
September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Knots as processes: a new kind of invariant

L.G. Meredith and David F. Snyder

Partner, Biosimilarity LLC
505 N72nd St, Seattle, WA 98103, USA,

lgreg.meredith@biosimilarity.com

Department of Mathematics
Texas State University—San Marcos

601 University Drive
San Marcos, TX 78666
dsnyder@txstate.edu

ABSTRACT

We exhibit an encoding of knots into processes in the π-calculus such that knots are
ambient isotopic if and only their encodings are weakly bisimilar.

Keywords: Process calculi, knots, invariants

1. Introduction

Knot and link tabulation continues to be a lively area of scientific research and

promises to be useful to areas of science such as quantum computing and DNA

unpacking [22] [32] [11]. The past 20 years have seen major advances in knot clas-

sification, the development of knot invariants, and computational methods for tab-

ulating knots and links. There are tables of the alternating prime knots of up to

23 crossings [26] [51] [52] [27]. While current algorithms provide complete tables of

knots (and links), winnowing these tables of duplicates is a time consuming task.

Moreover, as knot tables have proved of use to researchers in genetics, and may

prove to be to researchers in quantum computation, the need to search these ta-

bles in meaningful ways presents itself. For example, of the 4,976,016,485 prime,

non-oriented, alternating knots with minimal crossing number of 22, which contain

the tangle corresponding to 5/3 (if any)? Of course, knot invariants are useful to

distinguish knots, but few provide the basis for a formal language of knot properties

with which to identify classes of knots via logical expressions in the language.

1.1. Summary of contributions and outline of paper

Here we present a newly-found strong knot invariant that does give rise to such a

formal language of knot properties. Knots are invariantly associated to expressions

in Milner’s π-calculus [45], a member of a family of dynamic calculi known as the

1

ar
X

iv
:1

00
9.

21
07

v1
 [

m
at

h.
G

T
]

 1
0

Se
p

20
10

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

mobile process calculi. These calculi were developed for the analysis of concurrent

computation [46] [56]. The invariant introduced here interprets knot equivalence up

to ambient isotopy as an equivalence of process dynamics known as bisimulation

[59] [57] in the concurrency theory literature. Of critical importance, and somewhat

surprisingly, these two notions of equivalence correspond exactly on the image of

the encoding: the main result of this paper is that two knots are ambient isotopic

if, and only if, their images under the encoding are weakly bisimilar.

Building on this result, we observe that dual to the process calculi are a family

of logics, the Hennessy-Milner logics (HMLs), providing a logical language capable

of the classification of processes via logical properties. Factoring this capability

through our encoding leads to the development of a logical language identifying

classes of knots with logical properties. In particular, the spatial logics discovered by

Caires and Cardelli [9] constitute a particularly interesting sub-family of the HMLs

having logical connectives enabling us to take full advantage of key features of our

encoding. We illustrate the application of the logic in [8] primarily via examples of

predicates that select features of knots.

The paper is organized as follows. First, we provide a brief overview of knot

presentations relevant to this paper, given in the context of the history of knot

tabulation. Next, we give a brief overview of process calculi, highlighting achieve-

ments in that field pertinent to this paper. Section 4 begins the technical exegesis

with an introduction to Milner’s polyadic π-calculus via demonstration of process

expressions that, much like the combinators of Conway’s tangle calculus, reflect

aspects of knot structure (crossings etc.). The section concludes with an example

encoding of the trefoil knot. Section 4.5 gives a condensed but complete formal

presentation of the process calculus. The main theorem is proved in section 5. This

is followed by an account of spatial logic via knots in section 6 and how this can be

applied in the study and inquiry of knot tables, with potential application in knot

tabulation algorithms themselves. Finally, new techniques are judged not solely by

the questions they answer but by the new questions to which they give rise. In the

conclusion, we identify areas of further investigation.

2. A summary of knot presentations

The knot presentations we focus upon herein are the Gauss code [53], the Dowker-

Thistlethwaite (DT) code [17], the Conway notation [15], and the Master Code of

Rankin, Schermann and Smith [51] [52]. Other presentation schemes, such as braid

representatives and Morse links, are not directly useful to the development of this

paper and thus are overlooked. We also give a “wish-list” of properties one would

desire from one’s knot notation scheme.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

2.1. Knot presentations

This section briefly discusses various knot notations and establishes some terminol-

ogy, with references for readers needing further details.

2.1.1. Regular knot projections

In 1847, J.B. Listing classified knots up to 5 crossings by analyzing knot projections

[33]. Listing was the first to publish an article containing a drawing of a regular knot

projection (or knot diagram or planar diagram). A knot is taken to be a polygonal

simple closed curve in 3-space. Choose any plane on which projection onto the plane

results in a curve whose only singularities are transverse double points which are

not the image of any vertex from the polygonal curve. Using a canonical normal

vector to the plane for line of sight, for a given double point d we find the point c

in the projection’s preimage of d farthest from our line of sight, and we indicate an

undercrossing by erasing the image of a small neighborhood of c from the planar

projection. A careful presentation is given in [37].

Out of all possible regular projections of a knot, there is (at least) one with

minimal number of crossings.

2.1.2. The Gauss code.

Gauss used regular knot projections to arrive at what is now called the Gauss Code

of a knot [53]. The Gauss code is the first knot notation system. P. G. Tait used

an encoding in the 1870’s to classify knots up to 7 crossings [63]. Tait’s encoding

may be regarded as an extension to the Gauss Code. One begins somewhere on the

knot projection (not at a crossing point), then proceeds along the knot applying

labels to the first, third, fifth etc. crossing until all crossings are labeled; one then

traverses the knot once more, writing the label of each crossing in the order that

you reach it, attaching a plus or minus sign, depending on whether you are crossing

over or under.

2.1.3. Tait, Little, and Kirkman.

Using Kirkman’s classification of certain polygons [30], Tait (and Little, using sim-

ilar methods) was able to tabulate knots up to 11 crossings [63] [34] [35] [36]. Tait’s

system included using a simple reduction rewrite strategy within his notation sys-

tem. This notation was improved by Dowker and Thistlethwaite, as discussed in

some detail below.

2.1.4. Reidemeister moves.

Reidemeister developed a reduction rewrite system for knot projections (the three

Reidemeister moves) [55]. We illustrate the three moves. The convention in these

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

(and in other graphically-based invariants) is that we show only the relevant part

of the knot. In our diagrams here, we have placed dashed circles, which the reader

should imagine as viewing through scope lens only a portion of the knot, with the

remainder of the knot outside of the scope of view and unchanged.

Fig. 1. The three Reidemeister moves. The topmost move will be referred to as R1, the middle
one as R2, and the bottommost as R3. For any one of these moves R, we write R→(K) (resp.
R←(K)) if the move has been applied left-to-right (resp. right-to-left) to the knot diagram K.

The import of this system is Reidemeister’s Theorem: an ambient isotopy of

two knots may be exhibited as sequences of rewrites of (any of) their diagrams, and

vice versa. That is, two knots are ambient isotopic if and only if a diagram of one

may be rewritten, via a sequence of Reidemeister moves, to a diagram of the other

[37].

2.1.5. Knotation

Conway developed a clever notational system for tangles, finding an algebraic-like

system for this system that led to several methods of reduction rewrites [15]. He used

this system to retabulate knots and links of 11 crossings by hand, in one afternoon

(an effort that took Tait and Little years of work), discovering one omission and

a few duplications in the process. Conway’s system can be used to classify all

arithmetic (also called algebraic, or rational) knots. The Conway code for a knot

originally was given as a basic polyhedron followed by a sorted list of arithmetic

tangles. See Conway’s paper [15] for details. This system has extensions by Caudron

[14] and by Bangert [5]. Conway has investigated further structures such as bangles

and bracelets.

2.1.6. Dowker-Thistlethwaite Codes (DT codes)

Dowker created a variation of Tait’s notational system that is easier to implement

computationally. Dowker and Thistlethwaite made it the basis for an algorithm

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

that successfully enumerated knots of up to 13 crossings [17]. Not every DT code

is valid, i.e. an arbitrary DT code may not correspond to an actual knot, and

two distinct composite knots may share the same DT Code. However, a valid DT

code for a prime knot specifies the knot uniquely [61]. In their paper, Dowker and

Thistlethwaite develop an algorithm to filter out invalid cases. They also give a

reduction system to remove duplicates from their enumeration.

