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FINITENESS THEOREMS FOR DEFORMATIONS OF COMPLEXES

FRAUKE M. BLEHER* AND TED CHINBURG**

Abstract. We consider deformations of bounded complexes of modules for a profinite group
G over a field of positive characteristic. We prove a finiteness theorem which provides some
sufficient conditions for the versal deformation of such a complex to be represented by a complex
of G-modules that is strictly perfect over the associated versal deformation ring.
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1. Introduction

The object of this paper is to determine the versal deformation rings and versal deformations
of bounded complexes of modules for a profinite group. Our main result shows that under certain
hypotheses, the versal deformation may be represented by a bounded complex of modules which
are finitely generated over the versal deformation ring. This is evidence for the idea that complexes
of modules which arise from arithmetic should have versal deformations with this property.

Suppose that k is a field of characteristic p > 0 and that G is a profinite group. In [12], Mazur
developed a deformation theory of finite dimensional representations of G over k using work of
Schlessinger in [14]. In [1, 2], we generalized Mazur’s deformation theory by considering, instead of
k-representations of G, objects V • in the derived category D−(k[[G]]) of bounded above complexes
of pseudocompact modules over the completed group algebra k[[G]] of G over k. The case of k-
representations amounts to studying complexes that have exactly one non-zero cohomology group.

As in [2], we will assume V • is bounded and has finite dimensional cohomology groups, and that
G has a certain finiteness property so as to be able to apply Schlessinger’s work. The calculation
of the versal deformation ring R(G, V •) would in principle require an infinite number of first order
obstruction calculations, as discussed in [3]. For this reason we will study a different approach, which
can be seen as a counterpart for complexes of the method of de Smit and Lenstra in [5]. They first
considered lifts of matrix representations of groups; these are called framed deformations by Kisin
in [10, §2.3.4]. One then considers the natural morphism of functors from framed deformations to
deformations. When this idea is applied to complexes V •, a new issue arises:

Question 1.1. Is U(G, V •) represented by a complex of modules for the completed group ring

R(G, V •)[[G]] that is strictly perfect as a complex of R(G, V •)-modules?
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Here a strictly perfect complex of R(G, V •)-modules is a bounded complex of finitely generated
projective R(G, V •)-modules. The answer to Question 1.1 is yes (and obvious) when V • has only
one non-zero cohomology group, corresponding to the classical case. But we do not know the answer
in general, even when V • has only two non-zero cohomology groups.

We view Question 1.1 as a finiteness problem because when G is topologically finitely generated,
a complex of R(G, V •)[[G]]-modules representing U(G, V •) that is strictly perfect as a complex
of R(G, V •)-modules can be described by a finite number of finite matrices with coefficients in
R(G, V •). An a priori result showing the existence of such a description, especially with explicit
bounds on the sizes of the matrices, can be very useful in determining the ring R(G, V •) via matrices
with indeterminate entries. The proof of Theorem 4.2 gives an example of this method.

It is not very difficult to show that under our hypotheses on G, there is a theory of framed
deformations for V •, in the following sense. One can represent V • by a fixed choice of a bounded
complex of pseudocompact k[[G]]-modules each of which is finite dimensional over k. Fix a choice
of ordered k-basis for each term of V •. By a framed deformation over A one means a complex of
pseudocompact A[[G]]-modules M• along with ordered bases for the terms of M• as free finitely
generated A-modules such that there is an isomorphism of complexes k⊗̂AM

• → V • which carries
the chosen ordered bases for the terms of M• to the chosen ordered bases for the terms of V •.
Isomorphisms of framed deformations must be isomorphisms of complexes which respect ordered
bases. One can show, using Schlessinger’s criteria, that under the hypotheses on G we make in
§2, there is a versal deformation ring for the resulting functor. There is a natural transformation
from this framed deformation functor to the functor F̂V • . The issue in Question 1.1 is whether this
natural transformation will be surjective if we choose the ranks of the terms of V • to be sufficiently
large. This amounts to asking whether a single framed deformation functor has the derived category
deformation functor F̂V • as a quotient.

It is not hard to show that U(G, V •) is represented by a bounded above complex of projec-
tive modules for R(G, V •)[[G]]. The difficulty is that the standard results concerning truncations
of such complexes do not readily produce quasi-isomorphic complexes of R(G, V •)[[G]]-modules
that are strictly perfect as complexes of modules for R(G, V •), which is a much smaller ring than
R(G, V •)[[G]].

A fundamental problem in the subject appears to us to be whether Question 1.1 always has an
affirmative answer if V • arises from arithmetic, in a suitable sense. We will prove the following
result concerning this question:

Theorem 1.2. Suppose G is either

(i) topologically finitely generated and abelian, or

(ii) the tame fundamental group of the spectrum of a regular local ring S whose residue field is

finite of characteristic different from p with respect to a divisor with strict normal crossings.

Then U(G, V •) is represented by a complex of R(G, V •)[[G]]-modules that is strictly perfect as a

complex of R(G, V •)-modules.

In §4 we will apply this Theorem to compute U(G, V •) and R(G, V •) for some natural examples
in which S in Theorem 1.2 is the ℓ-adic integers Zℓ for some prime ℓ 6= p. These examples pertain
to the deformation of elements of order 2 in the Brauer group of Qℓ. Examples of this kind were
first considered in [2], where we determined the associated universal flat deformation rings. We will
produce some examples in which the versal deformation ring is strictly larger than the versal proflat
deformation ring. Finding explicit arithmetic constructions of the associated versal deformations
leads to interesting number theoretical questions, and is a good test of any general theory for
determining deformations of complexes of modules for a profinite group.

We now give an outline of this paper.
In §2 we recall the definitions needed to state the main result of [2] concerning the existence of

versal and universal deformations of objects V • in D−(k[[G]]). In §3 we give a proof of Theorem 1.2.
The argument outlined in §3.1 proceeds by improving the representative for the versal deformation
in question by three steps. In the first step one works from right to left to produce a complex whose
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individual terms have large annihilators. In the second step, one works from left to right and uses
an Artin-Rees argument to produce a complex whose terms are finitely generated over the versal
deformation ring. Finally in the last step one works from right to left to refine these terms so they
become finitely generated and projective over the versal deformation ring. In §4 we conclude with
some examples pertaining to the element of order 2 in the Brauer group of Qℓ.

Acknowledgments: The authors would like to thank Luc Illusie and Ofer Gabber for valuable
discussions, and the Banff International Research Station for support during the preparation of part
of this paper.

2. Quasi-lifts and deformation functors

Let G be a profinite group, let k be a field of characteristic p > 0, and let W be a complete

local commutative Noetherian ring with residue field k. Define Ĉ to be the category of complete
local commutative Noetherian W -algebras with residue field k. The morphisms in Ĉ are continuous
W -algebra homomorphisms that induce the identity on k. Let C be the subcategory of Artinian
objects in Ĉ.

Let R ∈ Ob(Ĉ). Then R[[G]] denotes the completed group algebra of the usual abstract group
algebra R[G] of G over R, i.e. R[[G]] is the projective limit of the ordinary group algebras R[G/U ]
as U ranges over the open normal subgroups of G. We have that R is a pseudocompact ring and
R[[G]] is a pseudocompact R-algebra.

Pseudocompact rings, algebras and modules have been studied, for example, in [6, 7, 4]. Recall
that a pseudocompact ring is a topological ring Λ that is complete and Hausdorff and admits a
basis of open neighborhoods of 0 consisting of two-sided ideals J for which Λ/J is an Artinian
ring. Let Λ be a pseudocompact ring. Then Λ is the projective limit of Artinian quotient rings
having the discrete topology. A pseudocompact Λ-module is a complete Hausdorff topological Λ-
module M which has a basis of open neighborhoods of 0 consisting of submodules N for which
M/N has finite length as Λ-module. Put differently, a Λ-module is pseudocompact if and only
if it is the projective limit of Λ-modules of finite length having the discrete topology. If R is a
commutative pseudocompact ring and Λ is a complete Hausdorff topological ring, then Λ is called
a pseudocompact R-algebra provided Λ is an R-algebra in the usual sense and Λ admits a basis
of open neighborhoods of 0 consisting of two-sided ideals J for which Λ/J has finite length as R-
module. Note that every pseudocompact R-algebra is a pseudocompact ring, and a module over a
pseudocompact R-algebra has finite length if and only if it has finite length as R-module.

Remark 2.1. Let Λ be a pseudocompact ring and let R be a commutative pseudocompact ring.
Denote the category of pseudocompact left Λ-modules by PCMod(Λ).

Recall that a pseudocompact Λ-module M is said to be topologically free on a set X = {xi}i∈I

if M is isomorphic to the product of a family (Λi)i∈I where Λi = Λ for all i.

(i) The category PCMod(Λ) is an abelian category with exact projective limits. Since every
topologically free pseudocompact Λ-module is a projective object in PCMod(Λ) and since
every pseudocompact Λ-module is the quotient of a topologically free Λ-module, PCMod(Λ)
has enough projective objects.

(iii) If M and N are pseudocompact Λ-modules, then we define the right derived functors
ExtnΛ(M,N) by using a projective resolution of M .

(iv) Suppose Λ is a pseudocompact R-algebra, and let ⊗̂Λ denote the completed tensor product
in the category PCMod(Λ) (see [4, §2]). If M is a right (resp. left) pseudocompact Λ-
module, then M⊗̂Λ− (resp. −⊗̂ΛM) is a right exact functor.

If M is finitely generated as a pseudocompact Λ-module, it follows from [4, Lemma
2.1(ii)] that the functors M ⊗Λ − and M⊗̂Λ− (resp. − ⊗Λ M and −⊗̂ΛM) are naturally
isomorphic.

(v) Suppose Λ is a pseudocompact R-algebra and M is a right (resp. left) pseudocompact Λ-
module. Recall that M is said to be topologically flat, if the functor M⊗̂Λ− (resp. −⊗̂ΛM)
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is exact. By [4, Lemma 2.1(iii)] and [4, Prop. 3.1], M is topologically flat if and only if M
is projective.

If Λ = R and M is a pseudocompact R-module, it follows from [7, Proof of Prop. 0.3.7]
and [7, Cor. 0.3.8] that M is topologically flat if and only if M is topologically free if and
only if M is abstractly flat. In particular, if R is Artinian, a pseudocompact R-module is
topologically flat if and only if it is abstractly free.

Remark 2.2. Let Λ be a pseudocompact ring.

(i) Suppose f : M → N is a homomorphism of pseudocompact Λ-modules. Since PCMod(Λ)
has exact projective limits, it follows that the image of f is closed in N and is therefore a
pseudocompact Λ-submodule of N .

In particular, if I is a two-sided ideal of Λ and N is a pseudocompact left Λ-module such
that both I and N are finitely generated as abstract left Λ-modules, then I N is a closed
pseudocompact Λ-submodule of N , since it is the image of a homomorphism f : M → N
of pseudocompact Λ-modules in which M is a topologically free pseudocompact Λ-module
on a finite set of cardinality equal to the product of the cardinalities of generating sets for
I and N .

(ii) By [4, Lemma 1.1], if f : M → N is an epimorphism in PCMod(Λ), i.e. a surjective
homomorphism of pseudocompact Λ-modules, then there is a continuous section s : N → M
such that f ◦ s is the identity morphism on N . In particular, a homomorphism f : M → N
of pseudocompact Λ-modules is an isomorphism in PCMod(Λ) if and only if it is bijective.

(iii) SupposeM is a pseudocompact Λ-module that is free and finitely generated as an abstract Λ-
module. Since a topologically free pseudocompact Λ-module on a finite set X is isomorphic
to an abstractly free Λ-module on X , one sees that M is a topologically free pseudocompact
Λ-module on a finite set.

If Λ is a pseudocompact ring, let C−(Λ) be the abelian category of complexes of pseudocompact
Λ-modules that are bounded above, let K−(Λ) be the homotopy category of C−(Λ), and let D−(Λ)
be the derived category of K−(Λ). Let [1] denote the translation functor on C−(Λ) (resp. K−(Λ),
resp. D−(Λ)), i.e. [1] shifts complexes one place to the left and changes the sign of the differential.
Note that by Remark 2.2(ii), a homomorphism in C−(Λ) is a quasi-isomorphism if and only if the
induced homomorphisms on all the cohomology groups are bijective.

Hypothesis 1. Throughout this paper, we assume that V • is a complex in D−(k[[G]]) that has
only finitely many non-zero cohomology groups, all of which have finite k-dimension.

Remark 2.3. Let X•, Y • ∈ Ob(K−(R[[G]])) and consider the double complex K•,• of pseudocom-
pact R[[G]]-modules with Kp,q = (Xp⊗̂RY

q) and diagonal G-action. We define the total tensor
product X•⊗̂RY

• to be the simple complex associated to K•,•, i.e.

