the infimum of all these distances over all possible eigenvalues.) But the eigenvalues of
the pencil A− λB are deduced to be the same as the eigenvalues of a matrix with the same
algebraic multiplicities by Theorem 2.2. Therefore the starting point in our derivation is a rank
characterization to check whether a matrix has the prespecified eigenvalues with multiplicities
summing up to r.

The first characterization below follows from the Jordan factorization of a matrix.

Theorem 3.1 (Rank Characterization). Let A ∈ Ck×k, λ̃1, . . . , λ̃` ∈ C be distinct complex
scalars and r ∈ Z+. The scalars λ̃j for j = 1, . . . , ` are the eigenvalues of A with algebraic
multiplicities summing up to r or greater if and only if the inequality

rank

 r∏
j=1

(A− λjI)

 ≤ k − r
holds for some λj ∈ {λ̃1, . . . , λ̃`} for j = 1, . . . , r.

The difficulty with the rank characterization above is that it is in terms of a polynomial of
A. When analyzing optimal perturbations, a linearized version of the result above facilitates
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the derivation by a great deal. Therefore our next task is to linearize the rank characterization.
In essence here we generalize Theorem 2.3 in [12] where a linearized rank characterization was
derived for only one eigenvalue to have algebraic multiplicity equal to or greater than r. Note
that in what follows throughout this text null(C) always denotes the left null-space of C and
whenever we refer to the null-space of a matrix, we always mean the left null-space.

Malyshev in [11] exploited the equivalence2

λ is an eigenvalue of algebraic multiplicity ≥ 2

⇐⇒
rank(A− λI)2 ≤ n− 2

⇐⇒

rank


[
A− λI 0
γI A− λI

]
︸ ︷︷ ︸

MΛ,Γ
2

 ≤ 2n− 2.

Now λ is an eigenvalue of A if and only if rank(A−λI) ≤ n− 1 or equivalently the dimension
of null(A− λI) ≥ 1. When we multiply (A− λI) with itself, there are potentially vectors (if
λ is a defective eigenvalue) that are in null(A− λI)2 \ null(A− λI). The second block row of

MΛ,Γ
2 takes these vectors contained in null(A− λI)2 \ null(A− λI) into account.

More generally we will establish that the null spaces of
(∏r

j=1(A− λjI)
)

and the linearized

version

MΛ,Γ
r (A) :=


A− λ1I 0 0
γ21I A− λ2I 0

. . .

A− λr−1I 0
γr1I γr2I γr(r−1)I A− λrI

 (5)

are of same dimension where

Λ =
[
λ1 λ2 . . . λr

]T ∈ Cr

Γ =
[
γ21 γ31 γ32 . . . γr(r−1)

]T ∈ Cr(r−1)/2.

The addition of the ith block row of MΛ,Γ
r contributes to the left null space of MΛ,Γ

r (A) with

the vectors that lies in the set null
(∏i

j=1(A− λjI)
)
\ null

(∏i−1
j=1(A− λjI)

)
. For instance

if λi is already repeated mi times in the set {λ1, . . . , λi−1}, the dimension of the null space
increases by dim

(
null(A− λi)mi+1

)
− dim (null(A− λi)mi) due to the ith block row.

Theorem 3.2 (Null Space of the Linearized Matrix). Let A ∈ Ck×k and

Λ =
[
λ1 λ2 . . . λr

]T ∈ Cr . Then

dim

null

 r∏
j=1

(A− λjI)

 = dim
(
null

(
MΛ,Γ
r (A)

))
2Indeed the block upper triangular variant of the linearized matrix MΛ,Γ

2 was used in [11].
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for any Γ ∈ Cr(r−1)/2 with nonzero components where MΛ,Γ
r (A) is as defined by equation (5).

Proof. The proof is by induction on r. As the base case for r = 1 we have MΛ,Γ
1 (A) = (A−λ1I)

and the dimensions of the null spaces are equal trivially.
Now as the inductive hypothesis suppose that for r = i

dim

null

 i∏
j=1

(A− λjI)

 = dim
(

null
(
MΛ,Γ
i (A)

))
= ms.

Suppose that dim
(

null
(∏i+1

j=1(A− λjI)
))

= ms + ma. We can split the null space of(∏i+1
j=1(A− λjI)

)
into two subspaces,

(i) S1 = null
(∏i

j=1(A− λjI)
)

and

(ii) S2 = null
(∏i+1

j=1(A− λjI)
)
∩
(

null
(∏i

j=1(A− λjI)
))⊥

.

These two subspaces are clearly orthogonal complements and together they span null
(∏i+1

j=1(A− λjI)
)

.

Now let {v` : ` = 1, . . . ,ms} be a basis for S1. By the inductive hypothesis there exists a

basis {Ũ` : ` = 1, . . . ,ms} for the left null space of MΛ,Γ
i (A). Define

U` :=

[
Ũ`
0

]
∈ Cn(i+1).

It follows that the set {U` : ` = 1, . . . ,ms} is also linearly independent and each vector in this

set lies in left the null space of MΛ,Γ
i+1 (A).