We now recall the definition of the DT code of a regular knot projection [17].

Begin at a selected point on the diagram (excepting crossing points) and traverse the

diagram in a selected direction. At each encounter of a crossing, label the crossing

with the next available counting number; for an even label, prepend a negative sign

if traversing the overcross. Returning to the beginning point, each crossing has been

labeled twice, once with an odd number and once with an even number. Let S±
denote the set of labels generated.

If the knot projection has n crossings, then there are 2n labels (from 1 to 2n in

absolute value) and at each crossing an unique odd counting number paired with an

even integer. This induces a parity-reversing function σ on S = {1, . . . , 2n}, where

for each i ∈ S we find the crossing with label whose absolute value is i and let

σ(i) be the absolute value of the other label at that crossing. Note that σ(σ(i)) = i

for any i ∈ S. Note that there is also a bijective translation τ : S → S± where

|τ(s)| = s for all s ∈ S. Then the DT code of the knot projection is determined by

δ = τ ◦ σ, usually given as the list {δ(1), δ(3), . . . , δ(2n− 1)}. Note that δ ◦ σ = τ .

Finally, for each i ∈ S, let sgn(i) denote the sign of τ(i) (so sgn(i) < 0 implies i is

even).

For each i ∈ S±, let C(i) denote the crossing with label i. Then for any i ∈ S
we know C(i) is adjacent to the two crossings C(i ± 1) and C(δ(i) ± 1)), where

addition is modulo 2n. This fact is applied later when giving an explicit algorithm

for encoding a knot.

2.1.7. From Calvo to Rankin, Flint, and Schermann

Calvo developed an inductive knot tabulation algorithm, thereby sidestepping the

need to check validity of DT codes [12]. However, detection of duplication within the

tables generated then becomes the issue. Calvo had the insight that understanding

the deeper flype structure of prime, non-alternating diagram led to greater efficien-

cies in his algorithm. The Calvo algorithm was essentially refined in the development

of a notational system by Rankin, Flint, and Schermann , based on what they call

the group code which reminds one somewhat of the Gauss code but, instead, using

a Conway-like insertion scheme to allow for easy reduction of flype structures in

the notation [51] [52] [50]. This results in a master array that provides a unique

identifier for prime alternating knots. This forms part of the basis for inductive

construction of all prime alternating knots of crossing size n from those of crossing

size n− 1(see the above papers for details). Composite knots remain problematic,

due principally to the issue of detection of duplicates.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

2.2. Desirable properties for a knot presentation system

In this section, we list some properties that one would wish for a knot presenta-

tion system to enjoy, followed by a discussion of the knot presentations of the last

subsection in the light of these wishes.

Due to complexity considerations, one may well despair of a knot notation sys-

tem that would allow for mathematical classification of all knots. However, in de-

signing a system of knot notation or presentation, informed by the history of knot

tabulation and classification we can enumerate the following properties such a no-

tation system may enjoy. These properties invariably correspond to demands of

functoriality on the encoding when considered as a map from the category of knots

or braids to some suitable target category while others are demands on the faith-

fulness (respectively, fullness) of the encoding considered as functor.

• Surjection (realizability). Each code in the notation represents a knot (or

if this is not the case, those codes that do not represent a knot are easily

recognizable). A code for a knot should be easily obtained from one of its

planar diagrams.

• Reduction. The notation enjoys a calculus with which to reduce and sim-

plify encodings. Each step of simplification or reduction results in an en-

coding representing a knot isotopy equivalent to the originating knot.

• Minimality. The notational encoding of a given knot can be reduced to a

(finite non-empty set of equivalent) minimal encoding(s).

• Well-definedness. If a knot has two (or more) minimal reduced encodings,

each of these encodings is equivalent to the notation for a knot equivalent

via ambient isotopy to the original.

• Injection. Two knots that have equivalent minimal reduced encodings are

ambient isotopic.

• Economy. The notation is computationally cheap and easily constructed

from a diagram of the knot or from a simple code, such as the DT code.

• Compositionality. Operations on knots, e.g. knot composition, correspond

to natural operations on elements in the image of the encoding.

• Separation. The notation can be used to classify a class X of knots, where

X contains a previously classified class of knots (for example, arithmetic

knots (also known as algebraic knots) and bracelets) but is not previously

classified itself.

• Extensibility. The notation enjoys a formal language in which to describe

properties and invariants of notation objects that reflect interesting proper-

ties of knots. This language should also be useful in selecting specific sets of

knots (such as the set of all 21-crossing prime alternating links containing

the tangle 5/3). This language ideally should be scaleable and be applicable

to tables of indefinite size.

The DT code, with proper care taken, satisfies the first six properties but breaks

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

under compositionality. Conway’s tangle notation enjoys all of the properties listed,

though the Conway encoding requires foreknowledge of the classes of basic polygons

with n vertices. The master array of Rankin, Flint, and Schermann satisfies the first

five properties, but appears unlikely to support the last four properties to a degree

useful for anything other than tabulation.

2.2.1. A meta-knotation

Due to Reidemeister’s Theorem, in order to establish our main theorem we need

only consider diagrams of knots and not knots themselves. Hence we adopt the

following convenient notation and terminology. The meta-variable K ranges over

knot diagrams and we reserve K to range over knots. For simplicity, we refer to K

as a knot. We write #(K) to mean the number of crossing points in the diagram

K but will call this value the crossing number of the knot K, which the reader

is asked not to confuse with the minimal crossing number of the knot (it is in

this sense that we will later say that “two knots from the same isotopy class can

have different crossing numbers”). Formally speaking ∼iso will denote equivalence

of knots under ambient isotopy and ∼R will denote equivalence of diagrams under

(finite) sequences of Reidemeister transforms. However, when there is little chance

of confusion we drop the subscript and write ∼.

3. Concurrent process calculi and spatial logics

In the last thirty years the process calculi have matured into a remarkably power-

ful analytic tool for reasoning about concurrent and distributed systems. Process-

calculus-based algebraical specification of processes began with Milner’s Calculus

for Communicating Systems (CCS) [43] and Hoare’s Communicating Sequential

Processes (CSP) [23] [7] [25] [24], and continue through the development of the

so-called mobile process calculi, e.g. Milner, Parrow and Walker’s π-calculus [46],

Cardelli and Caires’s spatial logic [10] [9] [8], or Meredith and Radestock’s reflective

calculi [40] [41]. The process-calculus-based algebraical specification of processes has

expanded its scope of applicability to include the specification, analysis, simulation

and execution of processes in domains such as:

• telecommunications, networking, security and application level protocols

[1] [2] [28] [31];

• programming language semantics and design [28] [21] [20] [64];

• webservices [28] [31] [39];

• and biological systems [13] [16] [54] [49].

Among the many reasons for the continued success of this approach are two

central points. First, the process algebras provide a compositional approach to the

specification, analysis and execution of concurrent and distributed systems. Owing

to Milner’s original insights into computation as interaction [44], the process calculi

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

are so organized that the behavior —the semantics— of a system may be composed

from the behavior of its components [19]. This means that specifications can be

constructed in terms of components —without a global view of the system— and

assembled into increasingly complete descriptions.

The second central point is that process algebras have a potent proof principle,

yielding a wide range of effective and novel proof techniques [47] [56] [57] [58]. In

particular, bisimulation encapsulates an effective notion of process equivalence that

has been used in applications as far-ranging as algorithmic games semantics [3] and

the construction of model-checkers [8]. The essential notion can be stated in an

intuitively recursive formulation: a bisimulation between two processes P and Q is

an equivalence relation E relating P and Q such that: whatever action of P can be

observed, taking it to a new state P ′, can be observed of Q, taking it to a new state

Q′, such that P ′ is related to Q′ by E and vice versa. P and Q are bisimilar if there

is some bisimulation relating them. Part of what makes this notion so robust and

widely applicable is that it is parameterized in the actions observable of processes

P and Q, thus providing a framework for a broad range of equivalences and up-to

techniques [42] all governed by the same core principle [56] [57] [58].

