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Exponential Riesz bases, discrepancy of

irrational rotations and BMO

Gady Kozma and Nir Lev

Abstract. Matei and Meyer proved that ‘simple quasicrystals’ are universal sets
of sampling and interpolation for signals with a band-limited spectrum. We ask if
the corresponding exponential system is a universal Riesz basis in L

2 on appropriate
multiband sets on the circle. We prove that the answer depends on a diophantine
property of the quasicrystal. For the proof we extend to BMO a theorem of Kesten
on the discrepancy of irrational rotations of the circle.

1. Introduction

1.1. Sampling and interpolation. A band-limited signal is an entire function
F of exponential type, square-integrable on the real axis. According to the classical
Paley-Wiener theorem, F is the Fourier transform of an L2-function supported by
a bounded (measurable) set S ⊂ R, which is called the spectrum of F . We shall
denote by PWS the Paley-Wiener space of all functions F ∈ L2(R) which are Fourier
transforms of functions from L2(S),

F (t) =

∫

S
f(x) e−2πitx dx, f ∈ L2(S).

A discrete set Λ ⊂ R is called a set of sampling for PWS if every signal with
spectrum in S can be reconstructed in a stable way from its ‘samples’ {F (λ), λ ∈ Λ},
that is, there are positive constants A,B such that the inequalities

A‖F‖L2(R) 6

(∑

λ∈Λ

|F (λ)|2
)1/2

6 B‖F‖L2(R) (1)

hold for every F ∈ PWS . Also, Λ is called a set of interpolation for PWS if every
data {cλ} ∈ ℓ2(Λ) can be “transmitted” as samples, which means that there exists
at least one function F ∈ PWS such that F (λ) = cλ (λ ∈ Λ).

The sampling and interpolation properties can also be formulated in terms of the
exponential system

E(Λ) = {exp 2πiλt, λ ∈ Λ}.
The sampling property of Λ means that E(Λ) is a frame in the space L2(S), while
the interpolation holds when E(Λ) is a Riesz-Fischer system in this space. It follows
that Λ is a set of both sampling and interpolation if and only if E(Λ) forms a Riesz
basis in L2(S). See [29] for more details.

Sampling and interpolation may also be discussed in the periodic setting. If S is
a measurable subset of the circle group T = R/Z, then one can consider the frame or
Riesz-Fischer properties in L2(S) of the exponential system E(Λ), where Λ ⊂ Z.
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1.2. Density. The right inequality in (1) follows from the separation condition

inf
λ,λ′∈Λ, λ6=λ′

|λ− λ′| > 0,

which is also necessary for the interpolation, so this condition will always be assumed
below. The lower and upper uniform densities of a separated set Λ are defined
respectively by

D−(Λ) = lim
r→∞

min
a∈R

#
(
Λ ∩ (a, a+ r)

)

r
, D+(Λ) = lim

r→∞
max
a∈R

#
(
Λ ∩ (a, a+ r)

)

r
.

Landau [15] proved the following two results:

If Λ is a set of sampling for PWS, then D−(Λ) > mesS.

If Λ is a set of interpolation for PWS, then D+(Λ) 6 mesS.

Here S is a bounded measurable set, and mesS is the Lebesgue measure of S.

For “regularly” distributed sequences the two densities above coincide, and their
common value, denoted D(Λ), is called the uniform density of Λ. It follows that:

If E(Λ) is a Riesz basis in L2(S) then Λ has a uniform density D(Λ) = mesS.

1.3. Universality problem. Olevskii and Ulanovskii posed in [21, 22] the fol-
lowing question: is it possible to find a “universal” set Λ of given density, which
provides a stable reconstruction of any signal whose spectrum has a sufficiently small
Lebesgue measure? Similarly, does exist Λ of given density which is a set of interpo-
lation in every PWS with mesS sufficiently large?

It was proved in [21, 22] that no universal set of sampling or interpolation exists if
the spectrum S is allowed to be an arbitrary bounded measurable set. On the other
hand it was also proved that under some topological restrictions on the spectra,
universal sampling and interpolation does exist:

Given any d > 0 there is a (separated) set Λ ⊂ R of density D(Λ) = d, such that:

(i) Λ is a set of sampling for PWS for every compact set S ⊂ R, mesS < d.

(ii) Λ is a set of interpolation for PWS for every open set S ⊂ R, mesS > d.

In fact, this is a consequence of the following result:

Theorem A (Olevskii and Ulanovskii [21, 22]). Given any d > 0 one can find a
discrete set Λ ⊂ R (a perturbation of an arithmetical progression) such that E(Λ) is
a Riesz basis in L2(S) for every set S ⊂ R, mesS = d, which is the union of finitely
many disjoint intervals such that the lengths of these intervals and the gaps between
them are commensurable.

The latter result shows that one can construct a universal exponential Riesz basis
E(Λ), Λ ⊂ R, in the space L2(S) for a “dense” family of sets S ⊂ R.

1.4. Simple quasicrystals. A different construction of universal sampling and
interpolation sets, termed ‘simple quasicrystals’, was presented by Matei and Meyer
in [17, 18]. The construction is based on the so-called ‘cut and project’ scheme
introduced by Meyer in 1972 (see [19, 20]). In what follows we shall mainly focus in
the periodic case, in which the simple quasicrystals are constructed as follows.

Let α be an irrational real number, and consider the sequence of points {nα},
n ∈ Z, on T. Given an interval I = [a, b) ⊂ T define the following subset of Z,

Λ(α, I) := {n ∈ Z : a 6 nα < b}.
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It is well-known that the points {nα} are equidistributed on the circle T (and more-
over, they are well-distributed, see [14]). This implies that the set Λ(α, I) has a
uniform density D(Λ(α, I)) = |I|, where |I| is the length of the interval I.