On the other hand suppose that {v` : ` = ms + 1, . . . ,ms + ma} is a basis for S2. Now

we describe a vector U` that is contained in the left null space of MΛ,Γ
i+1 (A) corresponding to

each vector v` for ` = ms + 1, . . . ,ms + ma such that {U` : ` = 1, . . . ,ms + ma} is linearly

independent. For each ` = ms + 1, . . . ,ms +ma define the sequence of vectors v
(1)
` := v` and

v
(t+1)
` is such that (

v
(t+1)
`

)∗
:=
(
v

(t)
`

)∗
(A− λkI)

for t = 1, . . . , i. Note that

(
v

(i+1)
`

)∗
(A− λi+1I) =

v∗` i∏
j=1

(A− λjI)

 (A− λi+1I) = 0

because v` is contained in a basis for S2. Furthermore the set {v(i+1)
` : ` = ms+1, . . . ,ms+ma}
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is linearly independent, because

0 =

ms+ma∑
`=ms+1

α`

(
v

(i+1)
`

)∗
=

ms+ma∑
`=ms+1

α`

v∗` i∏
j=1

(A− λjI)


=⇒

(
since

ms+ma∑
`=ms+1

α`v` ∈ S2

)
ms+ma∑
`=ms+1

α`v` = 0

=⇒ (since {v` : ` = ms + 1, . . . ,ms +ma} is linearly independent)
α` = 0 for ` = ms + 1, . . . ,ms +ma.

It can be shown that there exists a vector U` of the form

U` =

[ (
U

(1)
`

)T (
U

(2)
`

)T
. . .

(
U

(i+1)
`

)T ]T
(6)

where U
(i+1)
` = v

(i+1)
` and U

(k)
` = ṽ

(k:i)
` for k ≤ i that lies in the null space of MΛ,Γ

i+1 (A). Here

and in what follows ṽ
(k1:k2)
` for k1 ≤ k2 denotes a vector that belongs to span

{
v

(k1)
` , v

(k1+1)
` , . . . , v

(k2)
`

}
.

Multiplying the vector (U`)
∗

with the right-most block column of MΛ,Γ
i+1 (A) yields(

v
(i+1)
`

)∗
(A− λi+1I) = 0.

Before proceeding to the other block columns of MΛ,Γ
i+1 (A) we first note that there exists

a ṽ
(k1:k2−1)
` satisfying (

ṽ
(k1:k2−1)
`

)∗
(A− λk1

I) =
(
v

(k2)
`

)∗
(7)

where k1 < k2. The proof of this fact is also by induction on k2. When k2 = k1 + 1 by
definition (

v
(k1)
`

)∗
(A− λk1I) =

(
v

(k1+1)
`

)∗
.

Now suppose that for k2 = m ≥ k1 + 1 there exists a ṽ
(k1:(m−1))
` satisfying(

ṽ
(k1:(m−1))
`

)∗
(A− λk1

I) =
(
v

(m)
`

)∗
. (8)

Then (
v

(m+1)
`

)∗
=
(
v

(m)
`

)∗
(A− λmI) =

(
v

(m)
`

)∗
(A− λk1

I) + (λk1
− λm)

(
v

(m)
`

)∗
and by (8) we obtain(
v

(m+1)
`

)∗
=
(
v

(m)
`

)∗
(A−λk1

I)+(λk1
−λm)

(
ṽ

(k1:(m−1))
`

)∗
(A−λk1

I) =
(
ṽ

(k1:m)
`

)∗
(A−λk1

I)

which proves (7).
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Next we prove that a vector U` of the form (6) is orthogonal to the first i block columns

of MΛ,Γ
i+1 (A) by induction exploiting the property (7). As the base case consider the ith block

column of MΛ,Γ
i+1 (A). Observe that

γ(i+1)i

(
U

(i+1)
`

)∗
= γ(i+1)i

(
v

(i+1)
`

)∗
=

(
γ(i+1)iv

(i)
`

)∗
(A− λiI)

=
(
−U (i)

`

)∗
(A− λiI).

In other words U
(i)
` can be chosen so that U` is orthogonal to the ith column block of MΛ,Γ

i+1 (A).

Now as the inductive hypothesis suppose that U
(k)
` for k = m + 1, . . . , (i + 1) satisfying the

form (6) can be chosen so that U` is orthogonal to the block columns k = m+ 1, . . . , (i+ 1)

of MΛ,Γ
i+1 (A). Consider the mth block column of MΛ,Γ

i+1 (A). We have

i+1∑
k=m+1

γkm

(
U

(k)
`

)∗
=

i+1∑
k=m+1

γkm

(
ṽ

(k:i+1)
`

)∗
=
(
ṽ

(m+1:i+1)
`

)∗
.

By property (7) we have
(
ṽ

(m+1:i+1)
`

)∗
=
(
ṽ

(m:i)
`

)∗
(A− λmI) implying

i+1∑
k=m+1

γkm

(
U

(k)
`

)∗
=
(
ṽ

(m:i)
`

)∗
(A− λmI) =

(
−U (m)

`

)∗
(A− λmI).

Therefore U
(m)
` can be chosen so that U` is orthogonal to the mth block column of MΛ,Γ

i+1 (A).
By induction we conclude that there exists a U` of the form (6) lying in the left null space of

MΛ,Γ
i+1 (A).
The set of vectors {U` : ` = ms + 1, . . . ,ms +ma} is linearly independent because of the

linear independence of {U (i+1)
` : ` = ms+1, . . . ,ms+ma} = {v(i+1)

` : ` = ms+1, . . . ,ms+ma}.
Furthermore since U

(i+1)
` = 0 for ` = 1, . . . ,ms it follows that the set {U` : ` = 1, . . . ,ms+ma}

is also linearly independent.
Finally to complete the proof we need to establish that

U /∈ span {U` : ` = 1, . . . ,ms +ma} =⇒ U /∈ null
(
MΛ,Γ
r (A)

)
(9)

Now partition any vector U ∈ Ck(i+1) into i+ 1 block components of equal size of the form

U` =
[ (

U (1)
)T (

U (2)
)T

. . .
(
U (i+1)

)T ]T
.