4. Knots as processes

This section bootstraps intuitions about the target calculus by introducing process

expressions for key aspects of a knot’s structure. An n crossing knot K is modeled as

a system [[K]] of concurrently executing processes. More specifically, [[K]] is a parallel

composition Πn−1
i=0 [[C(i)]]|W of n + 1 processes consisting of n crossing processes

[[C(i)]] and a process W constituting a “wiring harness.” The latter process can

be thought of as the computational equivalent to Conway’s “basic polygon,” if the

knot is in minimal crossing number form. The complete expression of the encoding

is

[[K]] := (v0...v4n−1)(Πn−1
i=0 (ν u)[[C(i)]](v4i, ..., v4i+3, u)

|Πn−1
i=0 W (vω(i,0), vω(i,1))|W (vω(i,2), vω(i,3)))

Here, C(i) represents the ith crossing in the knot diagramK. The wiring process,

Πn−1
i=0 W (vω(i,0), vω(i,1))|W (vω(i,2), vω(i,3)), is itself a parallel composition of wire pro-

cesses that correspond to edges in the 4-valent graph of the knot shadow [61] the

constraints of which are reflected in the indexing function ω. The wiring process

may be calculated from other knot notations. For example, we later show how the

indexing function ω may be calculated from δ, the DT code of the knot projection.

The crossing and wire processes have further substructure, outlined below.

Remark 4.1 (knots as abstractions). The reader familiar with process calculi

will observe that the encoding actually produces an abstraction [56] in 4#(K)

names (see the first choice in the production labeled agent in the grammar of 4.5).

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

This is actually a way of demarking that the encoding should be insensitive to the

particular set of names chosen to represent the ports of the crossings. Some caution

must be exercised, however, as the encoding only preserves knot structure if the

abstraction is applied to a vector of 4#(K) distinct names.

4.1. Crossing processes

A crossing is conceived in the diagram below as a black-box having four points of

external interaction (ports) with the remainder of the knot process and as having

two internal wires each connecting a pair of ports. As a process, the crossing has

four possible behaviors, as shown in the defining encoding below.

x0

y0

x1

y1

Fig. 2. Crossing process

C(x0, x1, y0, y1, u)← x1?(s).y0!(s).(C(x0, x1, y0, y1, u)|u!)

+y0?(s).x1!(s).(C(x0, x1, y0, y1, u)|u!)

+x0?(s).(C ′(x0, x1, y0, y1, u, y1))

+y1?(s).(C ′(x0, x1, y0, y1, u, x0))

where

C ′(x0, x1, y0, y1, u, v)← x1?(s).y0!(s).(C ′(x0, x1, y0, y1, u, v)|u!)

+y0?(s).x1!(s).(C ′(x0, x1, y0, y1, u, v)|u!)

+u?.v!(s).(C(x0, x1, y0, y1, u))

A crossing process has four ports x0, x1, y0, y1 and a hidden synchronizer u.

Each port has a partner port, linked as shown in the diagram (note the relationship

to Conway’s ±1 tangles [15]). For example, the first behavior (indicated by the first

term of the summand) is that the process listens at port x1 for a signal s (which

will come, if at all, via the wiring process). Having heard s, the signal is passed

directly to the port y0 where the signal is then broadcast via the wiring process.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Then the process alerts the hidden synchronizer u that a signal has been passed

between the ports, while concurrently preparing itself for further signal processing.

The second summand represents a signal passing along the same strand in the

opposite direction. The third and fourth summands are similar to the first two,

except that before passing any received signal to its partner port, the process waits

for a signal from the synchronizer u before allowing the signal to pass, while still

allowing a signal to pass between x1 and y0 if the synchronizer has not yet been

alerted. So the role of u is that of a traffic controller who gives priority to traffic

over the route between x1 and y0, mimicking an over-crossing.

4.2. Wirings

As an illustration of the expressive power of the formalism, taken together with the

short description of the process calculus in the next section, the definitions below

fully equip the interested reader to verify that wire processes are lossless, infinite

capacity buffers.

W (x, y)← (ν n m)(Waiting(x, n,m)|Waiting(y,m, n))

Waiting(x, c, n)← x?(v).(ν m)(Cell(n, v,m)|Waiting(x, c,m))

+c?(w).c?(c).Ready(x, c, n, w)

Ready(x, c, n, w)← x?(v).(ν m)(Cell(n, v,m)|Ready(x, c,m,w))

+x!(w).Waiting(x, c, n)

Cell(c, v, n)← c!(v).c!(n).0

The ports x and y in which W is parameterized may be intuitively considered

splice points in the knot diagram. We adopt this terminology in the sequel.

One may well wonder why perfect buffers are chosen to represent wires. For

example, the following process intuitively captures a notion of wire.

Relay(x, y) := x?(s).y!(s).Relay(x, y) + y?(s).x!(s).Relay(x, y)

The problem is one of composition. Foreshadowing the method of proof, in the

sequel we will need to compose wires and crossings and have the result act as a

wire. For example, if W (x, y) represents a candidate for wire behavior, to model

the first Reidemeister move we have a demand that

W (y0, y1) ' (ν x0 x1 w0 w1)(W (y0, w0)|(ν u)C(x0, x1, w0, w1, u)|W (x0, x1)|W (y1, w1))

Again, the reader may verify that while this is true of buffers, it is not true of

the Relay process defined above.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

v
2

v
4

v
0

v
5

v
1

v 0
v 1

v 3

v2v4

v3

v5

1

20

3

7

6

5

4

8

9

10
11

Fig. 3. The 31 (trefoil) knot as process. The ports in the circuit diagram have been labeled with
the corresponding subscripted index in the process expression of the text.

4.3. An example: the trefoil knot as a process

The above intuitions are illustrated with an example, showing one way to represent

the trefoil knot as a process. Following the schema above, the process encoding of the

trefoil knot is a parallel composition of three crossing circuits with a wiring harness

whose design ensures that the crossing circuits are connected to each other in a

way that respects the knot diagram. Additionally, we make each synchronization

channel local to each crossing via a restriction on that channel.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

[[31]] = (v0...v5)(ν u0)C(v0, v1, v2, v3, u0)

|W (v2, v7)|W (v3, v6)

|(ν u1)C(v4, v5, v6, v7, u1)

|W (v4, v9)|W (v5, v8)

|(ν u2)C(v8, v9, v10, v11, u2)

|W (v10, v0)|W (v11, v1)

4.4. The distinguishing power of dynamics

In summary, to each knot K the encoding associates an invariant [[K]], an expression

in a calculus of message-passing processes via an encoding of a diagram of the knot.

More precisely, given the set of knot diagrams K and the set of processes modulo

structural equivalence P (see section 4.5), the encoding induces a map, [[−]] : K→ P.

Most importantly, the notion of equivalence of knots coincides perfectly with the

notion of equivalence of processes, i.e. bisimulation (written here and in the sequel

'). Stated more formally,

Theorem 4.2 (main).

K1 ∼ K2 ⇐⇒ [[K1]] ' [[K2]].

In particular, in contrast to other invariants, the alignment of process dynamics

with knot characteristics is what enables the invariant identified here to be perfectly

distinguishing. As discussed below, among the other beneficial consequences of this

alignment is the ability to apply process logics, especially the spatial sub-family of

the Hennessy-Milner logics, to reason about knot characteristics and knot classes.

We see moreover the possibility of a deeper connection. As mentioned in the

previous section, bisimulation has turned out to a powerful proof technique in the

theory of computation adaptable to a wide range of situations and admitting a

number of potent up-to techniques [59]. One of the central aims of this research is

to broaden the domain of applicability of bisimulation-based proof methods.

4.5. The syntax and semantics of the notation system

Having bootstrapped an intuitive account of the target calculus via the encoding,

we now summarize a technical presentation of this calculus. The typical presenta-

tion of such a calculus follows the style of giving generators and relations on them.