The set Λ(α, I) is a set of universal sampling and interpolation:

Theorem B (Matei and Meyer [17]).

(i) E(Λ(α, I)) is a frame in L2(S) for every compact set S ⊂ T, mesS < |I|.
(ii) E(Λ(α, I)) is Riesz-Fischer in L2(S) for every open set S ⊂ T, mesS > |I|.
This result was further developed in [18]. In that paper the authors raised the

problem to understand what can be said about the “limiting case” when the measure
of S is equal to the density of Λ.

1.5. Riesz bases and quasicrystals. In the present paper we consider the
following aspect of the problem. Is it true that the exponential system E(Λ(α, I)) is
a Riesz basis in L2 on a certain subset S of the circle T? Moreover, does it provide
a universal Riesz basis for an appropriate “dense” family of sets S?

Our first result shows that the question admits a positive answer provided that
a particular diophantine condition, relating α and the length of the interval I, holds:

Theorem 1. Let |I| ∈ Z + αZ. Then the exponential system E(Λ(α, I)) is a Riesz
basis in L2(S) for every set S ⊂ T, mesS = |I|, which is the union of finitely many
disjoint intervals whose lengths belong to Z+ αZ.

In Section 3 this theorem will be proved in a more general form. We will also
see that the family of sets S in Theorem 1 is “dense” in an appropriate sense. In
particular we will prove the following corollary, which shows that properties (i) and
(ii) in Theorem B can be strengthened when |I| ∈ Z+ αZ.

Corollary 1. Let |I| ∈ Z + αZ. Suppose that U ⊂ T is an open set, K is compact,
K ⊂ U and mesK < |I| < mesU . Then one can find a set S, K ⊂ S ⊂ U , such that
E(Λ(α, I)) is a Riesz basis in L2(S).

Theorem 1 extends results from the papers [2, 16] on the existence of exponential
Riesz bases in L2 on ‘multiband sets’, that is, finite unions of intervals. See Section
6 below for a more detailed discussion.

Our second result complements the picture by clarifying the role of the diophan-
tine assumption |I| ∈ Z + αZ in Theorem 1. It turns out that this condition is not
only sufficient, but also necessary, for the simultaneous sampling and interpolation
property on multiband sets.

Theorem 2. Suppose that |I| /∈ Z + αZ. Then E(Λ(α, I)) is not a Riesz basis in
L2(S), for any set S ⊂ T which is the union of finitely many intervals.

1.6. Discrepancy and Kesten’s theorem. The proofs of the above mentioned
results are based on the connection of the problem to the theory of equidistribution
and discrepancy for the rotation of the circle by an irrational angle α.

Let α be a fixed irrational number. Given an interval I ⊂ T, we denote by ν(n, I)
the number of integers 0 6 k 6 n − 1 such that kα ∈ I. The equidistribution of the
points {nα} on the circle T means that

lim
n→∞

ν(n, I)

n
= |I|,

for every interval I. A quantitative measurement of this equidistribution is given by
the discrepancy function, defined by

D(n, I) = ν(n, I)− n|I|.
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Thus we have |D(n, I)| = o(n) as n → ∞, and, in fact, it is not difficult to show that
this estimate holds uniformly with respect to the interval I.

Better estimates for the discrepancy can be obtained based on diophantine prop-
erties of the number α. For example, if α is a quadratic irrational number then
|D(n, I)| = O(log n), where the estimate is uniform with respect to I. On the other
hand, it is known that for every α the lower bound

sup
I⊂T

|D(n, I)| > c log n

holds for infinitely many n, where c is a positive absolute constant (see [14]). Compare
also to the case where α and I are random [10, 11] .

It was discovered, though, that for certain fixed intervals I the discrepancy can
be bounded. Hecke [6] proved that if |I| ∈ Z + αZ then D(n, I) = O(1) as n → ∞.
Erdös and Szüsz conjectured [3] that also the converse to Hecke’s result should be
true. This conjecture was confirmed by Kesten [12] who proved that ifD(n, I) = O(1)
then |I| ∈ Z+ αZ. For further developments see [4, 23, 25].

We will prove an extension of Kesten’s theorem for bounded mean oscillations
of the discrepancy. We say that a sequence of complex numbers {cn} has bounded
mean oscillations, {cn} ∈ BMO, if for every n < m one has

1

m− n

m−1∑

k=n

∣∣∣ck −
cn + · · · + cm−1

m− n

∣∣∣ 6 M, (2)

for some constant M independent of n and m. Certainly, every bounded sequence
belongs to BMO. On the other hand, there are also unbounded sequences in BMO,
for example, the sequence cn = log n.

We will prove the following generalization of Kesten’s theorem.

Theorem 3. Let α be an irrational number, and I ⊂ T be an interval. If the sequence
{D(n, I)}, n = 1, 2, 3, . . . , belongs to BMO, then |I| ∈ Z+ αZ.

This theorem will be proved in a more general form in Section 4.

1.7. Meyer’s duality. The link between the sampling and interpolation prob-
lems for the sets Λ(α, I) and the theory of discrepancy for irrational rotations is an
idea due to Meyer, which we refer to as the ‘duality principle’. Meyer’s duality prin-
ciple (see Section 2) enables us to reduce the problem about exponential Riesz bases
in L2(S) to a similar problem in L2(I), where I is a single interval. It is then possible
to invoke known results about exponential Riesz bases in L2(I).