(X•⊗̂RY
•)n =

⊕

p+q=n

Xp⊗̂RY
q

whose differential is d(x ⊗̂ y) = dX(x) ⊗̂ y + (−1)x x ⊗̂ dY (y) for x ⊗̂ y ∈ Kp,q. Since homotopies
carry over the completed tensor product, we have a functor

⊗̂R : K−(R[[G]])×K−(R[[G]]) → K−(R[[G]]).

Using [16, Thm. 2.2 of Chap. 2 §2], we see that there is a well-defined left derived completed tensor

product ⊗̂L

R. Moreover, if X• and Y • are as above, then X•⊗̂L

RY
• may be computed in D−(R[[G]])

in the following way. Take a bounded above complex Y ′• of topologically flat pseudocompactR[[G]]-
modules with a quasi-isomorphism Y ′• → Y • in K−(R[[G]]). Then this quasi-isomorphism induces

an isomorphism between X•⊗̂RY
′• and X•⊗̂L

RY
• in D−(R[[G]]).

Definition 2.4. (a) We will say that a complex M• in K−(R[[G]]) has finite pseudocompact

R-tor dimension, if there exists an integer N such that for all pseudocompact R-modules
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S, and for all integers i < N , Hi(S⊗̂L

RM
•) = 0. If we want to emphasize the integer N in

this definition, we say M• has finite pseudocompact R-tor dimension at N .
(b) A quasi-lift of V • over an object R of Ĉ is a pair (M•, φ) consisting of a complex M• in

D−(R[[G]]) that has finite pseudocompact R-tor dimension together with an isomorphism

φ : k⊗̂L

RM
• → V • in D−(k[[G]]). Two quasi-lifts (M•, φ) and (M ′•, φ′) are isomorphic if

there is an isomorphism f : M• → M ′• in D−(R[[G]]) with φ′ ◦ (k⊗̂L

f) = φ.

(c) Let F̂ = F̂V • : Ĉ → Sets be the functor which sends an object R of Ĉ to the set F̂ (R) of all
isomorphism classes of quasi-lifts of V • over R, and which sends a morphism α : R → R′

in Ĉ to the set map F̂ (R) → F̂ (R′) induced by M• 7→ R′⊗̂L

R,αM
•. Let F = FV • be the

restriction of F̂ to the subcategory C of Artinian objects in Ĉ.
Let k[ε], where ε2 = 0, denote the ring of dual numbers over k. The set F (k[ε]) is called

the tangent space to F , denoted by tF .

Remark 2.5. Suppose M• is a complex in K−([[RG]]) of topologically flat, hence topologically free,
pseudocompact R-modules that has finite pseudocompact R-tor dimension at N . Then the bounded

complex M ′•, which is obtained from M• by replacing MN by M ′N = MN/δN−1(MN−1) and by

setting M ′i = 0 if i < N , is quasi-isomorphic to M• and has topologically free pseudocompact
terms over R.

Theorem 2.6. Suppose that Hi(V •) = 0 unless n1 ≤ i ≤ n2. Every quasi-lift of V • over an object

R of Ĉ is isomorphic to a quasi-lift (P •, φ) for a complex P • with the following properties:

(i) The terms of P • are topologically free R[[G]]-modules.

(ii) The cohomology group Hi(P •) is finitely generated as an abstract R-module for all i, and
Hi(P •) = 0 unless n1 ≤ i ≤ n2.

(iii) One has Hi(S⊗̂L

RP
•) = 0 for all pseudocompact R-modules S unless n1 ≤ i ≤ n2.

Proof. Part (i) follows from [2, Lemma 2.9]. Assume now that the terms of P • are topologically

free R[[G]]-modules, which means in particular that the functors −⊗̂L

RP
• and −⊗̂RP

• are naturally
isomorphic. Let mR denote the maximal ideal of R, and let n be an arbitrary positive integer. By
[2, Lemmas 3.1 and 3.8], Hi((R/mn

R)⊗̂RP
•) = 0 for i > n2 and i < n1. Moreover, for n1 ≤ i ≤ n2,

Hi((R/mn
R)⊗̂RP

•) is a subquotient of an abstractly free (R/mn
R)-module of rank di = dimk H

i(V •),
and (R/mn

R)⊗̂RP
• has finite pseudocompact (R/mn

R)-tor dimension at N = n1. Since P • ∼=
lim
←−

n

(R/mn
R)⊗̂RP

• and since by Remark 2.1(i), the category PCMod(R) has exact projective limits,

it follows that for all pseudocompact R-modules S

Hi(S⊗̂RP
•) = lim

←−

n

Hi
(

(S/mn
RS)⊗̂R/mn

R

(

(R/mn
R)⊗̂RP

•
)

)

for all i. Hence Theorem 2.6 follows. �

Definition 2.7. A profinite group G has finite pseudocompact cohomology, if for each discrete
k[[G]]-module M of finite k-dimension, and all integers j, the cohomology group Hj(G,M) =

Extjk[[G]](k,M) has finite k-dimension.

Theorem 2.8. ([2, Thm. 2.14]) Suppose that G has finite pseudocompact cohomology.

(i) The functor F has a pro-representable hull R(G, V •) ∈ Ob(Ĉ) (c.f. [14, Def. 2.7] and [13,

§1.2]), and the functor F̂ is continuous (c.f. [13]).
(ii) There is a k-vector space isomorphism h : tF → Ext1D−(k[[G]])(V

•, V •).

(iii) If HomD−(k[[G]])(V
•, V •) = k, then F̂ is represented by R(G, V •).

Remark 2.9. By Theorem 2.8(i), there exists a quasi-lift (U(G, V •), φU ) of V
• over R(G, V •) with

the following property. For each R ∈ Ob(Ĉ), the map HomĈ(R(G, V •), R) → F̂ (R) induced by
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α 7→ R⊗̂L

R(G,V •),αU(G, V •) is surjective, and this map is bijective if R is the ring of dual numbers

k[ε] over k where ε2 = 0.
In general, the isomorphism type of the pro-representable hull R(G, V •) is unique up to non-

canonical isomorphism. If R(G, V •) represents F̂ , then R(G, V •) is uniquely determined up to
canonical isomorphism.

Definition 2.10. Using the notation of Theorem 2.8 and Remark 2.9, we call R(G, V •) the versal

deformation ring of V • and (U(G, V •), φU ) a versal deformation of V •.

If R(G, V •) represents F̂ , then R(G, V •) will be called the universal deformation ring of V • and
(U(G, V •), φU ) will be called a universal deformation of V •.

Remark 2.11. If V • consists of a single module V0 in dimension 0, the versal deformation ring
R(G, V •) coincides with the versal deformation ring studied by Mazur in [12, 13]. In this case,
Mazur assumed only that G satisfies a certain finiteness condition (Φp), which is equivalent to
the requirement that H1(G,M) have finite k-dimension for all discrete k[[G]]-modules M of finite
k-dimension. Since the higher G-cohomology enters into determining lifts of complexes V • hav-
ing more than one non-zero cohomology group, the condition that G have finite pseudocompact
cohomology is the natural generalization of Mazur’s finiteness condition in this context.

We conclude this section by recalling a result from [3].

Proposition 2.12. ([3, Prop. 4.2]) Suppose G has finite pseudocompact cohomology and K is a

closed normal subgroup of G which is a pro-p′ group, i.e. the projective limit of finite groups that

have order prime to p. Let ∆ = G/K, and suppose V • is isomorphic to the inflation InfG∆ V •
∆ of

a bounded above complex V •
∆ of pseudocompact k[[∆]]-modules. Then the two deformation functors

F̂G = F̂G
V • and F̂∆ = F̂∆

V •
∆
which are defined according to Definition 2.4(c) are naturally isomorphic.

In consequence, R(G, V •) ∼= R(∆, V •
∆) and (U(G, V •), φU ) ∼= (InfG∆ U(∆, V •

∆), InfG∆ φU ).

3. Finiteness questions

In this section, we consider the question of when every quasi-lift of V • over a ring A in Ĉ can be
represented by a bounded complex of abstractly finitely generated free A-modules with continuous
actions by G. Recall from Remark 2.2(iii) that if a pseudocompact module is abstractly finitely
generated free, then it is topologically free on a finite set. As before, k has positive characteristic
p. We distinguish two cases:

Case A: G is topologically finitely generated and abelian; and

Case B: G is the tame fundamental group of the spectrum of a regular local ring S whose residue
field k(S) is finite of characteristic ℓ 6= p with respect to a divisor D with strict normal crossings.

We recall the structure of G as in case B (see [8, 15]). Let Y = Spec(S), and let DY = D =
∑r

i=1 divY (fi) for a subset {fi}ri=1 of a system of local parameters for the maximal ideal mS of

S. Let X = Spec(Sh) be the strict henselization of Y , so that Sh is local, its residue field is
equal to the separable closure k(Sh) = k(S)s of k(S), and mSh is generated by mS . The divisor
DX =

∑r
i=1 divX(fi) has normal crossings on X . We have an exact sequence

(3.1) 1 → πt
1(X,DX) → πt

1(Y,DY ) → Gal(k(S)s/k(S)) → 1

in which G = πt
1(Y,DY ) and πt

1(X,DX) are tame fundamental groups. There is a Kummer isomor-
phism

(3.2) πt
1(X,DX) ∼=

r
∏

i=1

Ẑ(ℓ′)(1)

in which Ẑ(ℓ′)(1) = lim
←−

ℓ 6 |m

µm. The group Gal(k(S)s/k(S)) is procyclic and is topologically generated

by the Frobenius automorphism Φk(S) relative to the finite field k(S). Explicitly, if we define
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f ≥ 1 so k(S) = Fℓf has order ℓf , then a lift Φ ∈ πt
1(Y,DY ) of Φk(S) acts on each factor of

πt
1(X,DX) which is isomorphic to Ẑ(ℓ′)(1) via the map ζ → ζℓ

f

. Since the procyclic group 〈Φ〉,
which is topologically generated by the lift Φ, is isomorphic to the profinite completion Ẑ of Z,
and this maps isomorphically to Gal(k(S)s/k(S)), we see that (3.1) is a split exact sequence and
G = πt

1(Y,DY ) is the semidirect product of 〈Φ〉 with πt
1(X,DX).

Suppose V • ∈ D−(k[[G]]) is as in Hypothesis 1, i.e. V • has only finitely many non-zero coho-
mology groups, all of which have finite k-dimension. Assume that Hi(V •) = 0 unless n1 ≤ i ≤ n2.
Theorem 1.2 states that for G as in case A or case B, the versal deformation (U(G, V •), φU ) is repre-
sented in D−(R(G, V •)[[G]]) by a complex that is strictly perfect as a complex of R(G, V •)-modules.
This is a consequence of the following result.

Theorem 3.1. Let A be an object of Ĉ. Suppose (P •, φ) is a quasi-lift of V • over A such that P •

has properties (i), (ii) and (iii) of Theorem 2.6. There is a bounded complex Q• of pseudocompact

A[[G]]-modules which is isomorphic to P • in D−(A[[G]]) for which each term Qi is an abstractly

finitely generated free A-module and Qi = 0 unless n1 ≤ i ≤ n2.

The proof of Theorem 3.1 is outlined in the next section and carried out in subsequent sections.

3.1. Outline of the proof of Theorem 3.1. We begin with a reduction.

Lemma 3.2. There is a pro-p′ closed normal subgroup K of G with the following properties:

(i) The complex V • is inflated from a complex for ∆ = G/K.

(ii) In case A, ∆ = Zs
p ×Q×Q′ where Q (resp. Q′) is a finite abelian p-group (resp. p′-group).

Let w1,j for 1 ≤ j ≤ s be topological generators for the Zp-factors in this description.

(iii) In case B, let Ẑ(ℓ′,p′)(1) be the unique maximal pro-p′ subgroup of Ẑ(ℓ′)(1). Let K1 be the

maximal subgroup of

N1 =

r
∏

i=1

Ẑ(ℓ′,p′)(1) ⊂
r
∏

i=1

Ẑ(ℓ′)(1) = πt
1(X,DX)

that acts trivially on all of the terms of V •. Then K1 is closed and normal in G and

∆1 = πt
1(X,DX)/K1 =

(

r
∏

i=1

Zp(1)

)

× ∆̃1

for a finite abelian group ∆̃1 which is of order prime to p and ℓ. Let N0 ⊂ 〈Φ〉 be the kernel

of the action of 〈Φ〉 on ∆1, and view 〈Φ〉 as a subgroup of G via a choice of Frobenius Φ in

G. Define K0 to be the maximal subgroup of N0 that acts trivially on all of the terms of V •.

The group K generated by K0 and K1 is the semidirect product K1.K0 and is normal in G.

The group ∆ = G/K is the semidirect product of ∆1 with the quotient ∆0 = 〈Φ〉/K0. Let

Φ be the image of Φ in ∆0. The group ∆0 is isomorphic to the product 〈Φd〉 × ∆̃0, where

∆̃0 is cyclic of order d prime to p and 〈Φd〉 is isomorphic to Zp. Define w1 = Φ
d
, and let

{w2,j}rj=1 be topological generators for the Zp(1)-factors in ∆1.