Supposing U ∈ null
(
MΛ,Γ
r (A)

)
yields(
U (i+1)

)∗
(A− λi+1) = 0

=⇒

U (i+1) ∈ null

i+1∏
j=1

(A− λjI)


=⇒

U ∈ span {U` : ` = 1, . . . ,ms +ma} ,
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which shows the validity of (9). We conclude that

null
(
MΛ,Γ
r (A)

)
= span {U` : ` = 1, . . . ,ms +ma}

and consequently dim
(
null

(
MΛ,Γ
r (A)

))
= ms +ma as desired.

Corollary 3.3 (Linearized Rank Characterization). Let A ∈ Ck×k and

Λ =
[
λ1 λ2 . . . λr

]T ∈ Cr . Then

rank

 r∏
j=1

(A− λjI)

 ≤ k − r ⇐⇒ rank
(
MΛ,Γ
r (A)

)
≤ kr − r

for any Γ with nonzero components where MΛ,Γ
r (A) is as defined by equation (5).

4 Rank Characterization for Pencils with Prespecified
Eigenvalues

Now we generalize the rank characterization for matrices in the previous section to pencils by
exploiting Theorem 2.2. Given an n ×m pencil A − λB with n ≤ m. The next result is in
terms of a linearized pencil of the form

PΛ,Υ
r (A,B) :=


A− λ1B 0 0
υ21B A− λ2B 0

. . .

A− λjB 0
υr1B υr2B υr(r−1)B A− λrB

 (10)

where

Λ =
[
λ1 λ2 . . . λr

]T ∈ Cr,

Υ =
[
υ21 υ31 υ32 . . . υr(r−1)

]T ∈ Cr(r−1)/2.

Theorem 4.1 (Linearized Rank Characterization for Pencils). Let A,B ∈ Cn×m with n ≤ m,
λ̃1, . . . , λ̃` ∈ C be distinct scalars and r ∈ Z+. Suppose also that B has full rank. Then
λ̃1, . . . , λ̃` are eigenvalues of A − λB with multiplicities summing up to r or greater if and
only the inequality

rank
(
PΛ,Υ
r (A,B)

)
≤ nr − r

holds for some λj ∈ {λ̃1, . . . , λ̃`} for j = 1, . . . , r and for all Υ ∈ Cr(r−1)/2 with non-zero
components.

Proof. Suppose that A−λB has k eigenvalues. Then from Theorem 2.2 there exist invertible
matrices TL and TR such that

TL(A− λB)TR =

[
A11 A12 A13

0 A22 0

]
− λ

[
In−k 0 0

0 Ik 0

]
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where A11 ∈ C(n−k)×(n−k), A12 ∈ C(n−k)×k, A22 ∈ Ck×k and A13 ∈ C(n−k)×(m−n). (Note
that if the pencil is square, then A22 is n × n and A11, A12, A13 disappear.) The pencil
[A11 A13] − λ[In−k 0] has full rank for all λ. Additionally the eigenvalues of A − λB are
same as the eigenvalues of A22 with the same algebraic multiplicities.

Consider the transformation
(Ir ⊗ TL)PΛ,Υ

r (A,B)(Ir ⊗ TR) =

A11 − λ1In−k A12 A13 0 0 0 0
0 A22 − λ1Ik 0 0 0 0 0

υ21In−k 0 0 A11 − λ2In−k A12 A13 0
0 υ21Ik 0 0 A22 − λ2Ik 0 0

. . .

υr1In−k 0 0 A11 − λrIn−k A12 A13

0 υr1Ik 0 0 A22 − λrIk 0


.

Now the odd row blocks of (Ir ⊗ TL)PΛ,Υ
r (A,B)(Ir ⊗ TR) have full rank due to the fact that

the pencil [A11 A13]− λ[In−k 0] = [A11 − λIn−k A13] has full rank for all λ. We obtain

dim
(
null

(
PΛ,Υ
r (A,B)

))
= dim

(
null(Ir ⊗ TL)PΛ,Υ

r (A,B)(Ir ⊗ TR)
)

= dim
(
null

(
MΛ,Υ
r (A22)

))
.

Now by Theorem 3.1 and 3.3 the pencil A − λB or equivalently the matrix A22 has
eigenvalues λ̃1, . . . , λ̃` with algebraic multiplicities summing up to r or greater if and only if

rank
(
MΛ,Υ
r (A22)

)
≤ rk − r ⇐⇒ rank

(
PΛ,Υ
r (A,B)

)
≤ nr − r,

completing the proof.

5 A singular value characterization for the nearest pencil
with prespecified eigenvalues

Given the set of distinct complex scalars Λ̃ = {λ̃1, λ̃2, . . . , λ̃`}. The purpose of this section is
to derive a singular value optimization characterization for the distance from a pencil (square
or non-square) A− λB to a nearest pencil which has eigenvalues λ̃1, λ̃2, . . . , λ̃` with algebraic
multiplicities summing up to r or greater. The technique utilized here is along the lines of
the techniques in [12, 13] and the main result of this section generalizes the singular value
optimization characterizations given in [12, 13]. Following elementary result [7, Theorem
2.5.3, p.72] will play a central role in our derivation.

Theorem 5.1. Let C ∈ Ck×k. Then

inf{‖∆C‖2 : rank(C + ∆C) ≤ k − p} = σk−p+1(C).