The grammar, below, describing term constructors, freely generates the set of pro-

cesses, P. This set is then quotiented by a relation known as structural congruence,

yielding the set P mentioned above in the type signature of the map constituting

the encoding.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

4.5.1. Process grammar

summation

M,N ::= 0 | x.A |M +N

agent

A ::= (~x)P | [~x]P

process

P,Q ::=N | P |Q |X〈~y〉 | (rec X(~x).P)〈~y〉 | (ν ~x)P

Note that ~x denotes a vector of names of length |~x|. In the encodings for knots,

crossings and wires given above we adopted the following standard abbreviations.

x?(~y).P := x.(~y)P x!(~y).P := x.[~y]P X(~y)← P := (~y)(rec X(~x).P)〈~y〉

Πn−1
i=0 Pi := P0| . . . |Pn−1

4.5.2. Structural congruence

Free and bound names and alpha-equivalence. At the core of structural

equivalence is alpha-equivalence which identifies process that are the same up to a

change of variable. Formally, we recognize the distinction between free and bound

names. The free names of a process, FN (P), may be calculated recursively as

follows:

FN (0) := ∅

FN (x?(~y).P) := {x}∪ (FN (P)\{~y}) FN (x!(~y).P) := {x}∪{~y}∪FN (P)

FN (P |Q) := FN (P) ∪ FN (Q) FN (P +Q) := FN (P) ∪ FN (Q)

FN ((ν ~y)P) := FN (P) \ {~y}

FN ((rec X(~x).P)〈~y〉) := {~y} ∪ FN (P) \ {~x}

The bound names of a process, BN (P), are those names occurring in P that

are not free. For example, in x?(y).0, the name x is free, while y is bound.

Definition 4.3. Then two processes, P,Q, are alpha-equivalent if P = Q{~y/~x}
for some ~x ∈ BN (Q), ~y ∈ BN (P), where Q{~y/~x} denotes the capture-avoiding

substitution of ~y for ~x in Q.

Definition 4.4. The structural congruence [56] , ≡, between processes is the least

congruence containing alpha-equivalence, satisfying the abelian monoid laws (as-

sociativity, commutativity and 0 as identity) for parallel composition | and for

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

summation +, in addition to the following axioms:

(ν x)0 ≡ 0 (ν x)(ν x)P ≡ (ν x)P (ν x)(ν y)P ≡ (ν y)(ν x)P

P |(ν x)Q ≡ (ν x)(P |Q), if x 6∈ FN (P)

(rec X(~x).P)〈~y〉 ≡ P{~y/~x}{(rec X(~x).P)/X}

4.5.3. Operational semantics

Finally, we introduce the computational dynamics. What marks these algebras

as distinct from other more traditionally studied algebraic structures, e.g. vector

spaces or polynomial rings, is the manner in which dynamics is captured. In tradi-

tional structures, dynamics is typically expressed through morphisms between such

structures, as in linear maps between vector spaces or morphisms between rings. In

algebras associated with the semantics of computation, the dynamics is expressed

as part of the algebraic structure itself, through a reduction reduction relation typ-

ically denoted by→. Below, we give a recursive presentation of this relation for the

calculus used in the encoding.

Comm
~y ∩ ~v = ∅ |~y| = |~z|

x.(~y)P | x.(ν~v)[~z]P → (ν~v)(P{~z/~y}|Q)

Par
P → P ′

P |Q→ P ′|Q

Equiv

P ≡ P ′ P ′ → Q′ Q′ ≡Q
P → Q

New
P → P ′

(ν x)P → (ν x)P ′

We write ⇒ for →∗, and P → if ∃Q such that P → Q.

In closing this summary, we take the opportunity to observe that it is precisely

the dynamics that distinguishes this encoding. The equivalence that coincides with

knot equivalence is a behavioral equivalence, i.e. an equivalence of the dynamics of

processes in the image of the encoding. In a marked departure from Gauss codes or

DT codes or Conway’s “knotation,” this facet of the encoding affords the conflation

of notation scheme with invariant, providing a framework in which to establish the

distinguishing power of the invariant and a language in which to express classes of

knots as logical properties, as discussed in subsection 6.

4.5.4. Bisimulation

The computational dynamics gives rise to another kind of equivalence, the equiva-

lence of computational behavior. As previously mentioned this is typically captured

via some form of bisimulation.

The notion we use in this paper is derived from weak barbed bisimulation [45].

We must introduce an “up to” [60] [48] strategy to deal with the fact that Rei-

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

demeister moves can not only introduce or eliminate crossings (see R1 R2), but

“reorder” them (see R3).

Definition 4.5. An agent B occurs unguarded in A if it has an occurence in A not

guarded by a prefix x. A process P is observable at x, written here P ↓ x, if some

agent x.A occurs unguarded in P . We write P ⇓ x if there is Q such that P ⇒ Q

and Q ↓ x.

Definition 4.6. A barbed bisimulation is a symmetric binary relation S between

agents such that P S Q implies:

(1) If P → P ′ then Q⇒ Q′ and P ′ S Q′, for some Q′.

(2) If P ↓ x, then Q ⇓ x.

P is barbed bisimilar to Q, written P ' Q, if P S Q for a barbed bisimulation S.

4.5.5. Contexts

One of the principle advantages of computational calculi like the π-calculus is a

well-defined notion of context, contextual-equivalence and a correlation between

contextual-equivalence and notions of bisimulation. The notion of context allows

the decomposition of a process into (sub-)process and its syntactic environment, its

context. Thus, a context may be thought of as a process with a “hole” (written 2)

in it. The application of a context M to a process P , written M [P], is tantamount

to filling the hole in M with P . In this paper we do not need the full weight of this

theory, but do make use of the notion of context in the proof the main theorem. As

will be seen, the Reidmeister moves amount to decomposing the representation of

the knot into some collection of crossings or wires and the rest of the knot.

summation

MM ,MN ::= 2 | x.MA |MM +MN

agent

MA ::= (~x)MP | [~x]MP

process

MP ::=MN | P |MP |(rec X(~x).MP)〈~y〉 | (ν ~x)MP

Definition 4.7 (contextual application). Given a context M , and process P ,

we define the contextual application, M [P] := M{P/2}. That is, the contextual

application of M to P is the substitution of P for 2 in M .

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Example 4.8. For example, if we take

M31 := (v0...v5)(ν u0)C(v0, v1, v2, v3, u0)

|W (v2, v7)|2
|(ν u1)C(v4, v5, v6, v7, u1)

|W (v4, v9)|W (v5, v8)

|(ν u2)C(v8, v9, v10, v11, u2)

|W (v10, v0)|W (v11, v1)

then [[31]] = M31 [W (v3, v6)]

5. Main theorem: proof sketch

We have a couple of technicalities to dispatch. To motivate the first of these we wish

to note that the arguments for the forward direction require some care. The aim is

to capture the intuitive equivalence-preserving nature of the Reidemeister moves as

corresponding bisimularity-preserving transformations on processes (in the image

of the encoding). Because of the encoding of crossing information of wires in terms

of synchronization of signal-flow, we have to introduce “enough signal” to keep the

knot “firing”, as it were, to establish that the process transformations corresponding

to the knot transformations are bisimulation-preserving. Rather than seeing this

extra condition as a weakness of the approach we submit that this feature provides

evidence to our claim that the characterization of ambient isotopy of knots at work

in this encoding is in terms of process dynamics.

We will say that the encoding of a knot is alive as long as it is firing, i.e. the

process is enabled to make a reduction step. If it ever ceases to push signal through,

i.e. process cannot make a reduction step, then it is dead.

We can ascertain an upperbound on initial signal that guarantees liveness of

the encoding. Surely, the parallel composition of 2#(K) barbs, i.e. two barbs for

each crossing, will guarantee the liveness of the encoding. More declaratively, we

simply demand that [[K]]|initSignal be live before we are willing to admit it as a

representation of the knot.

Definition 5.1. More precisely, we will call the pair ([[K]], initSignal) alive

if initSignal is an abstraction over a parallel composition of barbs, with

|initSignal| = |[[K]]|, we demand that for any vector of distinct names, v with

|v| = |[[K]]| and any state, K ′, such that [[K]]〈v〉|initSignal〈v〉 ⇒ K ′ we have that

K ′ →.

Different crossing numbers mean different numbers of free names. Knots

in the same isotopy class may have diagrams with different numbers of crossings.

Different numbers of crossings lead to different arities in the abstractions, so in

interpreting these knots we haveto work to properly capture the notion of equiva-

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

lence. While the precise statement is somewhat technical, the intuition is simple: it

is possible to find a common “interface”, i.e. argument list, between the two knots

such that restricting to that argument list obtains bisimilar processes.

Imagine (the processes that interpret) knots as programs housed in boxes with

ports on the perimeter. Two knot diagrams Ki, i ∈ {1, 2}, from the same isotopy

class may have different crossing numbers and thus their boxes have different num-

bers #(Ki) of ports on the outside. We can find a number of ports, call it n,

somewhere between the minimal crossing number of the isotopy class and the lesser

of #(Ki) such that if – using restriction – we close off #(K1) − n ports on the

first box and #(K2) − n on the second we get two boxes that perform the same

observable set of signal processing steps.