Proof. Case A is clear, since G is abelian in this case. To prove this for G = πt
1(Y,DY ) as in case B,

one lets d′ be the smallest integer such that ℓfd
′ ≡ 1 mod p. In particular, d′ is relatively prime to

p. Writing 〈Φd′〉 as a product d′
∏

q Zq as q ranges over all primes, one shows that the kernel of the

action of 〈Φ〉 on Zp(1) is equal to d′
∏

q 6=p Zq. It follows that N0 is the subgroup of d′
∏

q 6=p Zq that

acts trivially on the characteristic subgroup ∆̃1 of ∆1. Since ∆̃1 is finite and K0 is the maximal
subgroup of N0 that acts trivially on all of the terms of V •, this implies that K0 has finite index in
d′
∏

q 6=p Zq . Thus K0 has finite index d which is prime to p in
∏

q 6=p Zq. One obtains that

〈Φ〉 = Zp ×





∏

q 6=p

Zq



 ⊃ {0} × d





∏

q 6=p

Zq



 = K0,
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which proves that ∆0 = 〈Φ〉/K0 = Zp × ∆̃0, where ∆̃0 is finite and cyclic of order d prime to p.
The remaining statements in the lemma now follow. �

The following result is a consequence of Lemma 3.2 and Proposition 2.12.

Corollary 3.3. It suffices to prove Theorem 3.1 when G is replaced by the group ∆ described in

Lemma 3.2.

Let A be an object of Ĉ. Since A[[Zs
p]] is isomorphic to a power series algebra over A in s

commuting variables, it follows that A[[∆]] is left and right Noetherian for ∆ as in Lemma 3.2(ii).

For ∆ as in Lemma 3.2(iii), one considers the subgroup ∆̃ of finite index in ∆ that is topologically

generated by w1 = Φ
d
and by w2,j , 1 ≤ j ≤ r. By embedding ∆̃ as a closed subgroup of block

diagonal matrices with blocks of size 2 inside GL2r(Zp), one sees that ∆̃ is a compact p-adic analytic

group. Hence it follows from Lazard’s result [11, Prop. 2.2.4 of Chap. V] that Zp[[∆̃]] is left and
right Noetherian. Since Lazard’s arguments also work if Zp is replaced by A, we obtain the following
result.

Lemma 3.4. If A is an arbitrary object of Ĉ and ∆ is as in Lemma 3.2, then the ring B = A[[∆]]
is both left Noetherian and right Noetherian.

For the remainder of this section, let A be an object of Ĉ and let B = A[[∆]]. To better explain
the main ideas of the proof without having to use multiple subscripts, we will at first assume that
if ∆ is as in Lemma 3.2(iii) then r = 1. In this case we will write w2 instead of w2,1. We will show
in §3.7 how to generalize the proofs to work for r > 1.

The proof of Theorem 3.1 depends on the following results.

Proposition 3.5. Suppose ∆ is as in Lemma 3.2(iii) and r = 1. Define w2 = w2,1. For positive

integers N,N ′, let J = B ·(wN
2 −1)N

′

. Then J is a closed two-sided ideal of B and the quotient ring

B = B/J is a pseudocompact A-algebra. Moreover, J is a topologically free rank one left B-module

and a topologically free rank one right B-module.

Proposition 3.6. Suppose ∆ is as in Lemma 3.2(iii) and r = 1. Define w2 = w2,1. Let M be

a pseudocompact B-module that is finitely generated as an abstract A-module. Then there exist

positive integers N,N ′ such that (wN
2 − 1)N

′ ·M = {0}.
Proposition 3.7. Let J be a two-sided ideal in B of the following form:

(i) If ∆ is as in Lemma 3.2(ii), let J = {0}.
(ii) If ∆ is as in Lemma 3.2(iii) and r = 1, let J = B · (wN

2 − 1)N
′

, where w2 = w2,1 and N,N ′

are positive integers.

If Λ = B/J , then Λ is a pseudocompact A-algebra. Suppose M is a pseudocompact Λ-module that

is finitely generated as an abstract Λ-module. Let T be a pseudocompact Λ-submodule of M that is

finitely generated as an abstract A-module. Then there is a pseudocompact Λ-submodule M ′ of M
such that M ′ ∩ T = {0} and M/M ′ is finitely generated as an abstract A-module.

Proposition 3.8. Let Ω be a pseudocompact ring that is left Noetherian. Let P • be a complex in

D−(Ω) whose terms P i are free and finitely generated as abstract Ω-modules such that P i = 0 if

i > 0. Suppose that for i ≤ 0, Ii is a closed two-sided ideal in Ω with the following properties.

(a) The cohomology group Hi(P •) is annihilated by Ii for i ≤ 0.
(b) For i ≤ 0, the two-sided ideal Ji = Ii · Ii+1 · · · I1 · I0 is free and finitely generated as an

abstract left Ω-module.

Then P • is isomorphic in D−(Ω) to a complex Q• such that Qi = 0 for i > 0 and Qi is annihilated

by Ji for i ≤ 0.

Proposition 3.9. Suppose ∆ is one of the groups in Lemma 3.2, where we assume r = 1 when ∆ is

as in Lemma 3.2(iii). Let M be a pseudocompact B-module that is finitely generated as an abstract

A-module. Then there exists a pseudocompact B-module F that is free and finitely generated as an

abstract A-module and a surjective homomorphism ϕ : F → M of pseudocompact B-modules.
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Remark 3.10. Let Ω be a pseudocompact ring that is left Noetherian, and let M• be a bounded
above complex of pseudocompact Ω-modules such that M i = 0 for i > n and the cohomology
groups Hi(M•) are finitely generated as abstract Ω-modules. The construction given by Hartshorne
in [9, III Lemma 12.3] shows that there is a quasi-isomorphism ρ : L• → M• in C−(Ω), where L•

is a bounded above complex of pseudocompact Ω-modules that are free and finitely generated as
abstract Ω-modules and Li = 0 for i > n. Moreover, we can require ρn−1 : Ln−1 → Mn−1 to be
surjective.

We first show how Theorem 3.1 follows from these results when G is replaced by ∆ and, if ∆ is
as in Lemma 3.2(iii), we assume r = 1. As before, we write w2 instead of w2,1.

Suppose P • has properties (i), (ii) and (iii) of Theorem 2.6. Without loss of generality we will
suppose that n2 = 0, so that P i = 0 if i > 0.

Step 1: The complex P • is isomorphic in D−(B) to a complex Q• such that Qi = 0 if i > 0 or
i < n1 and such that if n1 ≤ i ≤ 0 then Qi is annihilated by a closed two-sided ideal J in B of the
form described in Proposition 3.7.

Proof of Step 1. If ∆ is as in Lemma 3.2(ii), we can define Q• to be the complex obtained from P •

by replacing Pn1 by Pn1/Bn1(P •) and P i by 0 for i < n1.
Suppose now that ∆ is as in Lemma 3.2(iii) and r = 1. Using Remark 3.10, we can assume that

the terms of P • are free and finitely generated as abstract B-modules and that P i = 0 for i > 0. For
i ≤ 0, we apply Proposition 3.6 to M = Hi(P •) to see that there are integers N(i), N ′(i) ≥ 1 such

that the left ideal Ii = B · (wN(i)
2 − 1)N

′(i) annihilates Hi(P •). Proposition 3.5 shows that Ii is a
closed two-sided ideal of B that is a topologically free rank one right B-module and a topologically
free rank one left B-module. Therefore for i ≤ 0, the ideal Ji = Ii · Ii+1 · · · I1 · I0 is a topologically
and abstractly free rank one left B-module. The hypotheses of Proposition 3.8 are now satisfied
when we let Ω = B. Therefore P • is isomorphic in D−(B) to a complex Q• such that Qi = 0 for
i > 0 and Qi is annihilated by Ji for i ≤ 0. Since Hi(Q•) = Hi(P •) = 0 if i < n1, we may replace

Qn1 by Qn1/Bn1(Q•) and Qi by 0 for i < n1. Let N =
∏0

i=n1
N(i) and let N ′ =

∑0
i=n1

N ′(i) and

define J = B · (wN
2 − 1)N

′

. Then J is a closed two-sided ideal which lies inside Jn1
. Since Jn1

annihilates Qi for all i, step 1 follows.

Step 2: We can assume that the complex Q• from step 1 has the property that all of the Qi are
finitely generated as abstract A-modules.

Proof of Step 2. Let J be the ideal from step 1. By Remark 3.10, Q• is isomorphic in D−(B/J) to
a complex Q′• whose terms are zero in positive degrees and free and finitely generated as abstract
B/J-modules in non-positive degrees. Let Q′′• be the complex obtained from Q′• by replacing Q′n1

by Q′n1/Bn1(Q′•) and Q′i by 0 for i < n1. By replacing Q• by Q′′•, we can assume that all of the
terms Qi are finitely generated as abstract B/J-modules.

Suppose by induction that n0 is an integer such that Qi is finitely generated as an abstract
A-module for all integers i < n0. This hypothesis certainly holds when n0 = n1, since Qi = 0 for
i < n1. Since Bn0(Q•) = Image(Qn0−1 → Qn0) and Hn0(Q•) are finitely generated as abstract
A-modules, also Zn0(Q•) = Ker(Qn0 → Qn0+1) is finitely generated as an abstract A-module. We
apply Proposition 3.7 to the modules M = Qn0 and T = Zn0(Q•), where, as arranged above, Qn0

is finitely generated as an abstract B/J-module. This shows that there is a pseudocompact B/J-
submodule M ′ of M such that M ′∩Zn0(Q•) = {0} and Qn0/M ′ is finitely generated as an abstract
A-module. The restriction of the differential δn0 : Qn0 → Qn0+1 to M ′ is therefore injective. This
implies that we have an exact sequence in C−(B/J)

0 → Q•
2 → Q• → Q•

1 → 0

in which Q•
2 consists of the two-term complex M ′ → δn0(M ′) in degrees n0 and n0 + 1, and

the morphism Q•
2 → Q• results from the natural inclusions of these terms into Qn0 and Qn0+1,

respectively. Since Q•
2 is acyclic, Q• → Q•

1 is a quasi-isomorphism. The term Qi
1 is Qi if i < n0,
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and if i = n0 then Qn0

1 = Qn0/M ′ which is finitely generated as an abstract A-module. One now
replaces Q• by Q•

1 and continues by ascending induction on n0. Hence step 2 follows.

Step 3: The complex Q• from step 2 is isomorphic in D−(B) to a complex L• such that Li = 0 for
i > 0 and Li is free and finitely generated as an abstract A-module for i ≤ 0.

Proof of Step 3. We construct L• using Proposition 3.9 together with a modification of the procedure
described in [9, III Lemma 12.3].

If n ≤ 0 is an integer, let Q>n be the truncation of Q• which results by setting to 0 all terms in
degrees ≤ n. Suppose by induction that L>n is a complex in D−(B) with the following properties.
The terms of L>n are free and finitely generated as abstract A-modules and these terms are 0 in
dimensions ≤ n and in dimensions > 0. Moreover, there is a morphism π>n : L>n → Q>n in
C−(B) which induces isomorphisms Hi(L>n) → Hi(Q•) for i > n + 1 and for which the induced
map Zn+1(L>n) → Hn+1(Q•) is surjective. We can certainly construct such an L>n for n = 0 since
Qi = 0 for i > 0.

The pseudocompact B-module Zn(Q•) is finitely generated as an abstract A-module since it is a
submodule of Qn and A is Noetherian. Therefore, by Proposition 3.9, there exists a pseudocompact
B-module Ln

1 that is free and finitely generated as an abstract A-module together with a surjection
τ1 : Ln

1 → Zn(Q•). Let πn+1 : Ln+1 → Qn+1 be the morphism defined by π>n. Define M to be the
pullback:

(3.3) M //

��

(πn+1)−1(Bn+1(Q•))

πn+1

��

Qn δn
// Bn+1(Q•).

Because (πn+1)−1(Bn+1(Q•)) is contained in Ln+1, it is finitely generated as an abstract A-module.
Since Qn is also finitely generated as an abstract A-module, it follows that the pseudocompact
B-module M is finitely generated as an abstract A-module. Note that the top horizontal morphism
in (3.3) is surjective because the lower horizontal morphism is surjective.

By Proposition 3.9, there exists a pseudocompact B-module Ln
2 that is free and finitely generated

as an abstract A-module together with a surjection τ2 : Ln
2 → M of pseudocompact B-modules.

This and (3.3) lead to a diagram of the following kind:

(3.4) Ln = Ln
1 ⊕ Ln

2
dn

//

πn

��

Ln+1

πn+1

��

Qn δn
// Qn+1.