The proof of Theorem 1 (Section 3) consists of three main ingredients: Meyer’s
duality principle, a theorem of Avdonin [1] about exponential Riesz bases in L2(I) (an
extension of Kadec’s 1/4 theorem) and Hecke’s result about discrepancy. In order
to prove Theorem 2 (Section 5) we combine the duality principle with a theorem
due to Pavlov [24], which describes completely the exponential Riesz bases in L2(I).
Pavlov’s theorem allows us to conclude that the discrepancy must be in BMO, and
we can then apply an extension of Theorem 3 (Section 4).

1.8. Acknowledgements. We are grateful to A. M. Olevskii for introducing
us to the concept of quasicrystals and for his helpful suggestions which improved
the presentation of this paper. We thank Itai Benjamini for referring us to Kesten’s
paper. We also thank Jordi Marzo, Joaquim Ortega-Cerdà, Ron Peled, Omri Sarig
and Mikhail Sodin for helpful discussions on various aspects of the subject.
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2. Meyer’s duality principle

2.1. Let α be a fixed irrational number. For any set S ⊂ T one can, in principle,
consider the “Meyer set” based on α and S, defined by

Λ(α, S) = {n ∈ Z : nα ∈ S}. (3)

Meyer discovered a duality phenomenon connecting the sampling and interpolation
properties of the sets Λ(α, S). This duality allows to prove results about sampling
and interpolation such as Theorem B mentioned in the introduction. Meyer’s duality
principle lies in the basis of our approach as well.

It will be convenient to introduce the following terminology.

Definition. A set S ⊂ T will be called a multiband set if it is the union of finitely
many disjoint intervals. We will say that a multiband set S is left semi-closed if each
one of the intervals contains its left endpoint but not its right endpoint. Equivalently,
S is left semi-closed if the indicator function 1S is continuous from the right. We also
define a right semi-closed multiband set, in a similar way. Finally, S will be called
semi-closed if it is either left semi-closed or right semi-closed.

We shall need a version of the duality principle which is suitable for our setting.
Let −Λ denote the set {−n : n ∈ Λ}. We will prove the following:

Lemma 2.1. Let U be a semi-closed multiband set, and V be a (not necessarily
semi-closed) multiband set. Then:

(i) If E(Λ(α, V )) is a frame in the space L2(U), then E(−Λ(α,U)) is a Riesz-
Fischer system in L2(V ).

(ii) If E(Λ(α, V )) is a Riesz-Fischer system in L2(U), then E(−Λ(α,U)) is a frame
in L2(V ).

An immediate consequence of Lemma 2.1 is:

Corollary 2.2. Let U and V be two multiband sets, where U is semi-closed. If the
exponential system E(Λ(α, V )) is a Riesz basis in L2(U), then E(−Λ(α,U)) is a Riesz
basis in L2(V ).

2.2. We choose and fix a function ϕ(x) on R, infinitely smooth, with compact
support contained in the interval (0, 1), and such that

∫
R
|ϕ(x)|2 dx = 1. Let

ϕ̂(ξ) =

∫

R

ϕ(x) e−2πiξx dx, ξ ∈ R,

be the Fourier transform of ϕ, which is a smooth and rapidly decreasing function.
For each 0 < ε < 1 define a function ϕε on the circle T by

ϕε(t) =
1√
ε
ϕ(t/ε), 0 6 t < 1.

It follows that ϕε is an infinitely smooth function on T, supported by (0, ε), such that∫
T
|ϕε(t)|2 dt = 1, and the Fourier coefficients of ϕε are given by

ϕ̂ε(n) =
√
ε ϕ̂(εn), n ∈ Z.

The following two lemmas are essentially due to Matei and Meyer [17].

Lemma 2.3. For every Riemann integrable function f on T,

lim
ε→0

∑

n∈Z

∣∣f(nα) ϕ̂ε(n)
∣∣2 =

∫

T

|f(t)|2 dt.
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Lemma 2.4. Let {cn} be a sequence of complex numbers in ℓ1(Z). Then

lim
ε→0

∫

S

∣∣∣
∑

n∈Z

cn ϕε(t− nα)
∣∣∣
2
dt =

∑

n∈Λ(α,S)

|cn|2,

for every left semi-closed multiband set S.

Lemma 2.3 is a consequence of the equidistribution of the points {nα} on the
circle. Lemma 2.4 is due to the fact that ϕε(t − nα) is supported by a small right
neighborhood of the point nα. See [17] for a proof sketch. Certainly, one can also get
a version of Lemma 2.4 for right semi-closed multiband sets, by choosing the function
ϕ supported by the interval (−1, 0) instead of (0, 1).

We will also need the following well-known fact:

Lemma 2.5 (See [29], p. 155). The exponential system E(Λ) is Riesz-Fischer in
L2(S) if and only if there is a positive constant C such that the inequality

∑

λ∈Λ

|cλ|2 6 C

∫

S

∣∣∣
∑

λ∈Λ

cλ e
2πiλt

∣∣∣
2
dt

holds for every finite sequence of scalars {cλ}.

2.3. Here we give the proof of Lemma 2.1. It is based on the proof from [17]
but we find it useful to provide the reader with a self contained proof. Below we will
assume that U is a left semi-closed multiband set, but as we have remarked one can
easily adapt the proof to the case when U is right semi-closed.