Formally, suppose K1 ∼ K2 and let #Min(K) := min{#(K ′) : K ′ ∼ K}. We

assert that there is an n such that 4#Min(K1) ≤ n ≤ 4 ∗min{#(K1),#(K2)} and

for any vector of names, ~v, with |~v| = n and v[i] 6= v[j] ⇐⇒ i 6= j, there exists

two vectors of names, ~w1, ~w2, also all distinct, such that

(ν ~w1)[[K1]]〈~v : ~w1〉 ' (ν ~w2)[[K2]]〈~v : ~w2〉

with | ~wi| = 4#(Ki)− n.

Prime versus composite knots. Finally, we need to say a little about how we ob-

tain a π-calculus expression for a given knot diagram. We use another bootstrapping

procedure, beginning with another knot notation (Dowker-Thistlethwaite codes is

used here) and exhibiting an algorithm for calculating a process expression from

the chosen notation scheme. The reader will note that DT codes are unique only

when restricted to the class of prime knots. It turns out that our encoding preserves

knot composition. In fact, knot composition turns out to be a specialized form of a

procedure, parallel composition + hiding, long-investigated in the process-algebraic

setting. So, it is sufficient to demonstrate the encoding for prime knots.

5.1. Forward direction. K1 ∼ K2 =⇒ [[K1]] ' [[K2]]

Strategy and intuitions. Since K1 ∼ K2 we know there is a sequence of Rei-

demeister moves converting K1 to K2. Each move is proved to correspond to a

bisimilarity-preserving transformation on a related process. We establish context

and substitution lemmas and as a consequence obtain that the process operations

corresponding to the Reidemeister moves preserve bisimularity. As noted above, a

small amount of bookkeeping is required to iteratively apply these transformations

to mirror Reidemeister moves as applied in a proof of ambient isotopy of two knots.

We begin by observing that the intuition behind the Reidmeister moves is funda-

mentally about performing local operations, i.e. on some subset of wires or crossings,

while leaving the rest of the process unchanged. We interpret this notion of a “local

operation”, say R, on a knot diagram K schematically as follows.

• factor the process, [[K]], as M [ΠiCi|ΠjWj] where ΠiCi|ΠiWi encodes the set

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

v
2

6

3

1

20

3

7

6

5

4

8

9

10
11

M[-]

R1R = W(3,6)

3

6

R1L = C|W|W|W

Fig. 4. The figure illustrates a Reidemeister move of the first type as reflected in the context M
of the 31 knot, as given in Ex. 4.8.

of crossings or wires to be modified by R, i.e. the left side of the move to be

performed, and M is the context representing the unchanged portion of the

process;

• letting R→(K) (resp. R←(K)) denote the left-to-right (resp. right-to-left) ap-

plication of the move R to K, then [[R→(K)]] is calculated as M [Πi′C
′
i′ |Πj′Wj′],

where Πi′C
′
i′ |Πj′Wj′ are the processes interpreting the modified set of crossings

or wires, i.e. the right side of the move to be performed.

The mathematical content of these statements is that the encoding naturally

extends to an encoding [[Ri{L,R}]] of the left and right hand sides of each Reidemeis-

ter move such that [[K]] = M [[[RiL]]] (resp. M [[[RiR]]]) and [[R→i (K)]] = M [[[RiR]]]

(resp. [[R←i (K)]] = M [[[RiL]]]). Here, a picture really is worth a thousand words (see

figure 5).

Example 5.2. For example, as in 4.8 taking M31 to be the encoding

of R1(31,W (v3, v6)), the application of R1 to 31 at to the strand corre-

sponding to the wire process W (v3, v6) is given by [[R1(31,W (v3, v6))]] =

(ν x0 x1 y0 y1)M31 [((ν u)C(x0, x1, y0, y1, u)|W (x0, x1)|W (y0, v3)|W (y1, v6))]. See

figure 4.

A certain discipline is required in the extended encoding. To establish our sub-

stitution and context lemmas we have to keep the interface (i.e. the ports in the

process expression corresponding to the splice points) of the left and right hand

sides of the R-move the same. So, for R1L and R2L we must restrict the ports that

are not the splice points. One way to address this is to embed the restrictions into

the encodings of R1L and R2L. Algebraically,

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Fig. 5. Reidemeister moves as bisimilarity-preserving transformations. Cf. Fig. 1

[[R1L]](y0, y1) =

(ν x0 x1 w0 w1)(W (y0, w0)

|(ν u)C(x0, x1, w0, w1, u)|W (x0, x1)

|W (y1, w1))

[[R2L]](x00, x01, x10, x11) =

(ν y00, y01, y10, y11, w00, w01, w10, w11)(W (x00, w00)|W (x01, w01)

|(ν u0)C(w00, w01, y00, y01, u0)

|W (y00, y11)|W (y01, y10)

|(ν u1)C(w10, w11, y10, y11, u1)

|W (x10, w10)|W (x11, w11))

Keeping to the notion of equivalence outlined in the section above, however, it

will be convenient to factor out the restrictions as in the example above.

Lemma 5.3 (context). ∀i ∈ {1, 2, 3} if K1
Ri→ K2 then there exists a context M

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

and (possibly empty) vector of distinct names ~w such that

(ν ~w)[[K1]]〈v : w〉 = (ν ~w)M [[[RiL]]]

[[K2]] = M [[[RiR]]]

Proof. This follows directly from the definition of the encoding.

Lemma 5.4 (substitution). For all i ∈ {1, 2, 3} RiL is bisimilar to RiR in the

context of a live encoding. That is, if

• [[K]]|initSignal is alive, and

• [[K]]|initSignal = M [[[RiL]]]

for some context M then we can substitute [[RiR]] in its place without change of

behavior, i.e.

(ν ~w)M [[[RiL]]] ' M [[[RiR]]] , ∀i ∈ {1, 2, 3}

Proof. This follows from the definitions of [[Ri{L,R}]] plus the requirement that

M derives from a live encoding. Even if one side has additional synchronizations,

there is always enough signal to overcome spurious blocking.

An immediate consequence of these two lemmas is

Lemma 5.5 (1-step). if K1 can be derived from K2 by application of one Reide-

meister move, then

[[K1]]〈v〉 ' (ν w)[[K2]]〈v : w〉

We are almost in a position to complete the proof of the forward implication.

The next step is to show that you can iterate the performance of these bisimilarity-

preserving transformations in a way that precisely mimics iterated application of

Reidemeister moves. Because the moves R1 and R2 change the number of crossings

the number of ports in the interface of the (encoding of the) knot to which they

are applied changes. This is the core issue in the formal statement of the theorem.

Because the splice interface remains constant across the two sides of a Reidemeister

move all one has to do is keep track of the ports to be hidden. The complete proof

uses a case analysis of the composition of any two types of Reidemeister moves.

We illustrate the analysis in the case of a simplifying (crossing-elimination) R1 step

followed by a complicating (crossing-introducing) R2 step.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

• The R1L → R1R step means we have a context M such that

(ν x0 x1 w0 w1)[[K1]]〈~v0 : x0 : x1 : w0 : w1〉
= (ν x0 x1 w0 w1)M [[[R1L]]]

'M [[[R1R]]]

= [[K2]]〈~v0〉.

• The R2R → R2L step means we have a context M ′ such that

(ν y00 . . . y11 w00 . . . w11)[[K3]]〈~v1 : y00 : . . . : y11 : w00 : . . . : w11〉
= (ν y00 . . . y11 w00 . . . w11)M ′[[[R2L]]]

'M ′[[[R1R]]]

= [[K2]]〈~v1〉.

• Since ~v0, ~v1 are just lists of distinct names with |~v0| = |[[K2]]| = |~v1|, just pick

~v0 = ~v1. Dropping the subscript, we conclude

(ν x0 x1 w0 w1)[[K1]]〈~v : x0 : x1 : w0 : w1〉 '
(ν y00 . . . y11 w00 . . . w11)[[K3]]〈~v1 : y00 : . . . : y11 : w00 : . . . : w11〉

• Moreover, we have [[K2]]〈~v〉 forming the shared core.