Here the restriction of dn : Ln
1 ⊕ Ln

2 → Ln+1 to Ln
1 is trivial, and the restriction of dn to Ln

2 is
the composition of the surjection τ2 : Ln

2 → M with the morphism M → π−1
n+1(B

n+1(Q•)) in the

top row of (3.3) followed by the inclusion of π−1
n+1(B

n+1(Q•)) into Ln+1. The restriction of the left
downward morphism πn : Ln = Ln

1 ⊕ Ln
2 → Qn to Ln

1 is the composition of τ1 : Ln
1 → Zn(Q•)

with the inclusion of Zn(Q•) into Qn, and the restriction of this morphism to Ln
2 results from the

surjection τ2 : Ln
2 → M followed by the left downward morphism in (3.3).

By construction, the diagram (3.4) is commutative, and gives a morphism π>(n−1) : L>(n−1) →
Q>(n−1) in C−(B). We assumed that the morphism Zn+1(L•) → Hn+1(Q•), which is induced by
π>n, is surjective. Since the top horizontal morphism in (3.3) is surjective, the image of dn : Ln →
Ln+1 is (πn+1)−1(Bn+1(Q•)) ⊂ Ln+1. It follows that π>(n−1) : L>(n−1) → Q>(n−1) induces an
isomorphism

Hn+1(L>(n−1)) → Hn+1(Q•).

Because Ln
1 ⊂ Zn(L>(n−1)), we also have that πn : Zn(L>(n−1)) → Zn(Q•) is surjective. So since

Ln is free and finitely generated as an abstract A-module, we conclude by induction that we can
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construct a bounded above complex L• in D−(B) whose terms are free and finitely generated as
abstract A-modules together with a quasi-isomorphism L• → Q• in C−(B). This completes the
proof of step 3.

Since L• from step 3 is isomorphic to P • in D−(B), L• satisfies hypotheses (ii) and (iii) of
Theorem 2.6. By Definition 2.4(a), this implies that L• has finite pseudocompact A-tor dimension
at n1. Since all the terms of L• are topologically free by Remark 2.1(v), it follows by Remark 2.5
that the bounded complex C• that is obtained from L• by replacing Ln1 by Ln1/Bn1(L•) and Li

by 0 for i < n1, is quasi-isomorphic to L• and has topologically free pseudocompact terms over A.
By Remark 2.1(v) and step 3, this implies that all terms of C• are free and finitely generated as
abstract A-modules.

Because of Corollary 3.3, this completes the proof of Theorem 3.1, assuming Propositions 3.5 -
3.9 and assuming r = 1 if G is as in case B. We will prove these propositions in §3.2 - §3.6 and
discuss the case r > 1 for G as in case B in §3.7.

3.2. Proof of Proposition 3.5. Suppose ∆ is as in Lemma 3.2(iii) and r = 1. Write w2 instead

of w2,1, and let J = B · (wN
2 − 1)N

′

be as in the statement of Proposition 3.5. The key to proving
this proposition is to uniquely express each element in B = A[[∆]] by a unique convergent power
series as in Lemma 3.11 below.

We first note that the left ideal J = B · (wN
2 − 1)N

′

is a two-sided ideal in B, since

(3.5) (wN
2 − 1)N

′

Φ
−1

= Φ(wℓfN
2 − 1)N

′

= Φ





ℓf−1
∑

i=0

wiN
2





N ′

(wN
2 − 1)N

′

.

Suppose that in the description of ∆0 in Lemma 3.2(iii), the finite cyclic p′-group ∆̃0 of order d is
generated by σ ∈ ∆.

Lemma 3.11. Write N = pst where s ≥ 0 and t is prime to p. Then wN
2 − 1 = (wps

2 − 1) · v where

v is a unit of B commuting with w2, so J = B · (wps

2 − 1)N
′

. Every element f of B can be written

in a unique way as a convergent power series

(3.6) f =
∑

zu,a,ξ,b,c σ
u (w1 − 1)a ξ wb

2 (wps

2 − 1)c,

in which the sum ranges over all tuples (u, a, ξ, b, c) with 0 ≤ u ≤ d−1, a ≥ 0, ξ ∈ ∆̃1, 0 ≤ b ≤ ps−1
and c ≥ 0, and each zu,a,ξ,b,c lies in A. Moreover, any choice of zu,a,ξ,b,c ∈ A defines an element

f ∈ B.

Proof. A cofinal system of closed normal finite index subgroups of ∆ is given by the groupsH(m,m′)

that are topologically generated by wps+m

2 and wpm′

1 , where m ≥ 0 is arbitrary and m′ is chosen so

that ℓfdp
m′ ≡ 1 mod ps+m and the order of the automorphism of the finite group ∆̃1 induced by

the pro-p element w1 divides pm
′

. Note that these requirements on m′ ensure that each H(m,m′)
is normal in ∆. Define Γ(m,m′) = ∆/H(m,m′).

In B, we have

wN
2 − 1 = wpst

2 − 1 = (wps

2 − 1) · v,
where v = 1+wps

2 + · · ·+w
ps·(t−1)
2 is congruent to t mod the two-sided ideal B ·(w2−1). Since t 6≡ 0

mod p, v has invertible image in B/ (B · (w2 − 1) ∩ pB). Since the two-sided ideal B · (w2− 1)∩ pB
has nilpotent image in A′[Γ(m,m′)] for all discrete Artinian quotients A′ of A, this implies that v
is a unit in B.

Since B = A[[∆]] is the projective limit of the quotient rings A′[Γ(m,m′)], as A′ ranges over all
discrete Artinian quotients of A and (m,m′) ranges over all pairs of integers satisfying the above
conditions, it follows that every f ∈ B can be written in a unique way as a power series as in (3.6)
and every such power series converges to an element in B. �
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Remark 3.12. By a similar argument, every element f of B can be written in a unique way as a
convergent power series

(3.7) f =
∑

ωu,a,ξ,b,c (w
ps

2 − 1)c wb
2 ξ (w1 − 1)a σu,

in which the sum ranges over all tuples (u, a, ξ, b, c) with 0 ≤ u ≤ d−1, a ≥ 0, ξ ∈ ∆̃1, 0 ≤ b ≤ ps−1
and c ≥ 0, and each ωa,b,ξ,c,u lies in A. Moreover, any choice of ωa,b,ξ,c,u ∈ A defines and element
in B.

To prove Proposition 3.5, let J = B · (wN
2 − 1)N

′

. By (3.5), J is a two-sided ideal in B. By
Remark 2.2(i), J is closed in B, which implies that B = B/J is a pseudocompact A-algebra. By

using Lemma 3.11 (resp. Remark 3.12), we see that right (resp. left) multiplication with (wps

2 −1)N
′

is an injective homomorphism B → B. This shows that J is an abstractly free rank one left (resp.
right) B-module. By Remark 2.2(iii), this proves Proposition 3.5.

3.3. Proof of Proposition 3.6. Suppose ∆ is as in Lemma 3.2(iii) and r = 1. Write w2 instead
of w2,1. We will prove Proposition 3.6 by proving Lemmas 3.13 and 3.15 below, which enable us to
essentially reduce to the case when A is a field.

Lemma 3.13. Let L be a field and let M be a pseudocompact L[[∆]]-module that is finite dimen-

sional as L-vector space. There exist positive integers N,N ′ which are bounded functions of dimL M
such that (wN

2 − 1)N
′ ·M = {0}.

Proof. The action of w2 on M defines an automorphism in AutL(M) ⊂ EndL(M). This implies
that there is a monic polynomial h(x) ∈ L[x] of degree less than or equal to (dimL M)2 such
that h(w2) · M = 0. Since w2 is a unit, we can assume that h(x) is not divisible by x. Since

w1h(w2)w
−1
1 = h(wℓfd

2 ), it follows that h(wℓfd

2 ) also annihilates M .

Let I be the ideal of L[x] that is (abstractly) generated by {h(xℓfdn

) | n ≥ 0}. Then f(w2)·M = 0
for all f(x) ∈ I. Since L[x] is a principal ideal domain, I is generated by a single polynomial d(x) ∈
L[x]. Moreover, since x does not divide h(x), x also does not divide d(x). Because d(xℓfd

) ∈ I, d(x)

divides d(xℓfd

). This means that if {ρ1, . . . , ρm} are the roots of d(x), then for each 1 ≤ i ≤ m,

{ρℓfdn

i | n ≥ 0} is contained in {ρ1, . . . , ρm}. Note that m ≤ deg d(x) ≤ deg h(x) ≤ (dimLM)2.
This implies that there exists a positive integer s, which is a bounded function of dimLM , such
that each ρi is a root of unity of finite order bounded by ℓfds. Thus d(x) divides a polynomial of

the form (xN − 1)N
′

where N,N ′ are bounded functions of dimLM . �

Corollary 3.14. Suppose M is a pseudocompact A[[∆]]-module that is finitely generated as an

abstract A-module. There exist positive integers N,N ′′ that are bounded functions of the number of

abstract generators of M over A such that (wN
2 − 1)N

′′

annihilates k(p)⊗̂AM for all prime ideals p

of A, where k(p) denotes the residue field of p.

Proof. Note that dimk(p)(k(p)⊗A M) is less than or equal to the number of generators of M as an

abstract A-module. Hence we can use Lemma 3.13 with k(p) for L and k(p)⊗̂AM for M . �

Lemma 3.15. Let M be as in Corollary 3.14. Suppose f ∈ EndA(M) and that for all prime ideals

p of A we have

(3.8) f(M)p ⊆ p ·Mp

where the subscript p means localization at the prime ideal p. Then f is nilpotent.

Proof. Let first p be a prime ideal of A of codimension 0. Then dimAp = 0 so that Ap is Artinian.
Because f(M) is finitely generated as an abstract A-module, this implies that f(M)p is an Artinian
Ap-module. Since by assumption, f(M)p ⊆ p · Mp, we obtain for all positive integers n that

fn(M)p ⊆ pn ·Mp. Thus there is a positive integer n(p) with fn(p)(M)p = 0. Since A is Noetherian,
there are only finitely many prime ideals of A of codimension 0. Hence there is a positive integer
n0 such that fn0(M)p = 0 for all prime ideals p of A of codimension 0.
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Now let t ≥ 1, and suppose by induction that there is an integer nt−1 such that fnt−1(M)q = 0
for all prime ideals q of A of codimension at most t− 1. In particular, for each prime ideal q of A of
codimension at most t−1 there exists an element b(q) ∈ A such that b(q) 6∈ q and b(q)·fnt−1(M) = 0.
Let It−1 be the ideal of A that is abstractly generated by all elements b(q) as q ranges over all prime
ideals of A of codimension at most t− 1.

Let p be a prime ideal of A of codimension t. Using that the non-zero prime ideals of (A/It−1)p ∼=
Ap/It−1Ap correspond to the prime ideals of Ap containing It−1Ap and that the prime ideals of
Ap correspond to the prime ideals of A contained in p, one shows that (A/It−1)p has dimension
0. Since fnt−1(M) is finitely generated as an abstract (A/It−1)-module, one shows, similarly to
the first paragraph of this proof, that there is a positive integer n(p) with fn(p)(M)p = 0. Since
fnt−1(M) is supported in codimension t, it follows that there is a positive integer nt such that
fnt(M)p = 0 for all prime ideals p of A of codimension at most t.

Since A is Noetherian, the codimensions of all prime ideals of A are bounded above by a fixed
non-negative integer. Hence we obtain that there is a positive integer n such that fn(M)p = 0 for
all prime ideals p of A, which implies fn(M) = 0. �

To prove Proposition 3.6, let M be a pseudocompact B-module that is finitely generated as
an abstract A-module. By Corollary 3.14, there exist positive integers N,N ′′ that are bounded
functions of the number of abstract generators of M such that (wN

2 − 1)N
′′

annihilates k(p)⊗̂AM

for all prime ideals p of A. Letting f be the endomorphism ofM defined by the action of (wN
2 −1)N

′′

on M , this is equivalent to condition (3.8) for all prime ideals p of M . Hence Lemma 3.15 implies

that f is nilpotent, i.e. there exists an integer N ′ such that (wN
2 − 1)N

′

annihilates M . This proves
Proposition 3.6.

3.4. Proof of Proposition 3.7. Let J , Λ, M and T be as in the statement of Proposition 3.7.
The main idea for proving this proposition is to use the Artin-Rees Lemma to construct the almost
complement M ′ for T . This works directly if ∆ is abelian. If ∆ is as in Lemma 3.2(iii) and r = 1,
we first use the Artin-Rees Lemma for the case when the exponent N ′ in the definition of the ideal
J is equal to 1 and then use an inductive argument in the general case. Note that J is a closed
two-sided ideal of B by Proposition 3.5, so Λ = B/J is a pseudocompact A-algebra.