Proof of Part (i) of Lemma 2.1. Suppose that E(Λ(α, V )) is a frame in the
space L2(U). It is to be proved that E(−Λ(α,U)) is a Riesz-Fischer system in L2(V ).
By Lemma 2.5 it will be enough to show that, if f is a trigonometric polynomial

f(t) =
∑

n

cn e
−2πint (4)

such that cn = 0 unless nα ∈ U , then

∑

n

|cn|2 6 C

∫

V
|f(t)|2 dt. (5)

Given such a trigonometric polynomial f we define

Fε(t) =
∑

n∈Z

cn ϕε(t− nα).

Since U is left semi-closed, it follows that Fε is supported by U if ε is sufficiently
small. Since E(Λ(α, V )) is a frame in L2(U), there is a constant C such that

∫

U
|Fε(t)|2 dt 6 C

∑

n∈Λ(α,V )

|F̂ε(n)|2. (6)

Again we take the limit as ε → 0. Since U is left semi-closed, Lemma 2.4 implies
that the left hand side of (6) converges to

∑ |cn|2. On the other hand, it is easy to

see that F̂ε(n) = f(nα) ϕ̂ε(n). The right hand side of (6) can therefore be written as
∑

n∈Z

∣∣f(nα)1V (nα) ϕ̂ε(n)
∣∣2,

and by Lemma 2.3 it converges to
∫
V |f(t)|2 dt as ε → 0. This proves the first part

of Lemma 2.1. �
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Proof of Part (ii) of Lemma 2.1. We suppose that E(Λ(α, V )) is a Riesz-
Fischer system in L2(U). It is to be proved that E(−Λ(α,U)) is a frame in L2(V ),
that is, we must show that the inequality

∫

V
|f(t)|2 dt 6 C

∑

n∈Λ(α,U)

|f̂(−n)|2 (7)

holds for every f ∈ L2(V ). Since V is a multiband set, it is actually enough to verify
(7) for every infinitely smooth function f supported by V . Given such f , define

Fε(t) :=
∑

n∈Z

f(nα) ϕ̂ε(n) exp 2πint, t ∈ T.

The fact that f is supported by V implies that only exponentials from E(Λ(α, V ))
have their coefficient non-zero in the series above. Since E(Λ(α, V )) is a Riesz-Fischer
system in L2(U), it follows from Lemma 2.5 that there is a constant C such that

∫

T

|Fε(t)|2 dt =
∑

n∈Z

∣∣f(nα) ϕ̂ε(n)
∣∣2 6 C

∫

U
|Fε(t)|2 dt. (8)

Now we take the limit of (8) as ε → 0. Lemma 2.3 implies that the left hand
side of (8) tends to

∫
|f(t)|2 dt. On the other hand, substituting f with its Fourier

expansion in the definition of Fε, it is easy to see that

Fε(t) =
∑

n∈Z

f̂(−n)ϕε(t− nα).

The coefficients {f̂(−n)} belong to ℓ1, since f is smooth. Since U is left semi-closed
we may use Lemma 2.4, which implies that the limit as ε → 0 of the right hand side
of (8) is equal to the right hand side of (7). This proved the second part of Lemma
2.1. �

3. Exponential Riesz bases and multiband sets

3.1. In this section we prove Theorem 1. Let I be an interval on T which is either
left or right semi-closed. We will show that if the (necessary) diophantine condition
|I| ∈ Z+ αZ is satisfied, then the exponential system E(Λ(α, I)) is a universal Riesz
basis in L2(S) for a family of multiband sets S. In fact we will prove a somewhat
more general result than formulated in the introduction.

Theorem 3.1. Suppose that |I| ∈ Z+αZ. Then E(Λ(α, I)) is a Riesz basis in L2(S)
for every set S ⊂ T, mesS = |I|, which satisfies the following condition: the indicator
function 1S can be expressed as a finite linear combination of indicator functions of
intervals I1, . . . , IN whose lengths belong to Z+ αZ, that is,

1S(t) =
N∑

j=1

cj 1Ij(t), cj ∈ Z, |Ij | ∈ Z+ αZ (1 6 j 6 N). (9)

Condition (9) is certainly satisfied by any set S which is the union of finitely
many disjoint intervals I1, . . . , IN such that |Ij | ∈ Z + αZ. However, remark that
also other configurations are possible. For example, consider the set S of the form

S = I1 \ I2, I2 ⊂ I1, |I1|, |I2| ∈ Z+ αZ,

which certainly satisfies the condition (9), but which is the union of two disjoint
intervals whose lengths do not necessarily belong to Z+ αZ.
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3.2. We shall suppose, with no loss of generality, that S is a left semi-closed
multiband set. The condition (9) plays its key role in the following lemma.

Lemma 3.2. Let S be a left semi-closed multiband set satisfying (9). Then there is
a bounded function g : T → R, continuous from the right and with finitely many jump
discontinuities, such that

1S(t)−mesS = g(t) − g(t+ α), t ∈ T. (10)

Proof. Due to the linearity of the conditions (9) and (10), it will be enough
to prove the lemma in the case when S is a single interval whose length belongs to
Z + αZ. Moreover, by rotation, we may suppose that S is an interval whose left
endpoint is zero.

Let therefore S = [0, nα), where n ∈ Z. For simplicity we shall suppose that n is
a positive integer, as the case when n is negative is very similar. Let us denote by
θ(t) the 1-periodic function on R, defined by θ(t) = t for 0 6 t < 1. Considered as a
function on the circle T, this is a piecewise linear function, with slope +1, and with
a jump discontinuity of magnitude −1 at t = 0. Set

g(t) :=

n∑

k=1

θ(t− kα), t ∈ T,

then g is a bounded function, continuous from the right, and with finitely many jump
discontinuities. We have

g(t) − g(t+ α) = θ(t− na)− θ(t).