The attentive reader might wonder how R3 works. Indeed, Perko pairs provide

a key counter example to using restriction. This is where bisimulation really shows

it’s value – in the form of its flexibility. The outline follows the proof technique of

bisimulation-up-to (in this case, up to context), found in [57] after noting that that

there are two simple paths in the knot encoding between any given pair of distinct

ports.

5.2. Reverse direction. K1 ∼ K2 ⇐ [[K1]] ' [[K2]]

We prove this by contradiction, assuming two knots in distinct isotopy classes with

bisimilar images and arriving at absurdity. Not surprisingly, the argument in this

direction is considerably less complicated as it is nonconstructive.

Without loss of generality (by application of the lemmas of the forward direction

as needed), we assume knots are given in minimal crossing diagrams. Due to this

minimality, if the crossing numbers of these diagrams are different, then the number

of free names (or arity of the abstractions interpreting the knots) in [[K1]] differs

from those in [[K2]] –contradicting bisimilarity. Thus, the crossing numbers must be

the same.

Now we employ the form of the encoding: Πn−1
i=0 [[C(i)]](...)|Πn−1

i=0 W (...)|W (...) '
Πn−1
j=0 [[C(j)]](...)|Πn−1

j=0W
′(...)|W ′(...). Notice that a consequence of sharing the same

crossing number is that the crossing process part of the two encodings is iden-

tical. Because bisimulation is a congruence this implies Πn−1
i=0 W (...)|W (...) '

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Πn−1
j=0W

′(...)|W ′(...). This says that the only difference can be in the “wiring har-

nesses”. Obviously, if any of these wires differ (up to α-equivalence), then there is

a distinguishing barb, contradicting our assumption of bisimulation. Hence none of

the wires differ, their respective sets of crossings are wired identically, which means

the diagrams are identical. Thus, the knots are ambiently isotopic – a contradiction.

6. Unlikely characters: spatial logic for knots

Associated to the mobile process calculi are a family of logics known as the

Hennessy-Milner logics. These logics typically enjoy a semantics interpreting for-

mulae as sets of processes that when factored through the encoding outlined above

allows an identification of classes of knots with logical formulae. In the context of

this encoding the sub-family known as the spatial logics [9] [10] [8] are of particular

interest providing several important features for expressing and reasoning about

properties (i.e. classes) of knots. We hint here at how this may be done.

6.0.1. Structural connectives

The spatial logics enjoy structural connectives corresponding, at the logical level, to

the parallel composition (P |Q) and new name ((ν x)P) connectives for processes.

As illustrated in the examples below, these connectives are extremely expressive

given the shape of our encoding.

6.0.2. Decideable satisfaction

In [8] the satisfaction relation is shown to be decideable for a rich class of processes.

It further turns out that the image of the our encoding is a proper subset of that

class. This result provides the basis for an algorithm by which to search for knots

enjoying a given property.

6.0.3. Characteristic formulae

In the same paper [8] , Caires presents a means of calculating characteristic formu-

lae, selecting equivalence classes of processes up to a pre–specified depth limit on

the support set of names. Composed with our encoding, this characteristic formula

can be used to select characteristic formulae for knots.

6.0.4. Spatial logic formulae

The grammar below (segmented for comprehension) summarizes the syntax of spa-

tial logic formulae. We employ illustrative examples in the sequel to provide an

intuitive understanding of their meaning referring the reader to [8] for a more de-

tailed explication of the semantics.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

boolean

A,B ::= T | ¬A | A ∧B | η = η′
spatial

| 0 | A|B | x R©A | ∀x.A | Hx.A

behavioral

| α.A
recursion

| X(~u) | µX(~u).A

action

α ::= 〈x?(~y)〉 | 〈x!(~y)〉 | 〈τ〉
name

η ::= x | τ

6.1. Example formulae

6.1.1. Crossing as formula.

µC(x0, x1, y0, y1, u).(〈x0?(z)〉(〈u!〉〈y1!z〉C(x0, x1, y0, y1, u))

∧ 〈y1?(z)〉(〈u!〉〈x0!z〉C(x0, x1, y0, y1, u))

∧ 〈x1?(z)〉(〈u?〉〈y0!z〉C(x0, x1, y0, y1, u))

∧ 〈y0?(z)〉(〈u?〉〈x1!z〉C(x0, x1, y0, y1, u)))

The lexicographical similarity between the shape of this formulae and the shape

of definition of the process representing a crossing reveals the intuitive meaning of

this formulae. It describes the capabilities of a process that has the right to represent

a crossing. For example it picks out processes that may perform an input on the

port x0 in its initial menu of capabilities. What differentiates the formula from the

process, however, is that the crossing process is the smallest candidate to satisfy the

formula. Infinitely many other processes – with internal behavior hidden behind this

interface, so to speak – also satisfy this formula. Even this simple formula, then, can

be seen to open a new view onto knots, providing a computational interpretation

of virtual knots.

Note that this formula is derived by hand. A similar formula can be derived

by employing Caires’ calculation of characteristic formula [8] to the process repre-

senting a crossing. In light of this discussion, we let [[C]]φ(x0, x1, y0, y1, u) denote

a formula specifying the dynamics we wish to capture of a crossing. To guaran-

tee we preserve the shape of the interface and minimal semantics we demand that

[[C]]φ(x0, x1, y0, y1, u) ⇒ C(x0, x1, y0, y1, u) where C(x0, x1, y0, y1, u) denotes the

formula above.

6.1.2. Crossing number constraints.

The moral content of the context lemma (Lemma 5.3) is that the notion of “local-

ity” in the Reidemeister moves is effectively captured by the parallel composition

operator of the process calculus. This intuition extends through the logic. Given

a formula, [[C]]φ(x0, x1, y0, y1, u), we can use the structural connectives to specify

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

constraints on crossing numbers, such as at least n crossings, or exactly n crossings.

at-least-n

K≥nφ (~xs, ~ys) := Πn−1
i=0 Hu.[[C]]φ(xsi, ysi, u)|T

exactly-n

K=n
φ (~xs, ~ys) := Πn−1

i=0 Hu.[[C]]φ(xsi, ysi, u)|¬(∀x0, y0, x1, y1, u.[[C]]φ(x0, y0, x1, y1, u)|T)

To round out this section, recall that the encoding of an n-crossing knot decom-

poses into a parallel composition of n copies of a crossing process together with

a wiring harness. To specify different knot classes with the same crossing number

amounts to specifying logical constraints on the wiring harness. In the interest of

space, we defer examples to a forthcoming paper. Suffice it to say that both the

conditions “alternating knot” and “contains the tangle corresponding to 5/3” are

expressible. For example, it is possible to calculate the characteristic formula of a

process corresponding to the tangle 5/3 and conjoin it into the classifying formula

via the composition connective of the logic.

Finally, we wish to observe that it is entirely within reason to contemplate a

more domain-specific version of spatial logic tailored to the shape of processes in

the image of the encoding. Such a domain-specific logic would have a better claim

to the title formal language of knot properties.

7. Conclusions and future work

7.1. Knotation system properties

Rather than list the properties of section 2.2 and tick them off, as we may do, let

us take a step back. In the end it is the act of calculating over knots – tabulat-

ing, searching, making new ones from old – that places demands on the notation

system used to represent them. These are the practical considerations that give

rise to the properties listed in 2.2. Establishing the tight correspondence between

processes in the image of the encoding and the knots they represent is ultimately

in service of showing this is a reasonable proxy for knots because calculations on

the representation have a correspondence to calculations on the domain. Moreover,

the last few decades of logic in computer science has taught us that there is fidelity

and then there is fidelity. It’s one thing map elements of one domain to elements of

another, but it’s another to map the procedures of one domain (roughly, operations

on elements) to the procedures of another. Whether one sees a demand like this

through the lens of “functoriality” or through a correspondence of proofs (of say,

ambient isotopy, in a proof system made of Reidmeister moves) and programs (that

transform programs), the practical side of the demand is about making calculation

tractable, so that “local” operations in one domain correspond to “local” opera-

tions in the other. This makes it possible to structure calculations in terms of the

structure of the elements over which the calculations are being performed, which

has far-ranging consequences on the complexity of calculation in the representative

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

domain. Of note, we have been careful to restrict attention to the image of the

encoding. We do not, as of yet, have an effective characterization of processes that

will decide whether or not a process is in the image of the encoding. This restriction

notwithstanding, the image is the only system thus far proposed that does enjoy

all of the properties listed, including possessing (actually, being) a language for

classifying knots via logical properties.