A consequence of the rank characterization derived in the previous section, in particular
Theorem 4.1, is that for all Υ ∈ Cr(r−1)/2 with non-zero components we have

τ Λ̃
r (A,B) := inf{‖∆A‖2 : λ̃1, . . . , λ̃` are eigenvalues of (A+ ∆A)− λB with

algebraic multiplicities summing up to r or greater}
= inf{‖∆A‖2 : ∃Λ ∈ Cr s.t. λj ∈ Λ̃ and rank

(
PΛ,Υ
r (A+ ∆A,B)

)
≤ nr − r}

= infΛ∈Cr,λj∈Λ̃ inf∆A{‖∆A‖2 : rank
(
PΛ,Υ
r (A+ ∆A,B)

)
≤ nr − r}
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Let us define

τ̃Λ
r (A,B) := inf

∆A
{‖∆A‖2 : rank

(
PΛ,Υ
r (A+ ∆A,B)

)
≤ nr − r}

where Λ ∈ Cr so that
τ Λ̃
r (A,B) = inf

Λ∈Cr,λj∈Λ̃
τ̃Λ
r (A,B).

Now Theorem 5.1 implies that

τ̃Λ
r (A,B) ≥ σnr−r+1

(
PΛ,Υ
r (A,B)

)
for all Υ ∈ Cr(r−1)/2, or equivalently

τ̃Λ
r (A,B) ≥ κΛ

r (A,B) := sup
Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
.

Above we can only deduce a lower bound for τ̃Λ
r (A,B) by a straightforward application of

Theorem 5.1, because allowable perturbations to PΛ,Υ
r (A,B) are structured and not arbitrary.

The rest of this section is devoted to the derivation of other direction

τ̃Λ
r (A,B) ≤ κΛ

r (A,B)

establishing the singular value optimization characterization

τ̃Λ
r (A,B) := sup

Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
. (11)

The upper bound will be deduced by constructing an optimal perturbation ∆A∗ such that

(i) ‖∆A∗‖ = κΛ
r (A,B), and

(ii) rank
(
PΛ,Υ
r (A+ ∆A∗, B)

)
≤ nr − r ∃Υ ∈ Cr(r−1)/2.

Suppose Υ∗ ∈ Cr(r−1)/2 is such that

κΛ
r (A,B) = σnr−r+1

(
PΛ,Υ∗
r (A,B)

)
.

The optimal perturbation ∆A∗ will be defined in terms of the block components of the optimal
left singular vector U and right singular vector V satisfying

PΛ,Υ∗
r (A,B) V = κΛ

r (A,B) U and U∗ PΛ,Υ∗
r (A,B) = V ∗ κΛ

r (A,B). (12)

Now partition the left singular and right singular vectors into r blocks of equal size, i.e.

U =
[
UT1 UT2 . . . UTr

]T
and V =

[
V T1 V T2 . . . V Tr

]T
where U1, . . . , Ur ∈ Cn and V1, . . . , Vr ∈ Cm. In the next two subsections we will show that
the perturbation

∆A∗ := −κΛ
r (A,B)U+V (13)
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with

U =


U∗1
U∗2
...
U∗r

 ∈ Cr×n and V =


V ∗1
V ∗2
...
V ∗r

 ∈ Cr×m

satisfies properties (i) and (ii). Here U+ denotes the Moore-Penrose pseudoinverse of U .
The optimality of ∆A∗ will be established under the assumptions that the optimal singular
value κΛ

r (A,B) is simple and the set {U1, . . . , Ur} of block components of optimal left singular
vector U is linearly independent. To state these assumptions neatly we introduce the following
terminology.

Definition 5.2 (Multiplicity Qualification). We say that the multiplicity qualification holds
at (Λ,Υ) for the pencil A−λB if the multiplicity of the singular value σnr−r+1

(
PΛ,Υ
r (A,B)

)
is one.

Definition 5.3 (Linear Independence Qualification). We say that the linear independence
qualification holds at (Λ,Υ) for the pencil A− λB if the set {Ū1, Ū2, . . . , Ūr} is linearly inde-
pendent where Ū1, . . . , Ūr ∈ Cn is such that

Ū =
[
ŪT1 ŪT2 . . . ŪTr

]T
with Ū denoting a left singular vector associated with σnr−r+1

(
PΛ,Υ
r (A,B)

)
.

5.1 The 2-norm of the optimal perturbation

Throughout this section we assume that the multiplicity qualification holds at the optimal
(Λ,Υ∗) for the pencil A − λB. In general given an analytic matrix-valued function A(γ). If
the multiplicity of the jth largest singular value σj (A(γ̃)) is one and the singular value is
nonzero, then σj (A(γ)) is analytic at γ = γ̃ with the derivative

dσj (A(γ̃))

dγ
= Re

(
u∗j
dA(γ̃)

dγ
vj

)
where uj and vj denote a consistent pair of unit left and right singular vectors associated with
σj (A(γ̃)). (See [11] for details.) Let us define

f(Υ) = σnr−r+1

(
PΛ,Υ
r (A,B)

)
and view f as a map from Rr(r−1) → R by associating each complex υij with its real part
<υij and imaginary part =υij . Now clearly

f(Υ∗) = 0⇐⇒ sup
Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
= 0⇐⇒ τ Λ̃

r (A,B) = 0.

Thus the characterization (11) holds trivially when f(Υ∗) = 0, so without loss of generality
we assume f(Υ∗) 6= 0. Because of the multiplicity qualification, we conclude that f(Υ) is
analytic at Υ∗ with the derivatives

∂f(Υ∗)

∂<υjk
= Re

(
U∗j BVk

)
and

∂f(Υ∗)

∂=υjk
= Re

(
U∗j (Bi)Vk

)
.
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Furthermore the fact that Υ∗ is a global maximizer of f yields that both of the derivatives
above are zero. Consequently we obtain the following result.

Theorem 5.4. Suppose that the multiplicity qualification holds at (Λ,Υ∗) for the pencil A−
λB and f(Υ∗) 6= 0. Then

U∗j BVk = 0

for j = 2, . . . , r and k = 1, . . . , j − 1.