Observe that the function on the right hand side has the following properties: it has
a jump of magnitude +1 at t = 0 and another jump of magnitude −1 at t = nα, it
has derivative zero at all other points, and has zero integral on T. These properties
determine the function uniquely as 1S(t)−mesS, and so (10) is established. �

Remark. If S is a multiband set, then the condition (9) is not only sufficient, but
also necessary, for the existence of a bounded measurable function g(t) satisfying
(10). This is a consequence of a result due to Oren [23] (see also [27]).

3.3. We turn to the proof of Theorem 3.1. The first step in the proof, based
on Meyer’s duality principle, is to reduce the problem about exponential Riesz bases
in L2(S) to a similar problem in L2(I), where I is a single interval. This allows us
then to use a theorem of Avdonin [1] on exponential Riesz bases in L2(I). Below we
formulate a special case of Avdonin’s theorem, in a form which will be convenient in
our setting.

Theorem 3.3 (Avdonin [1]). Let I ⊂ R be a bounded interval, and let

λj =
j + δj + c

|I| , j ∈ Z, (11)

where c is a constant, and {δj} is a bounded sequence of real numbers. Suppose that
there is a positive integer N such that

sup
n∈Z

∣∣∣ 1
N

N∑

j=1

δn+j

∣∣∣ < 1

4
. (12)

If the sequence Λ = {λj , j ∈ Z} is separated then E(Λ) is a Riesz basis in L2(I).

Here the separation condition means that infn 6=m |λn − λm| > 0.

Remark that the famous Kadec 1/4 theorem (see [29]) corresponds to the case
when N = 1 in Avdonin’s theorem.
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Proof of Theorem 3.1. Let S be a multiband set satisfying (9) and such that
mesS = |I|. We must prove that E(Λ(α, I)) is a Riesz basis in L2(S). Recall that I
is semi-closed by assumption. Hence by Corollary 2.2, with U = −I and V = S, it
will be enough to show that E(Λ(α, S)) is a Riesz basis for L2(−I).

There is no loss of generality in assuming that S is left semi-closed. Let us
enumerate the set Λ(α, S) in an increasing order,

Λ(α, S) = {λj , j ∈ Z}, · · · < λ−1 < 0 6 λ0 < λ1 < λ2 < · · · ,
and take g to be the function from Lemma 3.2. By the definition (3) of Λ(α, S) and
according to (10), for any two integers m < n we have

#
(
Λ(α, S) ∩ [m,n)

)
=

n−1∑

k=m

1S(kα) = (n−m)mesS + g(mα)− g(nα).

Using this with m = 0, n = λj (j > 0) or with m = λj , n = 0 (j < 0) we get

j = λj mesS + g(0) − g(λjα), j ∈ Z.

Since mesS = |I|, this implies (11) with δj = g(λjα) and c = −g(0).

Observe that the perturbations {δj} are bounded, since g is bounded. We may
assume, by adding a constant to g if necessary, that

∫
S g(t) dt = 0. Hence

lim
m→∞

1

m

n+m∑

k=n+1

g(kα)1S(kα) = 0,

uniformly with respect to n ∈ Z (see [20], Chapter V, §6.3). It is then easy to see
that (12) holds for a sufficiently large N . Moreover, the sequence Λ(α, S) is clearly
separated, as the elements λj are distinct integers. So the proof is concluded by
Theorem 3.3. �

3.4. Let U (α) denote the collection of sets S which are finite unions of disjoint
intervals whose lengths belong to Z+αZ. In some sense, U (α) is a ‘dense’ family of
subsets of the circle T. For example, if U is an open set, K is compact, and K ⊂ U ,
then there is a set S ∈ U (α) such that K ⊂ S ⊂ U . This is due to the fact that the
points {nα} are dense on T.

In Theorem 1 we have considered the sub-class of sets S ∈ U (α) satisfying the
additional restriction mesS = β, where β is a fixed number belonging to Z + αZ.
It is not immediately obvious whether a similar ‘density’ property is true for this
sub-class. We shall prove, however, that this is true in the following sense:

Proposition 3.4. Suppose that β ∈ Z+ αZ, 0 < β < 1. Let U ⊂ T be an open set,
K be compact, such that K ⊂ U and mesK < β < mesU . Then one can find a set
S ∈ U (α), mesS = β, such that K ⊂ S ⊂ U .

Using Theorem 1 this implies Corollary 1 above. For the proof we will need

Lemma 3.5. Let α be an irrational number, and k be a non-zero integer. Given any
ε > 0 one can find real numbers γ1, . . . , γs in the segment (0, ε), such that γj ∈ Z+αZ
for each j, and

∑
γj = {kα}, where {kα} is the fractional part of kα.

Proposition 3.4 is an easy consequence of this lemma: given U and K as above,
choose numbers γ1, . . . , γs ∈ (0, ε), such that γj ∈ Z + αZ for each j, and

∑
γj = β.

If ε is sufficiently small then we may cover K by disjoint intervals I1, . . . , Is contained
in U , such that |Ij | = γj. The proposition follows by taking S = I1 ∪ · · · ∪ Is.