7.2. Knot queries

The interest in knot tabulation coming from the physical sciences is a strong mo-

tivation to investigate the design of a specialized form of spatial logic tailored to

reasoning about processes in the image of this encoding. Specifically, the current

authors are in the process of devising an executable knot query language that runs

on top of a translation of spatial logic predicates to XQuery, the XML query lan-

guage [?] [62]. In this application, a member, K, of an isotopy class [K]∼ is stored

as an XML document [[[[K]]]]XML. As the notation indicates, the document may

be calculated from the process expression, [[K]]. Pleasantly, all such documents will

conform to an XML schema [18] [38] [6] that may be formally derived from the

grammar for processes described in section 4.5.1. Thus, the mathematics extends

to a formal specification of the software implementation of a “knot database” and

the compositional nature of the specification makes tractable formal verification of

the correctness of the software with regards to the specification.

7.3. Braids, tangles, virtual knots, racks and quandles

As may be seen from the encoding of the Reidemeister moves, nothing in this

approach restricts it to knots. In particular, the same techniques may be lifted to

braids and tangles. More generally, Kauffman posits an intriguing new member to

the knot family by virtualizing the crossings in a knot diagram [29]. We note that

while we arrived at this encoding before becoming aware of Kauffman’s work, that

line of investigation is very much aligned to the guiding intuitions of the encoding

presented here. Namely, the crossing circuit a priori could be any π-calculus process

that respects the interface of the wiring circuit. We conjecture that many forms of

virtualization may be faithfully interpreted as simulation.

Moreover, it seems likely that the rack and quandle frameworks may be mirrored

in the process calculus, as these structures can be used to model the action of the

Reidemeister moves on a knot. The relation between this type of action and the

dynamics of the process calculus presented here remains to be investigated.

7.4. Other calculi, other bisimulations and geometry as behavior

The astute reader may have noticed that the encoding described here is not much

more than a linear notation for a minimal graph-based representation of a knot di-

agram. In this sense, there appears to be nothing particularly remarkable about the

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

representation. Though expressed in a seemingly idiosyncratic way, the encoding is

built from the same information that any freely downloadable program for calculat-

ing knot polynomials uses routinely. What is remarkable about this representational

framework is that it enjoys an independent interpretation as the description of the

behavior of concurrently executing processes. Moreover, the notion of the equiv-

alence of the behavior of two processes (in the image of the encoding) coincides

exactly with the notion of knot equivalence. It is the precise alignment of indepen-

dently discovered notions that often indicates a phenomena worth investigating.

This line of thought seems particularly strengthened when we recall the π-

calculus is just one of many ‘computational calculi’ —the λ-calculus being an-

other paradigmatic example— that may be thought of as a computational dynam-

ics+algebra and that virtually every such calculus is susceptible to a wide range of

bisimulation and bisimulation up-to techniques [42]. As such, we see the invariant

discussed here as one of many potential such invariants drawn from these relatively

new algebraic structures. It is in this sense that we see it as a new kind of invariant

and is the inspiration for the other half of the title of this paper.

Finally, if the reader will permit a brief moment of philosophical reflection, we

conclude by observing that such a connection fits into a wider historical context.

There is a long-standing enquiry and debate into the nature of physical space.

Using the now familiar signposts, Newton’s physics —which sees space as an ab-

solute framework— and Einstein’s —which sees it as arising from and shaping

interaction— we see this connection as fitting squarely within the Einsteinian

weltanschauung. On the other hand, unlike the particular mathematical framework

of continuity in which Einstein worked out his programme, behavior and its implied

notions of space and time are entirely discrete in this setting, built out of names

and acts of communication. In this light we look forward to revisiting the now well-

established connection between the various knot invariants such as the Kauffman

bracket and quantum groups. Specifically, it appears that the kinematic picture of

loop quantum gravity derived from spin networks can be faithfully encoded in a

manner analogous to one used here to encode knots, but the process structure offers

an account of dynamics somewhat different from spin foams [4].

8. Appendix: From DT-codes to processes

What follows is an algorithm for calculating the ω indexing function. Note that the

function over can be implemented easily using the function δ, or the function sgn,

described in section 2.1.6. Exercise for the reader: upgrade the algorithm so that

wires are not duplicated during the process.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

(* -- *)

(* *)

(* Given types Knot and Wire, the omega function is typed as follows *)

(* omega : int -> (int -> int) -> (int -> int) -> Knot -> (Wire list) *)

(* With dt a table representing the Dowker-Thistlethwaite mapping *)

(* from odds to evens, and dti the inverse. The function keeps an *)

(* accumulator, acc, in which to collect the wires it calculates. *)

(* The function assumes helper functions C and x0,x1,y0,y1. C takes *)

(* and instance of type Knot and the odd index of the DT code and *)

(* returns the crossing. The other helpers are accessors of the ports *)

(* of the crossing. The algorithm visits every crossing and so *)

(* generates many wires more than once, which is why the accumulator *)

(* is updated with union rather than cons on the recursive calls. As *)

(* an exercise, modify the algorithm to avoid wire duplication. *)

(* *)

(* -- *)

let omega i dt dti knot acc =

if (i <= (numCrossings knot))

then

let ic = (2*i - 1) in

(omega

(i+1) dt dti knot

(union acc

[W(x1(C(knot,ic)),

(if (over dt ic-1)

then y0(C(knot,ic-1))

else y1(C(knot,ic-1))));

W(y0(C(knot,ic)),

(if (over dt ic+1)

then x1(C(knot,ic+1))

else x0(C(knot,ic+1))));

W(x0(C(knot,ic)),

(if (over dt (dti ((dt ic)-1)))

then y0(C(knot,(dti ((dt ic)-1))))

else y1(C(knot,(dti ((dt ic)-1))))));

W(y1(C(knot,ic)),

(if (over dt (dti ((dt ic)+1)))

then x1(C(knot,(dti ((dt ic)+1))))

else x0(C(knot,(dti ((dt ic)+1))))))]))

else acc

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Acknowledgments. The authors wish to thank Matthias Radestock for sugges-

tions for coding wires, and early advocation of the wire-saturated form the final

encoding took and his probing questions regarding proof strategies in earlier drafts

of this paper. One of the co-author wishes to acknowledge his longstanding debt

to Samson Abramksy for making so accessible his foundational insights into the

Curry-Howard isomorphism. Additionally, the authors would like to thank the re-

viewers of ICALP 2006 for their helpful comments on an earlier write up of these

results.

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

References

[1] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types
and logic programs. In POPL, pages 33–44, 2002.

[2] Mart́ın Abadi and Bruno Blanchet. Secrecy types for asymmetric communication.
Theor. Comput. Sci., 3(298):387–415, 2003.

[3] Samson Abramsky. Algorithmic game semantics and static analysis. In SAS, page 1,
2005.

[4] John C Baez. An introduction to spin foam models of quantum gravity and bf theory.
LECT.NOTES PHYS., 543:25, 2000.

[5] P. D. Bangert. Algorithmic Problems in the Braid Groups. PhD thesis, University
College London, 2002.

[6] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes second edition.
W3C recommendation, W3C, October 2004. http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028/.

[7] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. Assoc. Comput. Mach., 31(3):560–599, 1984.

[8] Lúıs Caires. Behavioral and spatial observations in a logic for the pi-calculus. In
FoSSaCS, pages 72–89, 2004.

[9] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part i). Inf. Comput.,
186(2):194–235, 2003.

[10] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency - ii. Theor. Comput.
Sci., 322(3):517–565, 2004.

[11] Jorge A. Calvo, Kenneth C. Millett, Eric J. Rawdon, and Andrzej Stasiak, editors.
Physical and numerical models in knot theory, volume 36 of Series on Knots and
Everything. World Scientific Publishing Co. Pte. Ltd., Singapore, 2005. Including
applications to the life sciences.

[12] Jorge Alberto Calvo. Knot enumeration through flypes and twisted splices. J. Knot
Theory Ramifications, 6(6):785–798, 1997.