Now by exploiting Theorem 5.4 we show that UU∗ = VV∗. Geometrically this means that
the angle between Ui and Uj is same as the angle between Vi and Vj . In other words the set
{V1, . . . , Vr} can be obtained from {U1, . . . , Ur} by concatenating the vectors in the latter set
by zeros and then rotating them.

Theorem 5.5. Suppose that the assumptions of Theorem 5.4 hold. Then

UU∗ = VV∗. (14)

Proof. The property (14) is equivalent to having

U∗j Uk = V ∗j Vk

for all j = 1, . . . , r and k = 1, . . . , j. For such a pair j, k from equation (12) we have

U∗j (A− λjB) + U∗j+1Bυ(j+1)j + U∗j+2Bυ(j+2)j + · · ·+ U∗rBυrj = κΛ∗
r (A,B)V ∗j (15)

and
Bυk1V1 +Bυk2V2 + · · ·+Bυk(k−1)Vk−1 + (A− λkB)Vk = κΛ∗

r (A,B)Uk. (16)

By multiplying equation (16) by U∗j from left we obtain

U∗j Bυk1V1 + · · ·+ U∗j Bυk(k−1)Vk−1 + U∗j (A− λkB)Vk = U∗j (A− λkB)Vk = κΛ∗
r (A,B)U∗j Uk

where the first equality follows from Theorem 5.4. Noting that U∗j (λj − λk)BVk = 0 (by
Theorem 5.4 if k < j) the equation above can be rewritten as

U∗j (A− λjB)Vk = κΛ∗
r (A,B)U∗j Uk.

Now use equation (15) to substitute for U∗j (A− λjB) in the last equation, which yields

(κΛ∗
r (A,B)V ∗j − U∗j+1Bυ(j+1)j − U∗j+2Bυ(j+2)j − · · · − U∗rBυrj)Vk =

κΛ∗
r (A,B)V ∗j Vk = κΛ∗

r (A,B)U∗j Uk.

Above the first equality is again due to Theorem 5.4. We conclude that V ∗j Vk = U∗j Uk as

desired, since κΛ∗
r (A,B) = f(Υ∗) 6= 0 by assumption.

Consider multiplying a vector with U+V from left. The transformation w∗ (U+V) =
w∗ (U+UU+V) first orthogonally projects the row vector w∗ onto the row-space of U . This
is followed by a change of basis from the row-space of U to the row-space of V. Orthogonal
projection cannot increase the length of the vector, and because of property (14) the change
of basis does not affect the length. Therefore ‖U+V‖ = 1. A formal proof of the fact that the
property (14) implies ‖U+V‖ = 1 was given in [11, Lemma 2] and [12, Theorem 2.5].

Theorem 5.6. Suppose that the assumptions of Theorem 5.4 hold. Then

‖∆A∗‖ = κΛ∗
r (A,B).
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5.2 Satisfaction of the rank condition by the optimally perturbed
pencil

Now we suppose that the linear independence qualification holds at (Λ,Υ∗) for the pen-
cil A − λB, that is the set {U1, . . . , Ur} is linearly independent. Next we establish that
rank

(
PΛ,Υ∗
r (A+ ∆A∗, B)

)
≤ nr − r. We note that the linear independence qualification im-

plies UU+ = Ir. In particular U∗j U+ = e∗j where ej denotes the jth column of the identity
matrix of size r.

Lemma 5.7. Suppose that the linear independence qualification holds at (Λ,Υ∗) for the pencil
A−λB. Also suppose that Λ consists of distinct components. Given the scalars βk, . . . , βr ∈ C
and a pair of positive integers j, k such that r ≥ k > j. There exists a Uk:r ∈ Cn of the form

Uk:r = αkUk + αk+1Uk+1 + · · ·+ αrUr

for some αk, . . . , αr ∈ C satisfying

(Uk:r)
∗

(A− λjB + ∆A∗) = βkU
∗
kB + βk+1U

∗
k+1B + · · ·+ βrU

∗
rB.

Proof. The proof is by induction on k. As the base case suppose k = r. Then

αrU
∗
r (A− λjB + ∆A∗) = αrU

∗
r (A− λrB + ∆A∗) + αrU

∗
r (λr − λj)B

= αrU
∗
r (λr − λj)B.

Hence choose αr := βr
λr−λj to obtain

αrU
∗
r (A− λjB + ∆A∗) = βrU

∗
rB.

Suppose, as the inductive hypothesis, that for k = ` + 1 > j + 1 there exists a U`+1:r of
the form

U`+1:r = α`+1U`+1 + α`+2U`+2 + · · ·+ αrUr

such that

(U`+1:r)
∗

(A− λjB + ∆A∗) = β̃`+1U
∗
`+1B + β̃`+2U

∗
`+2B + · · ·+ β̃rU

∗
rB.

for every β̃`+1, β̃`+2, . . . , β̃r ∈ C. Now

U∗`:r(A− λjB + ∆A∗) = α`U
∗
` (A− λjB + ∆A∗) + U∗`+1:r(A− λjB + ∆A∗)

= α`U
∗
` (A− λjB + ∆A∗) + β̃`+1U

∗
`+1B + β̃`+2U

∗
`+2B + · · ·+ β̃rU

∗
rB.

where

α`U
∗
` (A− λjB + ∆A∗) = α`U

∗
` (A− λ`B + ∆A∗) + α`U

∗
` (λ` − λj)B

= α`γ(`+1)`U
∗
`+1B + · · ·+ α`γr`U

∗
rB + α`U

∗
` (λ` − λj)B.