In the proof of Lemma 3.5 we shall use basic facts from the theory of continued
fractions, which can be found, for example, in [13]. Below ‖x‖ will denote the distance
of a real number x to its nearest integer, ‖x‖ = min |x− n|, n ∈ Z.
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Proof of Lemma 3.5. It would be enough to prove the claim in the case when
k = 1, as the general case would follow by considering the irrational number kα in
place of α. We may therefore suppose that k = 1, and with no loss of generality
also that α ∈ (0, 1). Let [0; a1, a2, . . . ] be the continued fraction expansion of α, and
pn/qn be the sequence of convergents of α. Fix a sufficiently large integer n, to be
chosen later. We define the numbers γ1, . . . , γs, where s = pn+1 + pn, by choosing
pn+1 of the numbers being equal to ‖qnα‖ and the other pn of the numbers being
equal to ‖qn+1α‖. Then each γj belongs to Z+ αZ, since

‖qnα‖ = (−1)n(qnα− pn) ∈ Z+ αZ (n = 1, 2, . . . ).

Moreover, we have

s∑

j=1

γj = pn+1‖qnα‖ + pn‖qn+1α‖

= pn+1(−1)n(qnα− pn) + pn(−1)n+1(qn+1α− pn+1)

= (−1)n(pn+1qn − pnqn+1)α = α,

as required. It remains to recall that ‖qnα‖ < 1/qn+1, so by choosing n sufficiently
large we can make sure that all the numbers γj are smaller than ε. �

4. Ergodic sums, BMO and Kesten’s theorem

In this section we study the bounded mean oscillations of ergodic sums, first in an
abstract setting, and then for irrational rotations of the circle. The results obtained
will allow us in Section 5 to prove an extension of Theorem 3.

4.1. It will be convenient to start with an abstract setting. Let H be a Hilbert
space, and U be a unitary operator on H. Given a vector f ∈ H we consider its
‘ergodic sums’ defined by

Sn := f + Uf + · · ·+ Un−1f.

The von Neumann ergodic theorem asserts that the ratios Sn/n converge to the
projection of f onto the closed subspace of U -invariant vectors. In particular, f is
perpendicular to this subspace if and only if ‖Sn‖ = o(n) as n → ∞.

A vector f is called a coboundary if there exists g ∈ H such that f = g −Ug. In
this case the ergodic sums have the form Sn = g − Ung. This, of course, implies the
boundedness of the ergodic sums, ‖Sn‖ = O(1). However, it was proved by Robinson
[26] that the latter condition is not only necessary but also sufficient for f to be a

coboundary. In fact, as the proof in [26] shows, the condition (1/N)
∑N

n=1 ‖Sn‖2 =
O(1) implies that f is a coboundary.

We will prove the following

Theorem 4.1. For a vector f to be a coboundary it is necessary and sufficient that
the numbers VN (so-called ‘variances’) defined by

VN :=
1

N

N∑

n=1

∥∥∥Sn − S1 + · · ·+ SN

N

∥∥∥
2

(13)

are bounded for N = 1, 2, 3, . . . .
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This result strengthens Robinson’s theorem, since the assumption VN = O(1) is

weaker than the condition (1/N)
∑N

n=1 ‖Sn‖2 = O(1). This is true because

VN =
1

N

N∑

n=1

∥∥Sn

∥∥2 −
∥∥∥ 1

N

N∑

n=1

Sn

∥∥∥
2
.

A key tool in [26] as well as in our proof of Theorem 4.1 is the spectral measure.
Since the sequence {〈Unf, f〉} is positive definite, by Herglotz’s theorem (see [9])
there exists a positive, finite measure µf on the circle T, such that

∫

T

e2πint dµf (t) = 〈Unf, f〉, n ∈ Z. (14)

The measure µf is called the spectral measure of f with respect to U . In the paper
[26] the coboundaries were characterized also in terms of the spectral measure, in
the following way: f is a coboundary if and only if the integral

∫

T

dµf (t)

sin2 πt

(with the integrand taking the value +∞ at t = 0) is finite. Theorem 4.1 is obtained
by a combination of this result and the following

Lemma 4.2. For any f ∈ H we have

lim
N→∞

VN =
1

4

∫

T

dµf (t)

sin2 πt
, (15)

where the integral on the right hand side may be finite or infinite.

Proof. It follows from (14) that

‖P (U)f‖2 =
∫

T

|P (e2πit)|2 dµf (t)

for every polynomial P (z) = c0 + c1z + · · · + cnz
n. In particular, using (13) we can

express the variance VN in terms of the spectral measure in the form

VN =

∫

T

QN (t) dµf (t), (16)

where QN (t) is the trigonometric polynomial defined by

QN (t) :=
1

N

N∑

n=1

∣∣∣
n−1∑

k=0

e2πikt − 1

N

N∑

m=1

m−1∑

k=0

e2πikt
∣∣∣
2
.

By evaluation of the inner sums we get

QN (t) =
1

N

N∑

n=1

∣∣∣1− e2πint

1− e2πit
− 1

N

N∑

m=1

1− e2πimt

1− e2πit

∣∣∣
2
,

and it follows that

4QN (t) sin2 πt =
1

N

N∑

n=1

∣∣∣(1− e2πint)− 1

N

N∑

m=1

(1− e2πimt)
∣∣∣
2

=
1

N

N∑

n=1

∣∣∣e2πint − 1

N

N∑

m=1

e2πimt
∣∣∣
2
=

1

N

N∑

n=1

∣∣∣e2πint
∣∣∣
2
−
∣∣∣ 1
N

N∑

n=1

e2πint
∣∣∣
2

= 1− sin2 πNt

N2 sin2 πt
.
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We have therefore obtained the formula

QN (t) =
1

4 sin2 πt

(
1− sin2 πNt

N2 sin2 πt

)
.