Suppose first that ∆ is as in Lemma 3.2(ii), i.e. J = 0 and Λ = B = A[[∆]] is commutative.
For 1 ≤ j ≤ s, the action of w1,j on T defines an automorphism in AutA(T ) ⊂ EndA(T ). Since T
is finitely generated as an abstract A-module, it follows that the same is true for EndA(T ). Hence
there exists a monic polynomial Fj(x) ∈ A[x] such that Fj(w1,j) annihilates T . Let I be the ideal in
the commutative Noetherian ring Λ that is abstractly generated by Fj(w1,j) for 1 ≤ j ≤ s. By the
Artin-Rees Lemma, there is an integer q >> 0 such that T ∩(Iq+1 ·M) = I ·(T ∩(Iq ·M)). However,
I annihilates T by construction, so we conclude that T ∩ (Iq+1 ·M) = {0}. Since Λ is commutative
and Iq+1 is abstractly finitely generated, it follows that Iq+1 ·M is a pseudocompact Λ-submodule
of M by Remark 2.2(i). The quotient M/(Iq+1 · M) is finitely generated as an abstract module
for the ring Λ/Iq+1, and this ring is finitely generated as an abstract A-module, since I contains a
monic polynomial in w1,j for each 1 ≤ j ≤ s and ∆/〈w1,1, . . . , w1,s〉 is finite. Hence M/(Iq+1 ·M)
is finitely generated as an abstract A-module and Proposition 3.7 is proved if ∆ is as in Lemma
3.2(ii).

Suppose now that ∆ is as in Lemma 3.2(iii) and r = 1. Write w2 instead of w2,1. Then

J = B · (wN
2 − 1)N

′

for positive integers N,N ′ and Λ = B/J . Suppose first that N ′ = 1. Then

J = B · (wps

2 − 1) by Lemma 3.11, and hence Λ = B/J = A[[∆]], where ∆ is the quotient of ∆

by the closed normal subgroup that is topologically generated by wps

2 . The conjugation action of

w1 on the finite normal abelian subgroup
(

〈w2〉 × ∆̃1

)

/〈wps

2 〉 of ∆ gives an automorphism of finite

order. Thus wz
1 is in the center of ∆, and of Λ, if z ≥ 1 is sufficiently divisible. Similarly to the

case when ∆ is as in Lemma 3.2(ii), one finds an ideal I in A[[〈wz
1〉]] that is abstractly generated

by a monic polynomial in wz
1 such that T ∩ (Iq+1 · M) = {0} for an integer q >> 0. Since M is
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a pseudocompact Λ-module and Iq+1 is generated by a single element that lies in the center of Λ,
it follows that Iq+1 · M is a pseudocompact Λ-submodule of M by Remark 2.2(i). The quotient
M/(Iq+1 ·M) is finitely generated as an abstract module for the ring Λ/Iq+1. This ring is finitely

generated as an abstract A-module, since I contains a monic polynomial in w1, since wps

2 = 1 in Λ,

and since ∆̃0 and ∆̃1 are finite. So M/(Iq+1 ·M) is finitely generated as an abstract A-module and
Proposition 3.7 is proved if N ′ = 1.

We now suppose that N ′ ≥ 1 are arbitrary. In this case, we break the proof into several steps

given by Lemma 3.16, Corollary 3.17 and Lemma 3.18 below. For simplicity, let ǫ = (wps

2 − 1) so

that J = B · ǫN ′ . For m ≥ 1, define

(3.9) M(ǫm) = {α ∈ M | ǫm · α = 0}.
Since by Proposition 3.5, Λ · ǫm is a two-sided ideal of Λ, it follows that M(ǫm) is a pseudocompact
Λ-submodule of M .

Lemma 3.16. The module M is a left Noetherian Λ-module. If M(ǫ) is not finitely generated as

an abstract A-module, then there exists a non-zero pseudocompact Λ-submodule Y of M(ǫ) such that

T ∩ Y = 0.

Proof. Since M is finitely generated as an abstract Λ-module, where Λ = B/J , and B is left
Noetherian, M must be a left Noetherian Λ-module. By (3.9), M(ǫ) is annihilated by ǫ. Thus M(ǫ)
is a pseudocompact Λ1-module, where

Λ1 = Λ/Λǫ = B/B · (wps

2 − 1),

and T1 = T ∩M(ǫ) is a pseudocompact Λ1-submodule of M(ǫ). Because T is finitely generated as
an abstract A-module, T1 is also finitely generated as an abstract A-module. By what we proved in
the case when N ′ = 1, we can therefore conclude that there is a pseudocompact Λ-submodule Y of
M(ǫ) such that T ∩ Y = T1 ∩ Y = {0} and M(ǫ)/Y is finitely generated as an abstract A-module.
If M(ǫ) is not finitely generated as an abstract A-module, this forces Y to be non-zero. �

Corollary 3.17. There is a pseudocompact Λ-submodule M ′ of M such that T ∩ M ′ = 0 and

(M/M ′)(ǫ) is finitely generated as an abstract A-module.

Proof. Suppose we have constructed for some integer n ≥ 0 a strictly increasing sequence of pseu-
docompact Λ-submodules M0 ⊂ M1 ⊂ · · · ⊂ Mn of M such that M0 = {0} and T ∩Mn = {0}. If
(M/Mn)(ǫ) is finitely generated as an abstract A-module, then we let M ′ = Mn and we are done.
Otherwise, observe that T injects into M/Mn. We can apply Lemma 3.16 to this inclusion and to
the module M/Mn to conclude that there a non-zero pseudocompact Λ-submodule Y of (M/Mn)(ǫ)
such that T ∩ Y = 0. The inverse image of Y in M is a pseudocompact Λ-submodule Mn+1 which
properly contains Mn and for which T ∩Mn+1 = {0}. Since M is left Noetherian by Lemma 3.16,
the process stops at some n, meaning that (M/Mn)(ǫ) is finitely generated as an abstract A-module,
and we can let M ′ = Mn. �

Lemma 3.18. If M(ǫ) is finitely generated as an abstract A-module, then M is finitely generated

as an abstract A-module.

Proof. We show this by proving by increasing induction on m that M(ǫm) is finitely generated as
an abstract A-module for all m ≥ 1. When m = 1, this statement holds by assumption. Suppose
now that it is true for some m ≥ 1. We have an exact sequence of A-modules

0 → M(ǫ) → M(ǫm+1) → M(ǫm)

in which the A-linear map M(ǫm+1) → M(ǫm) is multiplication by ǫ. Since M(ǫ) and M(ǫm)
are finitely generated as abstract A-modules by induction, this proves that M(ǫm+1) is finitely

generated as an abstract A-module. Since ǫN
′

= 0 in Λ, we conclude that M(ǫN
′

) = M is finitely
generated as an abstract A-module. �
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3.5. Proof of Proposition 3.8. As in the statement of Proposition 3.8, let Ω be a pseudocompact
left Noetherian ring and let P • be a complex inD−(Ω) whose terms P i are free and finitely generated
as abstract Ω-modules such that P i = 0 for i > 0. For i ≤ 0, assume that Ii is a closed two-sided
ideal in Ω that annihilates Hi(P •) such that Ji = Ii · Ii+1 · · · I1 · I0 is free and finitely generated
as an abstract left Ω-module. We need to prove that P • is isomorphic in D−(Ω) to a complex Q•

such that Qi = 0 for i > 0 and Qi is annihilated by Ji for i ≤ 0. We will prove this by constructing
Q• inductively from right to left.

Let j ≤ 0 be an integer. Suppose by induction that Q>j is a complex which is isomorphic to
P • in D−(Ω) with the following properties. The terms Qi are zero for i > 0 and free and finitely
generated as abstract Ω-modules for i ≤ j. Also, for j + 1 ≤ i ≤ 0, Qi is annihilated by Ji and is
finitely generated as an abstract Ω-module. We can certainly construct such a complex Q>j when
j = 0 since then we can simply let Q>0 = P •.

Claim 1: The complex Q>j is isomorphic in D−(Ω) to a complex Q•
1 such that Qi

1 = Qi for i > j,

Qj
1 is annihilated by Jj and Qi

1 is finitely generated as an abstract Ω-module for i ≤ j.

Proof of Claim 1. The differential δj : Qj → Qj+1 of Q>j induces an exact sequence of pseudocom-
pact Ω-modules

(3.10) 0 //
Zj(Q>j)

Bj(Q>j)
//

Qj

Bj(Q>j)

δj
// Qj+1.

Hj(Q>j)

Since Hj(Q>j) = Hj(P •) has been assumed to be annihilated by Ij and Qj+1 is annihilated
by Jj+1 = Ij+1Ij+2 · · · I0 by induction, (3.10) shows that Qj/Bj(Q>j) is annihilated by Jj =
Ij(Ij+1 · · · I0). Hence Jj Qj lies in Bj(Q>j) and we obtain a short exact sequence of pseudocompact
Ω-modules

(3.11) 0 → Zj−1(Q>j) → (δj−1)−1(Jj Q
j)

δj−1

−−−→ Jj Q
j → 0.

Since, by assumption, Jj is a two-sided ideal which is free and finitely generated as an abstract
left Ω-module and since, by induction, Qj is free and finitely generated as an abstract Ω-module,
Jj Q

j is also free and finitely generated as an abstract Ω-module. By Remark 2.2(i), Jj Q
j is a

pseudocompact Ω-submodule ofQj . By Remark 2.2(iii), Jj Q
j is a topologically free pseudocompact

Ω-module. Thus there is a homomorphism s : Jj Q
j → (δj−1)−1(Jj Q

j) of pseudocompact Ω-
modules such that δj−1 ◦ s is the identity on Jj Q

j. In particular, s(Jj Q
j) is a pseudocompact

Ω-submodule of (δj−1)−1(Jj Q
j), and hence of Qj−1, such that

(3.12) s(Jj Q
j) ∩ Zj−1(Q>j) = {0}.

The restriction of the differential δj−1 : Qj−1 → Qj to s(Jj Q
j) is therefore injective. This implies

that we have an exact sequence in C−(Ω)

0 → Q•
2 → Q>j → Q•

1 → 0

in which Q•
2 is the two-term complex s(Jj Q

j)
δj−1

−−−→ Jj Q
j concentrated in degrees j − 1 and j,

and the morphism Q>j → Q•
1 results from the natural inclusions of these terms into Qj−1 and Qj,

respectively. Since Q•
2 is acyclic, Q>j → Q•

1 is a quasi-isomorphism. The terms Qi
1 are equal to Qi

for i > j, and if i = j then Qj
1 = Qj/Jj Q

j . Moreover, since all terms of Q>j are finitely generated
as abstract Ω-modules, the same is true for Q•

1. This proves claim 1.

Claim 2: Let Q
≤(j−1)
1 be the truncation of Q•

1 which results by setting to 0 all terms in degrees

> j−1. There is a quasi-isomorphism ρ : L≤(j−1) → Q
≤(j−1)
1 in C−(Ω), where L≤(j−1) is a bounded

above complex of pseudocompact Ω-modules that are free and finitely generated as abstract Ω-
modules and Li = 0 for i > j. Moreover, ρj−1 : Lj−1 → Qj−1

1 is surjective.

Proof of Claim 2. This immediately follows from Remark 3.10.
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Claim 3: The complex Q•
1 from claim 1 is isomorphic in D−(Ω) to a complex T • such that the

terms T i are zero for i > 0 and free and finitely generated as abstract Ω-modules for i ≤ j − 1.
Also, for j ≤ i ≤ 0, T i is annihilated by Ji and is finitely generated as an abstract Ω-module.

Proof of Claim 3. We use the complex L≤(j−1) and the quasi-isomorphism ρ : L≤(j−1) → Q
≤(j−1)
1

from claim 2 to prove this. Define T • to be the complex with terms

(3.13) T i = Qi
1 for i ≥ j and T i = Li for i ≤ j − 1.

Let the differentials diT be given by

(3.14) diT = diQ1
for i ≥ j, dj−1

T = dj−1
Q1

◦ ρj−1 and diT = diL for i ≤ j − 2.

Define τ : T • → Q•
1 to be the map such that

(3.15) τ i = identity on Qi
1 for i ≥ j and τ i = ρi for i ≤ j − 1.

We claim that τ is a quasi-isomorphism in C−(Ω).
It follows from the definition of T • and τ in (3.13), (3.14) and (3.15) that τ is a homomorphism

in C−(Ω). Since τ j−1 = ρj−1 is surjective by claim 2, it follows from (3.14) that

(3.16) Bj(T •) = dj−1
T (T j−1) = dj−1

Q1
(Qj−1

1 ) = Bj(Q•
1).

Thus the definition of τ : T • → Q•
1 in (3.15), together with claim 2, show that τ induces an

isomorphism Hi(T •) → Hi(Q•
1) for i ≤ j − 2 and for i ≥ j. So the only issue is the case i = j − 1.

We have a commutative diagram with exact rows

(3.17) Hj−1(T •) Hj−1(L≤(j−1))

0 //
Zj−1(T •)

Bj−1(T •)
//

Hj−1(τ)

��

T j−1

Bj−1(T •)

dj−1

T
//

τ j−1

��

Bj(T •) //

τ j

��

0

0 //
Zj−1(Q•

1)

Bj−1(Q•
1)

// Qj−1
1

Bj−1(Q•
1)

dj−1

Q1
// Bj(Q•

1)
// 0

Hj−1(Q•
1) Hj−1(Q

≤(j−1)
1 )

The rightmost vertical homomorphism in (3.17), which is induced by τ j , is an isomorphism by
(3.16). The middle vertical homomorphism in (3.17), which is induced by τ j−1 = ρj−1, is equal to

the isomorphism Hj−1(ρ) : Hj−1(L≤(j−1)) → Hj−1(Q
≤(j−1)
1 ). So the left vertical homomorphism

Hj−1(τ) in (3.17) must be an isomorphism by the five lemma. This proves claim 3.