Given any β`, . . . , βr. We can choose α` := β`
λ`−λj and α`+1, . . . , αr such that β̃m = βm−α`γm`

for m = `+ 1, . . . , r which yields

(U`:r)
∗

(A− λjB + ∆A∗) = β`U
∗
` B + β`+1U

∗
`+1B + · · ·+ βrU

∗
rB

as desired.
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Theorem 5.8. Suppose that the linear independence qualification holds at (Λ,Υ∗) for the
pencil A− λB. Then we have

rank
(
PΛ,Υ∗
r (A+ ∆A∗, B)

)
≤ nr − r. (17)

Proof. First notice that from the right-hand equality in (12) we have

U∗j (A− λjB + ∆A∗) + U∗j+1υ(j+1)jB + · · ·+ U∗r υrjB =

−V ∗j κΛ∗
r (A,B) + U∗j (A− λjB) + U∗j+1υ(j+1)jB + · · ·+ U∗r υrjB = 0

implying
U∗ PΛ,Υ∗

r (A+ ∆A∗, B) = 0.

Let us first assume that the components of Λ are distinct. We next show that, in addition
to U , there are vectors lying in the left null space of PΛ,Υ∗

r (A+ ∆A∗, B) of the form

U (j) =

[ (
U

(j)
1

)T (
U

(j)
2

)T
. . .

(
U

(j)
j−1

)T (
U

(j)
j

)T
0 . . . 0

]T
∈ Cnr (18)

for j = 1, . . . , r − 1 with U
(j)
` ∈ span{U`, . . . , Ur} and U

(j)
j 6= 0 is . Clearly the set

{U (1), U (2), . . . , U (r−1), U}

is linearly independent. Therefore the existence of such U (j) that are contained in the left
null space of PΛ,Υ∗

r (A+ ∆A∗, B) implies (17).
We prove that a vector U (j) of the form (18) is contained in the left null space of PΛ,Υ∗

r (A+
∆A∗, B) by induction. Clearly

U∗j (A− λjB + ∆A∗) = −U∗j+1υ(j+1)jB − · · · − U∗r υrjB

Now by Lemma 5.7 there exists a Uj+1:r ∈ span{Uj+1, . . . , Ur} such that

U∗j+1:r(A− λjB + ∆A∗) = U∗j+1υ(j+1)jB + · · ·+ U∗r υrjB.

Defining U
(j)
j := Uj + Uj+1:r 6= 0 we have(

U
(j)
j

)∗
(A− λjB + ∆A∗) = 0.

Suppose that U
(j)
k for k = `+ 1, . . . , j can be chosen so that U (j) is orthogonal to the column

blocks k = `+1, . . . , j of PΛ,Υ∗
r (A+∆A∗, B). Now we construct U

(j)
` exploiting the structure

of the `th column block of PΛ,Υ∗
r (A+ ∆A∗, B). First multiply the vector[

0 0 . . . 0 U∗`

(
U

(j)
`+1

)∗
. . .

(
U

(j)
j

)∗
0 . . . 0

]
with the `th block column of PΛ,Υ∗

r (A+ ∆A∗, B) resulting

U∗` (A− λ`B + ∆A∗) +
(
U

(j)
`+1

)∗
υ(`+1)`B + · · ·+

(
U

(j)
j

)∗
υj`B =(

−U∗`+1υ(`+1)`B − · · · − U∗r υr`B
)

+
(
β̃`+1U

∗
`+1B + · · ·+ β̃rU

∗
rB
)

=

β`+1U
∗
`+1B + · · ·+ βrU

∗
rB.
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for some β̃`+1, . . . , β̃r, β`+1, . . . , βr ∈ C. Furthermore by Lemma 5.7 there exists a U`+1:r ∈
span{U`+1, . . . , Ur} such that

U∗`+1:r(A− λ`B + ∆A∗) = −β`+1U
∗
`+1B − · · · − βrU∗rB.

Hence defining U
(j)
` := U`+U`+1:r makes U (j) orthogonal to the `th block column of PΛ,Υ∗

r (A+
∆A∗, B). Now the existence of a U (j) of the form (18) lying in the left null space of PΛ,Υ∗

r (A+
∆A∗, B) follows from induction.

Finally suppose that the components of Λ are not distinct. Then consider any sequence
{Λ̂} in Cr with distinct components whose limit is Λ. Then the previous argument applies to
deduce that

rank
(
P Λ̂,Υ∗(Λ̂)
r (A+ ∆A∗(Λ̂), B)

)
≤ nr − r =⇒ σnr−r+1

(
P Λ̂,Υ∗(Λ̂)
r (A+ ∆A∗(Λ̂), B)

)
= 0

for all Λ̂ in the sequence where Υ∗(Λ̂) is such that

κΛ̂
r (A,B) = σnr−r+1

(
P Λ̂,Υ∗(Λ̂)
r (A,B)

)
(19)

and ∆A∗(Λ̂) is the optimal perturbation defined in terms of the singular vectors associated

with σnr−r+1

(
P Λ̂,Υ∗(Λ̂)
r (A,B)

)
as in (13). Generically Υ∗(Λ̂) satisfying (19) is unique for

any pair (A,B). We conclude from the continuity of singular values (since without loss of
generality the sequence {Λ̂} can be chosen so that γ∗(Λ̂) is unique for all Λ̂ and therefore
γ∗(Λ̂) and ∆A∗(Λ̂) vary with respect to Λ̂ continuously [2, proposition 4.4]) that

σnr−r+1

(
PΛ,Υ∗
r (A+ ∆A∗, B)

)
= 0

implying
rank

(
PΛ,Υ∗
r (A+ ∆A∗, B)

)
≤ nr − r.