[13] Luca Cardelli. Brane calculi. In CMSB, pages 257–278, 2004.
[14] A. Caudron. Classification des noeuds et des enlacements. Prepublication Math.

d’Orsay, Orsay, France: Universite Paris-Sud, 1981.
[15] J. H. Conway. An enumeration of knots and links, and some of their algebraic prop-

erties. In J. Leech, editor, Computational Problems in Abstract Algebra (Proc. Conf.,
Oxford, 1967), pages 329–358. Pergamon, Oxford, 1970.

[16] Vincent Danos and Cosimo Laneve. Core formal molecular biology. In ESOP, pages
302–318, 2003.

[17] C. H. Dowker and Morwen B. Thistlethwaite. Classification of knot projections.
Topology Appl., 16(1):19–31, 1983.

[18] David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second edition.
W3C recommendation, W3C, October 2004. http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/.

[19] Wan Fokkink, Rob van Glabbeek, and Paulien de Wind. Compositionality of
Hennessy-Milner logic through structural operational semantics. In Fundamentals of
computation theory, volume 2751 of Lecture Notes in Comput. Sci., pages 412–422.
Springer, Berlin, 2003.

[20] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml: A
language for concurrent distributed and mobile programming. In Advanced Functional
Programming, pages 129–158, 2002.

[21] Cédric Fournet, Georges Gontheir, Jean-Jacques Lévy, Luc Maranget, and Didier

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

Rémy. A calculus of mobile agents. In Ugo Montanari and Vladimiro Sassone, editors,
CONCUR 1996, volume 1119 of Lecture Notes in Computer Science, pages 406–421.
Springer-Verlag, 1996.

[22] Rūsiņš Freivalds. Knot theory, Jones polynomial and quantum computing. In Math-
ematical foundations of computer science 2005, volume 3618 of Lecture Notes in
Comput. Sci., pages 15–25. Springer, Berlin, 2005.

[23] C. A. R. Hoare. Communicating sequential processes. Prentice Hall International
Series in Computer Science. Prentice Hall International, Englewood Cliffs, NJ, 1985.
With a foreword by Edsger W. Dijkstra.

[24] C. A. R. Hoare. Notes on communicating sequential systems. In Control flow and
data flow: concepts of distributed programming (Marktoberdorf, 1984), volume 14 of
NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., pages 123–204. Springer, Berlin,
1985.

[25] C. A. R. Hoare. Algebraic specifications and proofs for communicating sequential
processes. In Logic of programming and calculi of discrete design (Marktoberdorf,
1986), volume 36 of NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., pages 277–
300. Springer, Berlin, 1987.

[26] Jim Hoste. The enumeration and classification of knots and links. In Handbook of
knot theory, pages 209–232. Elsevier B. V., Amsterdam, 2005.

[27] Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks. The first 1,701,936 knots. Math.
Intelligencer, 20(4):33–48, 1998.

[28] Allen L. Brown Jr., Cosimo Laneve, and L. Gregory Meredith. Piduce: A process
calculus with native xml datatypes. In Mario Bravetti, Lëıla Kloul, and Gianluigi
Zavattaro, editors, EPEW/WS-FM, volume 3670 of Lecture Notes in Computer Sci-
ence, pages 18–34. Springer, 2005.

[29] Louis Kauffman and Vassily Olegovich Manturov. Virtual knots and links, 2005.
[30] T. P. Kirkman. The enumeration, description, and construction of knots of fewer

than ten crossings. Trans. Roy. Soc. Edin., 32:281–309, 1885.
[31] Cosimo Laneve and Gianluigi Zavattaro. Foundations of web transactions. In FoS-

SaCS, pages 282–298, 2005.
[32] Tomáš Liko and Louis H. Kauffman. Knot theory and a physical state of quantum

gravity. Classical Quantum Gravity, 23(4):R63–R90, 2006.
[33] J.B. Listing. Vorstudien zur topologie. Göttingen Studien, 2:811–875, 1848.
[34] C. N. Little. On knots, with a census to order 10. Trans. Conn. Acad. Sci., 18:374–

378, 1885.
[35] C. N. Little. Alternate ± knots of order 11. Trans. Roy. Soc. Edin., 36:253–255, 1890.
[36] C. N. Little. Non-alternate ± knots. Trans. Roy. Soc. Edin., 39:771–778, 1900.
[37] Charles Livingston. Knot Theory. Carus Mathematical Monographs. MAA, 1993.
[38] Noah Mendelsohn, Henry S. Thompson, David Beech, and Murray Maloney. XML

schema part 1: Structures second edition. W3C recommendation, W3C, October
2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[39] Greg Meredith and Steve Bjorg. Contracts and types. Commun. ACM, 46(10):41–47,
2003.

[40] L. Gregory Meredith and Matthias Radestock. A reflective higher-order calculus.
Electr. Notes Theor. Comput. Sci., 141(5):49–67, 2005.

[41] L.G. Meredith and Matthias Radestock. A reflective higher-order calculus. In Mirko
Viroli, editor, ETAPS 2005 Satellites. Springer-Verlag, 2005.

[42] R. Milner and D. Sangiorgi. Techniques of weak bisimulation up-to, 1992.
[43] Robin Milner. A Calculus of Communicating Systems. Springer Verlag, 1980.
[44] Robin Milner. Elements of interaction - turing award lecture. Commun. ACM,

September 14, 2010 0:12 WSPC/INSTRUCTION FILE jktir

36(1):78–89, 1993.
[45] Robin Milner. The polyadic π-calculus: A tutorial. Logic and Algebra of Specification,

Springer-Verlag, 1993.
[46] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. I,

II. Inform. and Comput., 100(1):1–40, 41–77, 1992.
[47] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In ICALP, pages 685–695,

1992.
[48] Damien Pous. Weak bisimulation up to elaboration. In Christel Baier and Holger

Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in Computer Science,
pages 390–405. Springer, 2006.

[49] Corrado Priami, Aviv Regev, Ehud Y. Shapiro, and William Silverman. Application
of a stochastic name-passing calculus to representation and simulation of molecular
processes. Inf. Process. Lett., 80(1):25–31, 2001.

[50] Stuart Rankin and Ortho Flint. Enumerating the prime alternating links. J. Knot
Theory Ramifications, 13(1):151–173, 2004.

[51] Stuart Rankin, Ortho Flint, and John Schermann. Enumerating the prime alternating
knots. I. J. Knot Theory Ramifications, 13(1):57–100, 2004.

[52] Stuart Rankin, Ortho Flint, and John Schermann. Enumerating the prime alternating
knots. II. J. Knot Theory Ramifications, 13(1):101–149, 2004.

[53] R. C. Read and P. Rosenstiehl. On the gauss crossing problem. Proc. Fifth Hungarian
Comb. Colloq., 1977.

[54] Amitai Regev and Ehud Y. Shapiro. Cells as computation. In CMSB, pages 1–3,
2003.

[55] Kurt Reidemeister. Knoten und Verkettungen. Math. Z., 29(1):713–729, 1929.
[56] David Sangiorgi and David Walker. The π-Calculus: A Theory of Mobile Processes.

Cambridge University Press, 2001.
[57] Davide Sangiorgi. On the proof method for bisimulation (extended abstract). In

MFCS, pages 479–488, 1995.
[58] Davide Sangiorgi. Bisimulation in higher-order process calculi. Information and Com-

putation, 131:141–178, 1996.
[59] Davide Sangiorgi. Bisimulation: From the origins to today. In LICS, pages 298–302.

IEEE Computer Society, 2004.
[60] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In

CONCUR, pages 32–46, 1992.
[61] Robert G. Scharein. Interactive Topological Drawing. PhD thesis, Department of

Computer Science, The University of British Columbia, 1998.
[62] Jérôme Siméon, Denise Draper, Ashok Malhotra, Peter Fankhauser, Mary

Fernández, Michael Rys, Philip Wadler, and Kristoffer Rose. XQuery 1.0 and
XPath 2.0 formal semantics. Candidate recommendation, W3C, June 2006.
http://www.w3.org/TR/2006/CR-xquery-semantics-20060608/.

[63] P.G. Tait. On knots, i, ii, iii. In Scientific Papers, volume 1, pages 273–347. Cambridge
University Press, Cambridge, 1898.

[64] Pawel T. Wojciechowski and Peter Sewell. Nomadic pict: Language and infrastructure
design for mobile agents. In ASA/MA, pages 2–12, 1999.