It follows from claims 1 and 3 that we can let Q>(j−1) = T •. Thus we proceed by descending
induction to construct a bounded above complex Q• which is isomorphic to P • in D−(Ω) such that
Qi = 0 for i > 0 and Qi is annihilated by Ji for i ≤ 0. This proves Proposition 3.8.

3.6. Proof of Proposition 3.9. Let M be a pseudocompact B-module that is finitely generated
as an abstract A-module, as in the statement of Proposition 3.9. The key to proving this proposition
is to use the Weierstrass preparation theorem in a suitable power series algebra over A to construct
a pseudocompact B-module F that is free and finitely generated as an abstract A-module together
with a surjective homomorphism F → M of pseudocompact B-modules.

Suppose first that ∆ is as in Lemma 3.2(ii), i.e. ∆ = Zs
p × Q × Q′. For 1 ≤ j ≤ s, the action

of w1,j on M defines an automorphism in AutA(M) ⊂ EndA(M). Since M is finitely generated
as an abstract A-module, the same is true for EndA(M). Hence there exists a monic polynomial
gj(x) ∈ A[x] such that gj(w1,j) annihilates M for all j. Let I be the ideal in B that is abstractly
generated by gj(w1,j) for 1 ≤ j ≤ s. Then I is a closed ideal of B by Remark 2.2(i). For 1 ≤ j ≤ s,
let x1,j = w1,j −1, so that A[[〈w1,1, . . . , w1,s〉]] ∼= A[[x1,1, . . . , x1,s]]. We can rewrite the polynomials
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gj(w1,j) as monic polynomials fj(x1,j) in x1,j with coefficients in A. By the Weierstrass preparation
theorem, one has fj(x1,j) = hj(x1,j)·uj(x1,j), where hj(x) is a monic polynomial in A[x] whose non-
leading coefficients lie in the maximal ideal of A and uj(x) is a unit power series in A[[x]]. Since x1,j

lies in every maximal ideal ofB and uj(x1,j) has invertible image in B/B·x1,j , it follows that uj(x1,j)
is a unit in B. Hence hj(x1,j) annihilates M for all j. Let Bf1,...,fs = A[[x1,1, . . . , x1,s]]/Ih1,...,hs

,
where Ih1,...,hs

is the ideal in A[[x1,1, . . . , x1,s]] generated by h1,j(x1,j) for 1 ≤ j ≤ s. Then Bf1,...,fs

is free and finitely generated as an abstract A-module. The ring D = B/I is isomorphic to the
group ring Bf1,...,fs [Q × Q′], which implies that D is free and finitely generated as an abstract
A-module. Since, as noted above, I is a closed ideal in B and D = B/I, it follows that D is
a pseudocompact A-algebra that is a pseudocompact B-module. Because M is a pseudocompact
D-module that is finitely generated as an abstract A-module, there is a surjective homomorphism
⊕z

i=1 D → M of pseudocompact D-modules for some finite number z. Since this homomorphism
is also a homomorphism of pseudocompact B-modules, this proves Proposition 3.9 if ∆ is as in
Lemma 3.2(ii).

Suppose now that ∆ is as in Lemma 3.2(iii) and r = 1. Write w2 instead of w2,1. Let ∆̃ be the

subgroup of ∆ that is topologically generated by w1 = Φ
d
and by w2. Then ∆̃ has finite index

d |∆̃1| in ∆. Let B̃ = A[[∆̃]]. Suppose we prove that there is a pseudocompact B̃-module F̃ that is

free and finitely generated as an abstract A-module and a surjective homomorphism ϕ̃ : F̃ → M of
pseudocompact B̃-modules. Then the induced module F = Ind∆

∆̃
(F̃ ) is a pseudocompact B-module

that is free and finitely generated as an abstractA-module and ϕ̃ induces a surjective homomorphism
ϕ : F → M of pseudocompact B-modules. Hence we are reduced to proving Proposition 3.9 for ∆̃.

By Proposition 3.6 and Lemma 3.11, there exist integers s ≥ 0 and N ′ ≥ 1 such that (wps

2 −
1)N

′ ·M = {0}. By (3.5), the left ideal J̃ = B̃ · (wps

2 − 1)N
′

is a two-sided ideal in B̃. Moreover, it

is closed in B̃ by Remark 2.2(i). Let x1 = w1 − 1, so that A[[x1]] ∼= A[[〈w1〉]], and define

AJ̃ = A[[〈w2〉]]/
(

(wps

2 − 1)N
′

)

.

Since (wps

2 −1)N
′

is a monic polynomial in (w2−1) whose non-leading coefficients lie in the maximal

ideal of A, AJ̃ is free and finitely generated as an abstract A-module. Every element in D̃ = B̃/J̃
can be written in a unique way as a convergent power series

(3.18)

∞
∑

i=0

ai x
i
1, where each ai lies in AJ̃ .

Moreover, any choice of ai ∈ AJ̃ , for all i ≥ 0, defines an element in D̃.
Using the Weierstrass preparation theorem in A[[x1]] ∼= A[[〈w1〉]] and arguing similarly to the

case when ∆ is as in Lemma 3.2(ii), it follows that there exists a monic polynomial

f1(x) = xn + bn−1x
n−1 + · · ·+ b0 ∈ A[x]

whose non-leading coeffcients are in the maximal ideal mA of A such that f1(x1) annihilates M .

Let D̃ · f1(x1) be the left ideal in D̃ that is generated by f1(x1). Consider the natural surjective
A-module homomorphism

β :

n−1
⊕

i=0

AJ̃ xi
1 −→ D̃/(D̃ · f1(x1))

which sends
∑n−1

i=0 ai x
i
1 to the corresponding residue class of

∑n−1
i=0 ai x

i
1 modulo D̃ · f1(x1). We

claim that β is injective. Suppose there exists an element t =
∑∞

i=0 ai x
i
1 in D̃ such that

(3.19) t · f1(x1) = (a0 + a1x1 + · · ·+ aix
i
1 + · · · ) · (xn

1 + bn−1x
n−1
1 + · · ·+ b0)

lies in
⊕n−1

i=0 AJ̃ xi
1. Since the ai lie in AJ̃ and the bj lie in mA ⊂ A, the bj commute with the ai.

Since all the bj lie in mA, we see that all the ai lie in mA ·AJ̃ . Iterating this process, it follows, using
induction, that all the ai lie in (mA)

c ·AJ̃ for all c ≥ 1. This means that all the ai have to be zero.
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Thus β is injective, which implies that D̃/(D̃ · f1(x1)) ∼=
⊕n−1

i=0 AJ̃ xi
1 as abstract A-modules. Since

we have already noted that AJ̃ is free and finitely generated as an abstract A-module, it follows that

D̃/(D̃ · f1(x1)) is free and finitely generated as an abstract A-module. By Remark 2.2(i), it follows

that D̃/(D̃·f1(x1)) is a pseudocompact D̃-module, and hence, since D̃ = B̃/J̃ , also a pseudocompact

B̃-module. Because M is a pseudocompact D̃-module that is finitely generated as an abstract A-
module, there is a surjective homomorphism

⊕z
i=1 D̃ → M of pseudocompact D̃-modules for some

finite number z. Since this homomorphism is also a homomorphism of pseudocompact B̃-modules,
this proves Proposition 3.9 if ∆ is as in Lemma 3.2(iii) and r = 1.

3.7. The case r > 1 for ∆ as in Lemma 3.2(iii). In this section, we complete the proof of
Theorem 3.1 by considering the case when ∆ is as in Lemma 3.2(iii) and r > 1. As before, let
B = A[[∆]]. We make the following adjustments to Propositions 3.5 - 3.9.

In Proposition 3.5, we consider ideals of the form Jj = B · (wNj

2,j − 1)N
′

j for positive integers

Nj , N
′
j for all 1 ≤ j ≤ r and define J(j) = J1 + · · · + Jj . As in Lemma 3.11, it follows that

Jj = B · (wpsj

2,j − 1)N
′

j , where psj is the maximal power of p dividing Nj . Using (3.5) and Remark

2.2(i), we see that J(j) is a closed two-sided ideal in B. Hence the quotient ring Bj = B/J(j) is a

pseudocompact A-algebra. Letting Jj = Bj−1 · (wNj

2,j − 1)N
′

j in Bj−1, where we set B0 = B, we

similarly see that Jj = Bj−1 ·(wpsj

2,j −1)N
′

j is a closed two-sided ideal in Bj−1. The last statement to

be shown in generalizing Proposition 3.5 is that Jj is a topologically free rank one left Bj−1-module

and a topologically free rank one right Bj−1-module.
To show this last statement, we use a suitable cofinal system of closed normal finite index

subgroups of ∆ to prove the following. Every element of Bj−1 can be written in a unique way as a
convergent power series

(3.20)
∑

zu,a,ξ,bj ,cj,...,cr σ
u(w1 − 1)a ξ





r
∏

i=j+1

(w2,i − 1)ci



w
bj
2,j(w

psj

2,j − 1)cj

(3.21)



resp.
∑

ωu,a,ξ,bj ,cj,...,cr (w
psj

2,j − 1)cjw
bj
2,j





r
∏

i=j+1

(w2,i − 1)ci



 ξ (w1 − 1)aσu





in which the sum ranges over all tuples (u, a, ξ, bj, cj , . . . , cr) with 0 ≤ u ≤ d − 1, a ≥ 0, ξ ∈ ∆̃1,
0 ≤ bj ≤ psj − 1 and cj , . . . , cr ≥ 0, and each zu,a,ξ,bj ,cj,...,cr (resp. ωu,a,ξ,bj ,cj,...,cr) lies in

A(j−1) = A[[〈w2,1, . . . , w2,j−1〉]]/
(

(wps1

2,1 − 1)N
′

1 , . . . , (wpsj−1

2,j−1 − 1)N
′

j−1

)

.

Moreover, any choice of zu,a,ξ,bj,cj ,...,cr (resp. ωu,a,ξ,bj ,cj,...,cr) in A(j−1) defines an element in Bj−1.
In Proposition 3.6, let M be a pseudocompact B-module that is finitely generated as an abstract

A-module. Using the same arguments as in the case when r = 1, it follows that for each 1 ≤ j ≤ r,

there exist positive integers Nj, N
′
j such that (w

Nj

2,j − 1)N
′

j ·M = {0}.
In Proposition 3.7, we replace in part (ii) the ideal J by an ideal of the form J = J1 + · · ·+ Jr,

where for 1 ≤ j ≤ r, Jj = B · (wNj

2,j − 1)N
′

j for certain integers Nj , N
′
j ≥ 1. Then, as before,

Jj = B · (wpsj

2,j − 1)N
′

j , where psj is the maximal power of p dividing Nj , and J is a closed two-sided

ideal in B. Suppose M is a pseudocompact module for Λ = B/J that is finitely generated as an
abstract Λ-module and T is a pseudocompact Λ-submodule of M that is finitely generated as an
abstract A-module. We need to prove the existence of a pseudocompact Λ-submodule M ′ of M
such that M ′ ∩ T = {0} and M/M ′ is finitely generated as an abstract A-module.

To prove this statement, we proceed as for r = 1 and first consider the case when N ′
j = 1 for

all 1 ≤ j ≤ r. In this case, Λ = B/J = A[[∆]], where ∆ is the quotient of ∆ by the closed normal

subgroup that is topologically generated by wpsj

2,j for 1 ≤ j ≤ r. Using similar arguments as in the
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case when r = 1, we find a pseudocompact Λ-submodule M ′ of M having the desired properties if
N ′

j = 1 for all 1 ≤ j ≤ r. For arbitrary N ′
j , we replace M(ǫm) in (3.9) by

(3.22) M(ǫm1

1 , . . . , ǫmr
r ) = {α ∈ M | ǫmj

j · α = 0 for 1 ≤ j ≤ r}

for m1, . . . ,mr ≥ 1, and prove analogous statements to the ones in Lemma 3.16, Corollary 3.17 and
Lemma 3.18 to find M ′.

Proposition 3.8 stays the same as before. To prove Proposition 3.9 for r > 1, we let ∆̃ be the
subgroup of ∆ that is topologically generated by w1 and by w2,j for 1 ≤ j ≤ r. Then ∆̃ has finite

index d |∆̃1| in ∆. One argues as in the case when r = 1, that it is enough to prove Proposition

3.9 for B̃ = A[[∆̃]]. By Proposition 3.6 and Lemma 3.11, there exist integers sj ≥ 0 and N ′
j ≥ 1

such that (wpsj

2,j − 1)N
′

j · M = {0} for 1 ≤ j ≤ r. Using (3.5) and Remark 2.2(i), it follows that

J̃ = J̃1 + · · ·+ J̃r is a closed two-sided ideal in B̃, where J̃j = B̃ · (wpsj

2,j − 1)N
′

j . Define

AJ̃ = A[[〈w2,1, . . . , w2,r〉]]/
(

(wps1

2,1 − 1)N
′

1 , . . . , (wpsr

2,r − 1)N
′

r

)

.