We conclude this section with a summary of the singular value optimization characteriza-
tion derived.

Theorem 5.9 (Characterization for a Nearest Pencil with Prespecified Eigenvalues). Let
A−λB be an n×m pencil with n ≤ m, r ∈ Z+ and Λ̃ be a set consisting of at most r complex
scalars.

(i) Then

τ Λ̃
r (A,B) = inf

Λ∈Cr,λj∈Λ̃
sup

Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
provided that the optimization problem on the right is attained at a (Λ∗,Υ∗) where the
multiplicity and linear independence qualifications hold.

(ii) Furthermore a minimal perturbation ∆A∗ such that the pencil (A+ ∆A∗)− λB has the
eigenvalues λ̃1, . . . , λ̃` with algebraic multiplicities summing up to r or greater is given
by (13) but with Λ replaced by Λ∗.
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One potential application in control theory is to ensure that the eigenvalues lie in a par-
ticular region in the complex plane. Thus let Ω be a compact region in the complex plane
and define the distance

τΩ
r (A,B) := inf{‖∆A‖2 : r of the eigenvalues of (A+ ∆A)− λB belong to Ω}.

The previous derivation applies analogously if the finite set of desired eigenvalues Λ̃ is replaced
by the desired compact region Ω yielding

τΩ
r (A,B) = inf

Λ∈Cr,λj∈Ω
sup

Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
.

An optimal perturbation ∆A∗ such that the pencil (A+ ∆A∗)− λB has r of its eigenvalues
in Ω is once again given by (13).

6 A singular value characterization for the nearest non-
square pencil with r eigenvalues

The distance τr(A,B) is the infimum of all distances τ Λ̃r
r (A,B) over all Λ̃r consisting of at

most r complex scalars . Hence it immediately follows that

τr(A,B) = infΛ̃r
τ Λ̃r
r (A,B)

= infΛ̃r
infΛ∈Cr,λj∈Λ̃r

τ̃Λ
r (A,B)

= infΛ∈Cr τ̃
Λ
r (A,B).

and we obtain the following corollary of Theorem 5.9

Corollary 6.1 (Characterization for a Nearest Pencil with r Eigenvalues). Let A−λB be an
n×m pencil with n < m and r ∈ Z+.

(i) Then
τr(A,B) = inf

Λ∈Cr
sup

Υ∈Cr(r−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
provided that the optimization problem on the right is attained at a (Λ∗,Υ∗) where the
multiplicity and linear independence qualifications hold.

(ii) Furthermore a minimal perturbation ∆A∗ such that the pencil (A + ∆A∗) − λB has r
eigenvalues is given by (13) but with Λ replaced by Λ∗.

Specifically the distance from a nonsquare n×m pencil A−λB to the nearest pencil with
n eigenvalues can be posed as

τn(A,B) = inf
Λ∈Cn

sup
Υ∈Cn(n−1)/2

σn2−n+1

(
PΛ,Υ
n (A,B)

)
with minimal perturbation ∆A∗ of the form (13).
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7 Computational issues

A numerical technique that can be used to compute τΩ
r (A,B) and τr(A,B) exploiting the

singular value characterizations were described in [12, 13]. In this section for completeness
we briefly remind this numerical technique. We can express the distances of interest as

τΩ
r (A,B) = inf

Λ∈Cr, λj∈Ω
g(Λ) and τr(A,B) = inf

Λ∈Cr
g(Λ)

where g : Cr → R is defined by

g(Λ) := sup
Υ∈Cn(n−1)/2

σnr−r+1

(
PΛ,Υ
r (A,B)

)
.

The inner maximization problems are solved by BFGS. The rth smallest singular value
function above is not differentiable when its multiplicity is greater than one. In practice
this is not a major issue for BFGS, as the multiplicity of the rth smallest singular value is
generically one for all Υ for any given Λ. If at a local maximizer Υ∗ the multiplicity and
linear independence qualifications hold, then Υ∗ is indeed a global maximizer meaning g(Λ)
is retrieved. On the other hand if BFGS converges to a point where one or both of the
qualifications are violated, it needs to be restarted with a different initial guess. In practice
we almost always observe convergence to a global maximizer immediately without any need
for a restart of BFGS.

The function g(Λ) is non-convex in general, but it is Lipschitz continuous, i.e.

|g(Λ + ∆Λ)− g(Λ)| ≤ ‖∆Λ‖2.

There are various Lipschitz-based global optimization algorithms in the literature stemming
mainly from ideas due to Piyavskii-Shubert [14, 15]. The Piyavskii-Shubert algorithm is based
on constructing a piecewise linear approximation lying beneath the Lipschitz function. We
used a sophisticated variant of the Piyavskii-Shubert algorithm called DIRECT [8] in practice.
DIRECT attempts to estimate the Lipschitz constant locally, which can possibly speed-up
the convergence.

The main computational cost involved in the numerical optimization of singular values is
the retrieval of the rth smallest singular value of PΛ,Υ

r (A,B) at various Λ and Υ. For this
purpose we used the direct solvers in LAPACK as we only experimented with small pencils.
For medium to large scale pencils one should rather use iterative algorithms such as the
Lanczos method.

8 Numerical Experiments

The software is originally implemented in Fortran. It calls routines from LAPACK for singular
value computations, the limited memory BFGS routine written by J. Nocedal [9] for inner
maximization problems and an implementation of the DIRECT algorithm by Gablonsky [5]
for outer Lipschitz-based minimization. A mex interface file is written so that the Fortran
code can be reached from Matlab.