The conclusion of (15) from this formula is immediate: in the case when the integral
on the right hand side of (15) is finite one should merely apply to (16) the dominated
convergence theorem, while in the case of divergence of the integral in (15) the result
would follow from Fatou’s lemma. �

4.2. We shall now consider the special case when H = L2(T) and the unitary
operator U is the irrational rotation,

(Uf)(x) = f(x+ α), f ∈ L2(T),

where α is a fixed irrational number. In this case the ergodic sums have the form

Sn(x) =

n−1∑

k=0

f(x+ kα). (17)

Much attention has been paid to the case when these ergodic sums are bounded,
that is, supn |Sn(x)| < ∞ for some (or every) x ∈ T. For more details we refer the
reader to the papers [4, 23, 25, 27] and to the references therein.

Here we consider the bounded mean oscillations of the ergodic sums. In the next
theorem we shall see that if f is sufficiently “good”, then BMO behavior of the ergodic
sums implies that f is a coboundary with respect to the rotation by α.

Theorem 4.3. Let α be an irrational number, and f be a Riemann integrable function
on T. Suppose that for some fixed x0 ∈ T, the sequence {Sn(x0)}, n = 1, 2, 3, . . . ,
belongs to BMO. Then there exists a function g ∈ L2(T) such that f(x) = g(x) −
g(x+ α) almost everywhere.

Recall the definition (2) of the space BMO given in Section 1. It is well-known
that replacing the condition (2) with an appropriate ℓp version yields an equivalent
definition of BMO. This is a consequence of a classical theorem of John and Nirenberg
[8] (see also [5], Chapter VI §2) in a version adopted for sequences. In the next lemma
we formulate this fact for p = 2.

Lemma 4.4 ([8]). {cn} ∈ BMO if and only if there is a constant M such that
(

1

m− n

m−1∑

k=n

∣∣∣ck −
cn + · · · + cm−1

m− n

∣∣∣
2
)1/2

6 M (18)

for every n < m.

Proof of Theorem 4.3. Define

vN (x) :=

(
1

N

N∑

n=1

∣∣∣Sn(x)−
S1(x) + · · · + SN (x)

N

∣∣∣
2
)1/2

(x ∈ T).

Using the obvious property Sn(x+ jα) = Sj+n(x)− Sj(x) it follows that

vN (x+ jα) =

(
1

N

N∑

n=1

∣∣∣Sj+n(x)−
Sj+1(x) + · · ·+ Sj+N (x)

N

∣∣∣
2
)1/2

.

The assumption that {Sn(x0)} ∈ BMO combined with Lemma 4.4 thus implies the
existence of a constant M such that

vN (x0 + jα) 6 M, j = 0, 1, 2, . . . .
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The function vN is therefore bounded by M on a dense subset of T. But vN is a
Riemann integrable function, since so is f , hence it follows that

∫

T

vN (x)2 dx 6 M2, N = 1, 2, . . . .

On the other hand, we have
∫
vN (x)2 dx = VN , where VN is the variance defined by

(13). It follows that the variances are bounded for N = 1, 2, 3, . . . , so the proof is
concluded by Theorem 4.1. �

4.3. We can now prove Theorem 3. In fact, this theorem is a consequence of
the following more general result.

Theorem 4.5. Let α be an irrational number, and S ⊂ T be a measurable set whose
boundary has Lebesgue measure zero. Let ν(n, S) denote the number of integers 0 6

k 6 n − 1 such that kα ∈ S. If the sequence {ν(n, S) − nmesS}, n = 1, 2, 3, . . . ,
belongs to BMO, then mesS ∈ Z+ αZ.

The proof is a combination of the previous result with an argument due to
Furstenberg, Keynes and Shapiro [4] and Petersen [25].

Proof of Theorem 4.5. The fact that the boundary of S has Lebesgue mea-
sure zero implies that the function f(x) = 1S(x)−mesS is Riemann integrable. Let
Sn(x) be the ergodic sums of f defined by (17). Then we have {Sn(0)} ∈ BMO by
assumption. Theorem 4.3 therefore implies the existence of a function g ∈ L2(T) such
that f(x) = g(x) − g(x + α) (a.e.). We may suppose that g is real-valued. Consider
then the function τ(x) = exp 2πig(x). We have

τ(x+ α) = e2πig(x+α) = e2πi(g(x)−f(x)) = τ(x) e2πimesS (a.e.),

since the function 1S takes integer values. This means that τ is an eigenfunction of the
irrational rotation by α, with eigenvalue exp 2πimesS. However all the eigenvalues
are known to be of the form exp 2πijα, j ∈ Z, hence mesS ∈ Z+ αZ. �

5. Necessary condition for Riesz bases

In this section we prove Theorem 2. We will show that unless the diophantine
condition |I| ∈ Z + αZ holds, the exponential system E(Λ(α, I)) cannot be a Riesz
basis in L2(S) for any multiband set S. The proof consists of three main ingredi-
ents: Meyer’s duality principle, the results from Section 4 on discrepancy and BMO,
and Pavlov’s theorem describing the exponential Riesz bases in L2(I) where I is an
interval.

5.1. We start with the formulation of Pavlov’s theorem.

Let f(x) be a locally integrable function on R. Given a bounded interval J ⊂ R

we denote by fJ and Vf (J) respectively the average and the variance of f over J ,

fJ =
1

|J |

∫

J
f(x) dx, Vf (J) =

1

|J |

∫

J
|f(x)− fJ |2 dx.

If supVf (J) < ∞, where the supremum is taken over all bounded intervals J , then
we say that f has bounded mean oscillations, f ∈ BMO(R). Remark that the space
BMO(R) is usually defined using L1 means instead of L2, but the two definitions are
equivalent, similarly to the case of BMO space of sequences which was discussed in
Section 4 (see again [5], Chapter VI §2).