Then AJ̃ is free and finitely generated as an abstract A-module, and every element in D̃ = B̃/J̃
can be written in a unique way as a convergent power series as in (3.18). We can now proceed using
the same arguments as in the case when r = 1 to complete the proof for the case when r > 1.

The proof of Theorem 3.1 in the case when G is replaced by ∆ as in Lemma 3.2(iii) and r > 1
follows the same three steps as in the case when r = 1.

In the proof of step 1, we need to use an inductive argument as follows. As in the case when
r = 1, suppose P • has properties (i), (ii) and (iii) of Theorem 2.6 and suppose that n2 = 0, so that
P i = 0 if i > 0. Since Hi(P •) = 0 if i < n1, P

• is isomorphic in D−(B) to the complex P •
0 which is

obtained from P • by replacing Pn1 by Pn1/Bn1(P •) and P i by 0 for i < n1. Define J(0) = {0} and

B0 = B/J(0). Assume by induction that for 1 ≤ j ≤ r, P • is isomorphic in D−(B) to a complex

P •
j−1 such that P i

j−1 = 0 if i > 0 or i < n1 and such that if n1 ≤ i ≤ 0 then P i
j−1 is annihilated by

a closed two-sided ideal J(j−1) = J1 + · · ·+ Jj−1, where for 1 ≤ t ≤ j − 1, Jt = B · (wNt

2,t − 1)N
′

t for

certain integers Nt, N
′
t ≥ 1. Let Bj−1 = B/J(j−1) and view P •

j−1 as a complex in D−(Bj−1). Using
the above adjustments of Propositions 3.5 - 3.8 and Remark 3.10, we find a complex P •

j which is

isomorphic to P •
j−1 in D−(Bj−1) such that P i

j = 0 if i > 0 or i < n1 and such that if 0 ≤ i ≤ n1

then P i
j is annihilated by a closed two-sided ideal Jj = Bj−1 · (wNj

2,j − 1)N
′

j for certain integers

Nj , N
′
j ≥ 1. Note that if Jj = B · (wNj

2,j − 1)N
′

j and J(j) = J(j−1) +Jj, then Bj = B/J(j) = Bj−1/Jj

as pseudocompact rings. Since P •
j can be viewed as a complex in D−(B) by inflation, it follows

that P •
j is isomorphic to P •

j−1, and thus to P •, in D−(B). Hence step 1 follows by induction.
Steps 2 and 3 of the proof of Theorem 3.1 are proved in the same way as when r = 1, using the

above adjustments of Propositions 3.7 and 3.9.

4. An example

In this section, we want to revisit an example that was considered in [2] concerning the defor-
mations of group cohomology elements. Let ℓ > 2 be a rational prime with ℓ ≡ 3 mod 4 and let
G = Gal(Qℓ/Qℓ). Let k = Z/2 and W = Z2, and let M = k have trivial G-action. Because of the
Kummer sequence

1 → {±1} → Q
∗

ℓ
·2−→ Q

∗

ℓ → 1

we obtain that H2(G,M) = Z/2 has exactly one non-trivial element β. Moreover, it was shown in [2]
that the mapping cone C(β)• is isomorphic to V •[1] for a two-term complex V • that is concentrated
in degrees −1 and 0

(4.1) V • : · · · 0 → k[Gb]
d−→ k[Ga] → 0 · · · ,
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where a = ℓ, b is an element of Z∗
ℓ that is not a square mod ℓ, Ga = Gal(Qℓ(

√
a)/Qℓ), Gb =

Gal(Qℓ(
√
b)/Qℓ) and d is the augmentation map of k[Gb] composed with multiplication by 1 + σa

when Ga = {1, σa}. It was also shown in [2] that the tangent space Ext1D−(k[[G]])(V
•, V •) is 4-

dimensional over k, and that the versal proflat deformation ring of V • is universal and isomorphic
to Rfl(G, V •) ∼= W [[Gab,2]]⊗̂WW [[Gab,2]], where Gab,2 denotes the abelianized 2-completion of G.
Note that the universal proflat deformation ring Rfl(G, V •) is universal with respect to isomorphism

classes of quasi-lifts of V • over objects R in Ĉ whose cohomology groups are topologically flat, and
hence topologically free, pseudocompact R-modules.

We now turn to the situation when G is replaced by its maximal abelian quotientGab. We want to
compute the versal deformation rings of several complexes related to the above V •. The complexes
we will consider are all inflated from the maximal pro-2 quotient Gab,2 of Gab. By Proposition 2.12,
it will suffice to determine their versal deformation rings as complexes for Γ = Gab,2.

Since ℓ ≡ 3 mod 4, local class field theory shows that there are topological generators w1 and w2

for Γ = Gal(Qab,2
ℓ /Qℓ) with the following properties. The element w2 has order 2 and {id, w2} =

Gal(Qab,2
ℓ /Qun,2

ℓ ) where Qun,2
ℓ is the maximal unramified pro-2 extension of Qℓ. The element w1 is a

topological generator of Gal(Qab,2
ℓ /Qℓ(

√
ℓ)) ∼= Z2, and Γ = 〈w1, w2〉 is isomorphic to Z2×Z/2. Note

that w1 (resp. w2, resp. w1w2) acts trivially on the quadratic extension Qℓ(
√
ℓ) (resp. Qℓ(

√
−1),

resp. Qℓ(
√
−ℓ)).

As before, let M = k = Z/2 have trivial Γ-action. Since 〈w1〉 = Z2 has cohomological dimension
1, the spectral sequence

Hp(〈w1〉,Hq(〈w2〉,M)) =⇒ Hp+q(Γ,M)

degenerates and we get a short exact sequence for all s ≥ 1

0 → H1(〈w1〉,Hs−1(〈w2〉,M)) → Hs(Γ,M) → Hs(〈w2〉,M)〈w1〉 → 0.

Since Hs(〈w2〉,M) = k for all s ≥ 0 and H1(〈w1〉, k) = k, we obtain that

H0(Γ,M) = k and Hs(Γ,M) = k ⊕ k for s ≥ 1.

This means that there are three non-trivial elements in H2(Γ,M). Let x ∈ {ℓ,−1,−ℓ} and consider
the element hx in H1(Γ, {±1}) = Hom(Γ, {±1}) which corresponds to the augmentation sequence

(4.2) 0 → k → k[Gx] → k → 0

where Gx = Gal(Qℓ(
√
x)/Qℓ). Inflating the cup product ha∪hb for a, b ∈ {ℓ,−1,−ℓ} to an element

in H2(G, {±1}), it follows that ha ∪ hb corresponds to the Hilbert symbol (a, b) ∈ H2(G, {±1}).
Hence hℓ ∪ hℓ and hℓ ∪ h−1 define non-trivial elements in H2(G, {±1}), whereas hℓ ∪ h−ℓ defines a
trivial element in H2(G, {±1}). Since the restriction of hℓ ∪ hℓ to 〈w2〉 is non-trivial, whereas the
restriction of hℓ ∪ h−1 to 〈w2〉 is trivial, hℓ ∪ hℓ 6= hℓ ∪ h−1 in H2(Γ, k). It follows that hℓ ∪ hℓ,
hℓ ∪ h−1 and hℓ ∪ h−ℓ are representatives of the three non-trivial elements in H2(Γ,M). We obtain
three non-split two-term complexes V •

y in D−(k[[Γ]]) that are concentrated in degrees −1 and 0

(4.3) V •
y : · · · 0 → k[Gy]

d−→ k[Gℓ] → 0 · · ·
where y ∈ {ℓ,−1,−ℓ} and d is the augmentation map followed by multiplication with the trace
element of Gℓ. In particular, for y ∈ {ℓ,−1}, the inflation of V •

y to G is isomorphic to V •.

Lemma 4.1. For y ∈ {ℓ,−ℓ} (resp. y = −1), the k-dimension of Ext1D−(k[[Γ]])(V
•
y , V

•
y ) is at least

3 (resp. at least 4). Moreover, the proflat tangent space tF fl is isomorphic to the tangent space tF .

Proof. Let y ∈ {ℓ,−1,−ℓ} and consider the triangle in D−(k[[Γ]])

(4.4) k•[1]
γy−→ V •

y

αy−−→ k•
βy−→ k•[2]

where k• stands for the one-term complex with k concentrated in degree 0 and βy = hℓ ∪ hy is the
non-zero element in H2(Γ, k) associated to V •

y .
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The morphism Ext1D−(k[[Γ]])(k
•[1], k•)

◦βy [−1]−−−−−→ Ext1D−(k[[Γ]])(k
•[−1], k•) is injective, since it sends

the identity in Ext1D−(k[[Γ]])(k
•[1], k•) = HomD−(k[[Γ]])(k

•[1], k•[1]) ∼= k to βy[−1] where βy is as in

(4.4). Hence it follows from [2, Prop. 9.6] that tF fl
∼= tF .

Using long exact Hom sequences in D−(k[[Γ]]) associated to the triangle (4.4), we obtain the
following diagram with exact rows and columns, where Hom stands for HomD−(k[[Γ]]) and Ext
stands for ExtD−(k[[Γ]]).
(4.5)

Ext−1(k•[1],k•)

��

Hom(k•[1],k•[1])

��

Hom(k•[1],k•)

��

Ext1(k•[1],k•[1])

��

Hom(k•,k•)

��

Ext1(k•,k•[1])

��

Ext1(k•,k•) //

��

Ext2(k•,k•[1])

��

Hom(V •y ,V •y ) // Hom(V •y ,k•) //

��

Ext1(V •y ,k•[1]) //

��

Ext1(V •y ,V •y ) // Ext1(V •y ,k•) //

��

Ext2(V •y ,k•[1])

Hom(k•[1],k•) Ext1(k•[1],k•[1])

��

Ext1(k•[1],k•)

��

Ext2(k•,k•[1]) Ext2(k•,k•)

Because Ext−1(k•[1], k•) = 0 = Hom(k•[1], k•) in the second column of (4.5), it follows that
Hom(V •

y , k
•) ∼= k in the third row. We conclude that the horizontal morphism in the third row

(4.6) Ext1(V •
y , k

•[1]) → Ext1(V •
y , V

•
y )

is injective.
Since the vertical morphism Ext1(k•[1], k•[1]) → Ext2(k•, k•[1]) in the sixth column and the

horizontal morphism Ext1(k•, k•) → Ext2(k•, k•[1]) in the second row of (4.5) can both be identified
with the morphism H1(Γ, k) → H3(Γ, k) that sends hx to hx ∪βy, it follows that the composition of

morphisms Ext1(k•, k•) → Ext2(k•, k•[1]) → Ext2(V •
y , k

•[1]) in the second row and sixth column
of (4.5) is the zero morphism. We conclude that the horizontal morphism in the third row

(4.7) Ext1(V •
y , V

•
y ) → Ext1(V •

y , k
•)

is surjective.
Because the vertical morphism in the third column of (4.5)

k ∼= Hom(k•[1], k•[1]) → Ext1(k•, k•[1]) ∼= H1(Γ, k) ∼= k ⊕ k

has cokernel of k-dimension at least 1, it follows that dimk Ext
1(V •

y , k
•[1]) is at least 1. The vertical

morphism Ext1(k•[1], k•[1]) → Ext2(k•, k•[1]) in the third column of (4.5) can be identified with
the morphism H1(Γ, k) → H3(Γ, k) that sends hx to hx ∪ βy. Since h−1 ∪ h−1 is inflated from an
element in H2(〈w1〉, k) and 〈w1〉 = Z2 has cohomological dimension 1, it follows that for y = −1, the
vertical morphism in the third column Ext1(k•[1], k•[1]) → Ext2(k•, k•[1]) has non-trivial kernel.
Hence dimk Ext

1(V •
y , k

•[1]) is at least 2 if y = −1.