It should be noted that the current implementation is not very reliable mainly due to
the numerical solution of the outer Lipschitz minimization problem. This implementation is
intended only for small pencils (e.g. n,m < 100) for now.
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8.1 Nearest Pencils with Multiple Eigenvalues

As a corollary of Theorem 5.9 it follows that for a square pencil A − λB the nearest pencil
with λ̃ as a multiple eigenvalue is given by

τ λ̃2 (A,B) = sup
υ

([
A− λ̃B 0

υB A− λ̃B

])
.

Therefore the distance from A − λB to the nearest square pencil with a multiple eigenvalue
is characterized by

inf
λ∈C

sup
υ
σ2n−1

([
A− λB 0
υB A− λB

])
.

Specifically we consider the pencil 2 −1 −1
−1 2 −1
−1 −1 2


︸ ︷︷ ︸

Ã

−λ

 −1 2 3
2 −1 2
4 2 −1


︸ ︷︷ ︸

B̃

. (20)

By solving the singular value optimization problem we obtain the distance from this pencil to
the nearest pencil with a multiple eigenvalue as 0.59299. Indeed by equation (13) a nearest
pencil turns out to be 1.91465 −0.57896 −1.21173

−1.32160 1.93256 −0.57897
−0.72082 −1.32160 1.91466

− λ
 −1 2 3

2 −1 2
4 2 −1


with the multiple eigenvalue λ∗ = −0.85488

The ε-pseudospectrum of A−λB (subject to perturbations to A only) is the set Λε(A,B)
consisting of eigenvalues of all pencils (A + ∆A) − λB such that ‖∆A‖2 ≤ ε. This set can
equivalently be defined in terms of singular values as

Λε(A,B) = {λ ∈ C : σmin(A− λB) ≤ ε}.

It is well-known that the smallest ε such that two components of Λε(A,B) coalesce is the
distance to the nearest pencil with a multiple eigenvalue. (See [1] for the standard eigenvalue
problem when B = I, which easily extends for arbitrary invertible B.)

For the particular pencil Ã − λB̃ in (20) the ε-pseudospectra are plotted for various ε
in Figure 1. Two components of the ε-pseudospectrum coalesce for ε = 0.59299, that is the
distance to the nearest pencil with a multiple eigenvalue. Furthermore the point of coalescence
is the multiple eigenvalue of the nearest pencil marked by an asterisk in the figure.

8.2 Nearest Rectangular Pencils with at least Two Eigenvalues

Now let us consider the 3× 4 pencil 1 0 0 0
0 0.1 2 1
0 0 0.3 2


︸ ︷︷ ︸

Â

−λ

 0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B̂

.
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Figure 1: The ε-pseudospectra are plotted for various ε for the pencil Ã − λB̃ in (20). The
black crosses represent the eigenvalues of Ã− λB̃. Two components of the ε-pseudospectrum
coalesce for ε = 0.59299, which is the distance to the nearest pencil with a multiple eigenvalue.
The asterisk marks the multiple eigenvalue of the nearest pencil.
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If the entries âij of Â are set equal to zero for j > i, it is clear that the pencil becomes similar
to an elementary Kronecker block of size three. Therefore the pencil has no eigenvalues.
However, if the entry â22 is set equal to zero, then the Kronecker canonical form of the
resulting pencil is comprised of an elementary Kronecker block of size one and a block of size
two corresponding to finite eigenvalues. Therefore a perturbation with 2-norm equal to 0.1
applied to Â− λB̂ is sufficient to have two eigenvalues.

By corollary 6 the distance to the nearest 3 × 4 pencil with at least two eigenvalues has
the characterization

τ2(Â, B̂) = inf
λ1,λ2∈C

sup
υ
σ2n−1

([
Â− λ1B̂ 0

υB̂ Â− λ2B̂

])
︸ ︷︷ ︸

g(λ1,λ2)

. (21)

It turns out that τ2(Â, B̂) = 0.03927 based on the numerical solution of the singular value
optimization problem above. By equation (13) a nearest pencil is given by 0.99847 0 0 0.00007

−0.03697 0.08698 2.00172 1.00095
−0.01283 0.03689 0.30078 2.00376

− λ
 0 1 0 0

0 0 1 0
0 0 0 1


with eigenvalues at λ1 = 2.55144 and λ2 = 1.45405. The level sets of the function g(λ1, λ2)
(defined in (21)) over R2 are illustrated in Figure 2. The optimal eigenvalues (2.55144, 1.45405)
are marked by an asterisk in the figure.

9 Concluding Remarks

In this work a singular value characterization is derived for the 2-norm of a smallest pertur-
bation to a square or a non-square pencil A−λB so that the perturbed pencil has the desired
set of eigenvalues. The immediate corollaries of this main result are

(i) a singular value characterization for the 2-norm of the smallest perturbation so that
the perturbed pencil has a certain number of its eigenvalues in a desired region in the
complex plane, and

(ii) a singular value characterization for the 2-norm of the smallest perturbation to a rect-
angular pencil so that it has a prespecified number of eigenvalues.

We allow perturbations to A only and assume B has full-rank. Derivation of singular
value characterizations for the distance problems considered in this paper when A and B are
perturbed simultaneously remains open. The development of efficient and reliable computa-
tional techniques for the solution of the derived singular value optimization problems is still
in progress. As of now the optimization problems can be solved numerically only for small
pencils with small number of desired eigenvalues. The main task that needs to be addressed
from a computational point of view is a reliable and efficient implementation of the DIRECT
algorithm for Lipschitz-based optimization.
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Figure 2: The level-sets of the function g(λ1, λ2) defined in equation (21) over R2 are plotted.
Asterisk marks the numerically computed global minimizer of g, which are the eigenvalues of
the nearest pencil with two eigenvalues.
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