For a discrete set Λ ⊂ R we denote by nΛ(x) the ‘counting function’ satisfying

nΛ(b)− nΛ(a) = #(Λ ∩ [a, b)), a < b,
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which is defined uniquely up to an additive constant. We will use the following version
of Pavlov’s theorem (see [7, p. 240]) which is formulated in terms of the counting
function nΛ.

Theorem 5.1 (Hrus̆c̆ev, Nikol’skii, Pavlov [7]). Let Λ = {λn, n ∈ Z}. The exponen-
tial system E(Λ) is a Riesz basis in L2(0, a), a > 0, if and only if

(i) Λ is separated, that is, infn 6=m |λn − λm| > 0;

(ii) f(x) = nΛ(x)− ax is a function in BMO(R);

(iii) There is y > 0 such that the harmonic continuation Uf (x+ iy) of f into the
upper half plane admits the following representation:

Uf (x+ iy) = c+ ũ(x) + v(x), x ∈ R,

where c is a constant, u, v are bounded measurable functions, ‖v‖∞ < 1
4 , and

ũ is the Hilbert transform of u.

In the proof below we shall exploit only part (ii) of Theorem 5.1. We therefore
do not discuss part (iii) in more detail. See [7] for a complete exposition.

5.2. We can finally prove the necessity of the condition |I| ∈ Z+ αZ.

Proof of Theorem 2. Suppose that E(Λ(α, I)) is a Riesz basis in L2(S), for
some multiband set S ⊂ T. We may suppose that S is semi-closed. Corollary 2.2,
with U = S and V = I, implies that E(Λ(α, S)) is a Riesz basis in L2(−I). Using
part (ii) of Theorem 5.1 it follows that the function

f(x) = nΛ(α,S)(x)− |I|x

belongs to BMO(R).

Since Λ(α, S) is a subset of Z, the function f is linear on each interval (n−1, n] and
has slope −|I| there. It is therefore possible to write f as the sum of two functions,
f = g+h, where g(x) admits the constant value f(n) on each interval (n− 1, n], and
h(x) is a 1-periodic function which is linear with slope −|I| on each such an interval.
It is then easy to see that the functions g − gJ and h − hJ are orthogonal on each
interval J of the form J = (n,m], n < m, and it follows that Vf (J) = Vg(J)+ Vh(J).

However, observe that if J = (n,m] then

Vg(J) =
1

m− n

m∑

k=n+1

∣∣∣f(k)− f(n+ 1) + · · ·+ f(m)

m− n

∣∣∣
2
,

and, since f ∈ BMO(R), we have

sup
J=(n,m]

Vg(J) 6 sup
J=(n,m]

Vf (J) < ∞.

Hence by Lemma 4.4 the sequence {f(n)}, n = 1, 2, 3, . . . , belongs to BMO.

Recall that Landau’s inequalities imply that mesS = |I|. By adding an appro-
priate constant to the counting function nΛ(α,S) we may assume that nΛ(α,S)(0) = 0.
This means that

f(n) = ν(n, S)− nmesS, n = 1, 2, 3, . . . ,

where ν(n, S) denotes the number of integers 0 6 k 6 n− 1 such that kα ∈ S. Since
{f(n)} ∈ BMO, it follows from Theorem 4.5 that mesS ∈ Z+αZ. We conclude that
|I| ∈ Z+ αZ and so the theorem is proved. �
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6. Remarks

6.1. If S is a single interval, then the complete description of the exponential
Riesz bases E(Λ), Λ ⊂ R, in L2(S) is given by Pavlov’s theorem. Much less is known,
however, in the case when S is the union of more than one interval. In fact, it is
unknown in general whether an exponential Riesz basis in L2(S) exists at all. This
existence has been established in the following special cases:

(i) S is a finite union of disjoint intervals with commensurable lengths [2, 16].

(ii) S is the union of two general intervals [28] (in this paper there is also a partial
result for the union of more than two intervals).

Theorem 3.1 exhibits a new family of examples of multiband sets S with a Riesz
basis of exponentials, namely, every set S satisfying the condition (9).

It is also interesting to compare our result to the previous ones in the case of
intervals with commensurable lengths. In [2, 16] the authors establish the existence
of a set Λ ⊂ R, a finite union of translates of an arithmetical progression, such that
E(Λ) is a Riesz basis in L2(S). Theorem 1 allows to construct a different such Λ. By
translation and rescaling we may suppose that S ⊂ [0, 1] is a finite union of disjoint
intervals of a common irrational length α. We can then choose Λ to be the set of all
integers k such that {kα} < mesS (where {kα} is the fractional part of kα).

6.2. In connection with ‘universal’ exponential Riesz bases in the periodic set-
ting, we have proved that if the density is an irrational number then there is an
exponential system E(Λ), Λ ⊂ Z, which is a Riesz basis in L2(S) for a ‘dense’ family
of sets S. Precisely, an immediate consequence of Theorem 1 is:

Given any irrational number 0 < α < 1 there is a set Λ ⊂ Z such that E(Λ) is a
Riesz basis in L2(S) for every set S ⊂ T, mesS = α, which is the union of finitely
many disjoint intervals whose lengths belong to Z+ αZ.

It is interesting to know what can be said if the density is a rational number.

6.3. Theorems 1 and 2 show that the condition |I| ∈ Z + αZ is necessary and
sufficient for the Riesz basis property of E(Λ(α, I)) in L2(S) for some multiband set
S ⊂ T. Remark, however, that we have not classified completely all such multiband
sets S. It was proved that the condition (9) is sufficient for S, but the question of
whether it is also necessary remains open.
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