Since Hom(k•[1], k•) = 0 and the vertical morphism in the fifth column Ext1(k•[1], k•) →
Ext2(k•, k•) is injective, it follows that the vertical morphism Ext1(k•, k•) → Ext1(V •

y , k
•) is an iso-

morphism. Because Ext1(k•, k•) ∼= H1(Γ, k) ∼= k⊕k, this implies that Ext1(V •
y , k

•) has k-dimension
2. Using (4.6) and (4.7), this implies Lemma 4.1. �

Theorem 4.2. For y ∈ {ℓ,−1,−ℓ}, the versal deformation ring R(Γ, V •
y ) and the versal proflat

deformation ring Rfl(Γ, V •
y ) have the following isomorphism types:

R(Γ, V •
ℓ )

∼= W [[t1, t2, t3]]/(t2t3(2 + t3)) and Rfl(Γ, V •
ℓ )

∼= W [[t1, t2, t3]]/(t3(2 + t3)),

R(Γ, V •
−ℓ)

∼= Rfl(Γ, V •
−ℓ)

∼= W [[t1, t2, t3]]/(t3(2 + t3)),

R(Γ, V •
−1)

∼= Rfl(Γ, V •
−1)

∼= W [[t1, t2, t3, t4]]/(t2(2 + t2), t4(2 + 2t2 − t3t4)).
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Proof. We first give an outline of the proof. We will show that every quasi-lift of V •
y over a ring A

in Ĉ can be represented by a two-term complex P • : P−1 dP−−→ P 0, concentrated in degrees −1 and 0,
in which P−1 and P 0 are pseudocompact A[[Γ]]-modules that are free of rank two over A. We will
show further that the action of the topological generators w1 and w2 of Γ on P−1 and P 0, as well as
the differential dP , are described by 2 × 2 matrices over A whose entries satisfy certain equations.
We construct a candidate for the versal deformation ring R(Γ, V •

y ) by taking the completion of the
ring obtained by adjoining to W indeterminates corresponding to these matrix entries which are
required to satisfy the above equations. We prove that R(Γ, V •

y ) is the versal deformation ring
by showing that each P • as above is a specialization of the resulting quasi-lift (U(Γ, V •

y ), φU ) over
R(Γ, V •

y ) and by showing that the tangent space of R(Γ, V •
y ) has the correct dimension. The last

step uses Lemma 4.1.
Let y ∈ {ℓ,−1,−ℓ}. Let A be in Ĉ and let (L•, φL) be a quasi-lift of V

•
y overA. Since H0(V •

y ) = k,

it follows that H0(L•) is a quotient of A. By Theorem 2.6 and Remark 2.5, we can thus assume
that L• is a two-term complex, concentrated in degrees −1 and 0,

L• : · · · 0 → L−1 dL−−→ A[[Γ]] → 0 · · ·
where L−1 is topologically free over A, and such that we have an exact sequence in C−(A[[Γ]])

(4.8) 0 → H−1(L•) → L−1 dL−−→ A[[Γ]] → H0(L•) → 0.

Since H0(L•) is a quotient of A, w1 (resp. w2) acts on H0(L•) as a scalar s1 (resp. s2) in A∗.
Because w1 acts on H0(L•) as the scalar s1, (w1−s1) annihilates H

0(L•). Since A[[Γ]](w1−s1) is
a free rank one pseudocompact A[[Γ]]-module that is a submodule of A[[Γ]], there exists a free rank
one pseudocompact A[[Γ]]-module F that is a submodule of L−1 such that dL maps F isomorphically
onto A[[Γ]](w1 − s1). Hence the exact sequence (4.8) leads to an exact sequence in C−(A[[Γ]])

(4.9) 0 // H−1(L•) // P−1
dP

// P 0
µ

// H0(L•) // 0

L−1/F A[[Γ]]/A[[Γ]](w1 − s1)

where P 0 ∼= A〈w2〉 and w1 acts on P 0 as multiplication by s1. Since w2 has order 2, it follows that
{1, w2} is an A-basis of P 0. With respect to this A-basis, w1 (resp. w2) acts on P 0 as the matrix

(4.10) W1,P 0 =

(

s1 0
0 s1

) (

resp. W2,P 0 =

(

0 1
1 0

))

.

Moreover, L• is quasi-isomorphic to the two-term complex

(4.11) P • : · · · 0 → P−1 dP−−→ P 0 → 0 · · ·
concentrated in degrees −1 and 0, where P−1, P 0 and dP are as in (4.9). Let φP : k⊗̂AP

• → V •
y be

an isomorphism in D−(k[[Γ]]) such that (L•, φL) and (P •, φP ) are isomorphic quasi-lifts of V •
y over

A. Since L•, and hence P •, has finite pseudocompact A-tor dimension at −1, P−1 is topologically
flat, and hence topologically free, over A. Because k⊗̂AP

• must be isomorphic to V •
y in D−(k[[Γ]]),

it follows that k⊗̂AP
−1 has k-dimension 2, and hence P−1 is free over A of rank 2.

Let K0 be the kernel of the morphism µ : P 0 → H0(L•) in (4.9). Because w2 acts on H0(L•) as
the scalar s2 ∈ A∗, K0 contains the element −s2 · 1 + 1 · w2 = (−s2, 1) which generates a free rank
one A-submodule of P 0. Since K0 is an A[[Γ]]-submodule of P 0, we also have that

w2 · (−s2, 1) = (1,−s2) = −s2(−s2, 1) + (1− s22, 0)

is an element of K0, and thus (1 − s22, 0) ∈ K0. On the other hand, k⊗̂AK
0 has k-dimension at

most 2, since K0 is a homomorphic image of P−1. Hence K0 is generated by one or two elements,
depending on whether H0(L•) is flat over A or not. If (c, d) is an arbitrary element in K0, then

(c, d) = d · (−s2, 1) + (c+ ds2, 0),
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and hence K0 is generated by (−s2, 1) and an element of the form (λ, 0) such that λ divides (1−s22).
It follows that H0(L•) ∼= A/(λ) and H0(L•) 6= {0}. In particular, H0(L•) is flat over A if and only
if λ = 0, in which case we must have 1 − s22 = 0. Since the image of dP in (4.9) must be equal to
K0 and since (−s2, 1) generates a free A-module of rank 1, we can lift (−s2, 1) to a basis element
z1 of P−1. If λ = 0, then H−1(L•) = Ker(dP ) ∼= A as A-modules, and we choose z2 to be a basis
element of P−1 which lies in Ker(dP ). If λ 6= 0, then K0 is generated as A-module by (−s2, 1) and
(λ, 0), and we let z2 be a preimage under dP of (λ, 0). Since (λ, 0) is not an A-multiple of (−s2, 1)

if λ 6= 0, the homomorphism k⊗̂AP
−1 → k⊗̂AK

0 induced by the surjection P−1 dP−−→ K0 must be
an isomorphism of two-dimensional k-vector spaces. It follows that {z1, z2} is an A-basis of P−1

for all λ.
With respect to the A-basis {z1, z2} of P−1 and the A-basis {1, w2} of P 0, dP : P−1 → P 0 is

given by the matrix

(4.12) DP =

(

−s2 λ
1 0

)

when we write basis vectors as column vectors. In particular, H−1(L•) = Ker(dP ) ∼= AnnA(λ),
which implies that (P •, φP ) is a proflat quasi-lift of V •

y over A if and only if λ = 0. Additionally, if

λ = 0 then 1− s22 = 0.
Suppose now that λ 6= 0. In particular, λ is not a unit since H0(L•) ∼= A/(λ) is not 0. Then

1− s22 = λt2 for some t2 ∈ A, and K0 is generated as A-module by (−s2, 1) and (λ, 0). The action
of w1 on K0 is given by the scalar matrix s1. The action of w2 on P 0 sends (−s2, 1) to

(1,−s2) = −s2(−s2, 1) + (1− s22, 0) = −s2(−s2, 1) + t2(λ, 0)

and (λ, 0) to

(0, λ) = λ(−s2, 1) + s2(λ, 0).

To obtain the action of w2 on P−1, we use the matrix representation DP of dP from (4.12) with
respect to the A-basis {z1, z2} of P−1. This means that the kernel of dP is given by AnnA(λ) · z2.
Hence the action of w1 (resp. w2) on P−1 has the form

(4.13)

(

s1 0
x1 s1 + y1

) (

resp.

(

−s2 λ
t2 + x2 s2 + y2

))

for certain elements x1, y1, x2, y2 ∈ AnnA(λ). If t2 were not a unit, then w1 and w2 would both
act trivially on k⊗̂AP

−1. Hence k⊗̂AP
• would correspond to the cup product of hℓ with the

trivial character h1 which defines the trivial element in H2(Γ, {±1}). This is a contradiction to
k⊗̂AP

• ∼= V •
y in D−(k[[Γ]]). Thus t2 must be a unit, which implies (λ) = (1 − s22). But then the

action of w1 (resp. w2) on k⊗̂AP
−1 is trivial (resp. non-trivial). Hence k⊗̂AP

• corresponds to the
cup product hℓ ∪ hℓ. We conclude that if λ 6= 0 then y = ℓ.

We now concentrate on the case when y = ℓ. The cases when y = −ℓ or y = −1 are treated
similarly.

Given an arbitrary quasi-lift of V •
ℓ over a ring A in Ĉ, we can assume this quasi-lift is given

by (P •, φP ) with P • as in (4.11). The complex k⊗̂AP
• defines hℓ ∪ hℓ ∈ H2(Γ, k), and it follows

from the construction of P • in (4.11) that hℓ ∪ hℓ = hℓ ∪ h′, where h′ ∈ H1(Γ, k) is the class of
0 → k → k⊗̂AP

−1 → k → 0. Hence hℓ∪hℓ = hℓ∪h′ implies h′ = hℓ. So w1 (resp. w2) acts trivially
(resp. non-trivially) on k⊗̂AP

−1.
Since w2 acts non-trivially on k⊗̂AP

−1, it follows that 1⊗̂z1 and w2 · (1⊗̂z1) = 1⊗̂(w2 ·z1) form a
k-basis of k⊗̂AP

−1. Since A is a commutative local ring, this implies that {z1, w2 · z1} is an A-basis
of P−1. It follows that with respect to the A-basis {z1, w2 · z1} of P−1 and the A-basis {1, w2} of
P 0, dP : P−1 → P 0 is given by the matrix

(4.14) D̃P =

(

−s2 1
1 −s2

)

.
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Considering the actions of w1 (resp. w2) on P−1 and P 0, we obtain that with respect to the A-basis
{z1, w2 · z1} of P−1, w1 (resp. w2) acts on P−1 as the matrix

(4.15) W̃1,P−1 =

(

a b
b a

) (

resp. W̃2,P−1 =

(

0 1
1 0

))

where a ∈ A∗ and b ∈ mA satisfy −s1s2 = −s2a+ b and s1 = −s2b + a. These two conditions are
equivalent to the two conditions

b = s2(a− s1),(4.16)

0 = (a− s1)(1− s22).

Since these are the only conditions needed to ensure that P • defines a quasi-lift of V •
ℓ over A, we

obtain the following: For all s1, s2, a ∈ A∗ with (a− s1)(1− s22) = 0, there is a two-term complex

(4.17) Q• : Q−1 = A⊕A





−s2 1
1 −s2





−−−−−−−−−−−−→ A⊕A = Q0

where w1 (resp. w2) acts on Q0 as the matrix W1,P 0 (resp. W2,P 0) from (4.10), and w1 (resp. w2)

acts on Q−1 as the matrix W̃1,P−1 (resp. W̃2,P−1) from (4.15) where b = s2(a−s1). Moreover, for all

choices of s1, s2, a as above, k⊗̂AQ
• is equal to the same complex Z•

ℓ . By choosing suitable k-bases
for the terms of V •

ℓ , we see that V •
ℓ = Z•

ℓ in C−(k[[Γ]]). Thus for each choice of isomorphism φQ :
V •
ℓ → V •

ℓ in D−(k[[Γ]]), we obtain a quasi-lift (Q•, φQ) of V
•
ℓ over A. Analyzing all isomorphisms

in HomD−(k[[Γ]])(V
•
ℓ , V

•
ℓ ), it follows that if φQ, φ

′
Q : Z•

ℓ = V •
ℓ → V •

ℓ are isomorphisms in D−(k[[Γ]]),

then (Q•, φQ) is isomorphic to (Q•, φ′
Q) as quasi-lifts of V

•
ℓ over A.

Let Sℓ = W [[t1, t2, t3]]/(t2t3(t3 + 2)). We obtain a two-term complex U• in C−(Sℓ[[Γ]]) from Q•

by replacing A by Sℓ, s1 by 1+t1, a−s1 by t2, s2 by 1+t3 and b by (1+t3)t2 in (4.17), in (4.10) and
in (4.15). Let φU : k⊗̂AU

• = Z•
ℓ → V •

ℓ be a fixed isomorphism in D−(k[[Γ]]). Given a quasi-lift of
V •
ℓ over A which is isomorphic to (Q•, φQ) for Q

• as above, it follows that the morphism α : Sℓ → A

with α(t1) = s1 − 1, α(t2) = a − s1 and α(t3) = s2 − 1 is a morphism in Ĉ such that (Q•, φQ) is
isomorphic to (A⊗̂Sℓ,αU

•, φU ) as quasi-lifts of V
•
ℓ over A. Because max(Sℓ)/(max2(Sℓ) + 2Sℓ) has

k-dimension 3, it follows from Lemma 4.1 that Sℓ is the versal deformation ring of V •
ℓ .

For proflat quasi-lifts of V •
ℓ over a ring A in Ĉ, the only additional condition is s22 = 1. It follows

that the versal proflat deformation ring of V •
ℓ is isomorphic to W [[t1, t2, t3]]/(t3(t3 + 2)). �
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