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The Bergman property for endomorphism monoids

of some Fräıssé limits

Igor Dolinka

Abstract

Based on an idea of Y. Péresse and some results of Maltcev, Mitchell and Ruškuc,
we present sufficient conditions under which the endomorphism monoid of an ul-
trahomogeneous first-order structure has the Bergman property. This property has
played a prominent role both in the theory of infinite permutation groups and,
more recently, in semigroup theory. As byproducts of our considerations, we estab-
lish exactly which ultrahomogeneous structures are homomorphism-homogeneous,
and apply our conclusions to questions concerning relative ranks of endomorphism
semigroups within the corresponding transformation semigroups.

2010 Mathematics Subject Classification: 20M20 (primary); 03C07; 08A35; 18A30
(secondary).

1 Introduction

1.1 The Bergman property and Fräıssé limits

Let S be a semigroup. For A ⊆ S and n > 1 we denote An = {a1 · · ·an : a1, . . . , an ∈ A}.
If Γ is a generating set for S = 〈Γ〉, then, by definition, S =

⋃∞

n=1 Γ
n. However, it might

turn out that only a finite portion of the latter infinitary union suffices to obtain the
whole S, that is, S =

⋃m
n=1 Γ

n holds for some m > 1. In such a case we say that S is
semigroup Cayley bounded with respect to Γ. For a group G and its (group) generator
∆ we have that G is generated as a semigroup by ∆ ∪∆−1; thus we say that G is group
Cayley bounded with respect to ∆ if it is semigroup Cayley bounded with respect to
Γ = ∆ ∪ ∆−1 (that is, the Cayley graph of G with respect to Γ is of finite diameter).
A well-known result of George Bergman [2] asserts that for any (infinite) set X , the
symmetric group Sym(X) is group Cayley bounded with respect to every its generating
set. Hence, the term ‘the Bergman property’ quickly established itself [23] to describe
the property of groups of being group Cayley bounded with respect to every generator.
To distinguish between groups and semigroups, we refer to this remarkable property as
the group Bergman property; the analogous property for semigroups—the main subject
of investigation in a recent contribution by Maltcev, Mitchell and Ruškuc [26]—is called
the semigroup Bergman property. For a group G, the semigroup Bergman property
obviously implies the group Bergman property. It is still unknown, however, whether
the converse is true.

The other principal theme of this paper are the fascinating objects from model theory
called Fräıssé limits. Namely, if C is a class of finitely generated first-order structures (of
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a fixed signature) which is closed for taking (isomorphic copies of) substructures, has the
joint embedding property (JEP) and the amalgamation property (AP), then a celebrated
result of Roland Fräıssé [13, 21] guarantees the existence and uniqueness of a countable
structure F such that:

(i) F is C -universal, that is, any A ∈ C embeds into F , and

(ii) F is ultrahomogeneous, which means that for any isomorphism α : A→ A′ between
finitely generated substructures A,A′ of F there is an α̂ ∈ Aut(F ) which extends
α, i.e., α̂|A = α.

Following [21], such structure F is called the Fräıssé limit of C and denoted by Flim(C ).
Moreover, any countably infinite ultrahomogeneous structure arises in this way: it is the
Fräıssé limit of the class of all of its finitely generated substructures. A class of finitely
generated structures that satisfies the premises of the Fräıssé theorem is called a Fräıssé
class. It is not difficult to show that if C is a Fräıssé class, and if C denotes the class
of all countable structures all of whose finitely generated substructures are contained in
C , then in fact any member of C embeds into Flim(C ). Historically, the first Fräıssé
limits discovered were the rational Urysohn space UQ [38] as the limit of all finite metric
spaces with rational distances, and Q, the limit of all finite chains [13]. Other classical
examples of Fräıssé classes and their limits include:

• finite simple graphs and the random graph R [5, 6],

• finite posets and the generic poset P [36],

• finite semilattices and the countable universal ultrahomogeneous semilattice Ω [11],

• finite distributive lattices and the countable universal ultrahomogeneous distribu-
tive lattice D [12],

• finite Boolean algebras and the countable atomless Boolean algebra A.

In the abundance of examples provided in [26] of well-known semigroups both with
and without the Bergman property—a significant part of them being semigroups of
various mappings, or even morphisms of some structure—one particular result contained
in Theorem 4.2 of that paper caught author’s special attention and interest. Namely, this
is the assertion that End(R) has the Bergman property. This claim remained unproved
in [26]: the theorem itself was formulated as a consequence of Lemma 2.4 of that paper
(see Lemma 1.1 below) and two earlier publications [1, 32], which indeed account for all
the assertions contained in the theorem except for the one about End(R). However, later
I learned hat the Bergman property for End(R) is a consequence of a result in the recent
doctoral thesis of Y. Péresse [34] (a student of Mitchell’s) and the already mentioned
Lemma 2.4 of [26]. The present note is centered around a series of remarks leading to the
conclusion that the convenient and clever trick presented in [34] can be in fact generalized
to a whole class of ultrahomogeneous structures (that is, Fräıssé limits), thus yielding
the Bergman property for their endomorphism monoids. This conclusion is reached in
Corollary 4.5, with the purpose of complementing the results of [26]. In the course of
proving our main results, we will record an exact description of Fräıssé classes whose
limits are homomorphism-homogeneous [8], accompanied with a number of examples.
As a application of this approach, in the final section we obtain some information on the
relative ranks of End(F ) within TF , where F is a Fräıssé limit.

Now, let us briefly review the aforementioned trick from [34] and the other ingredients
of the argument proving that End(R) has the Bergman property.
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1.2 Strong distortion, coproducts, homomorphism extensions

The results we are about to revisit are based on another motif connected to the Bergman
property, and it traces back to an old, classical result of W. Sierpiński, who proved in
[37] that if X is an infinite set, then any countable set {fi : i > 0} of self-maps (trans-
formations) X → X is contained in a 2-generated subsemigroup of TX , the semigroup
of all self-maps of X . Following this landmark example, we say that a semigroup S has
Sierpiński index n < ω if n is the least positive integer with the property that for any
countable A ⊆ S there exists s1, . . . , sn ∈ S such that A ⊆ 〈s1, . . . , sn〉. If no such n
exists, the Sierpiński index of S is said to be infinite. Of course, the Sierpiński index
of a countable semigroup is simply its rank, the minimum size of its generating set, so
that the notion is particularly interesting for uncountable semigroups. So, the result of
Sierpiński asserts that TX has Sierpiński index 2. Some recent results concerning the
Sierpiński index of certain classical transformation semigroups—along with a thorough
historical introduction to the topic—can be found in [31].

A slight modification of this notion produces a convenient method for proving the
Bergman property for semigroups. Namely, in several proofs of the finiteness of the
Sierpiński index for various semigroups it turns out—after selecting a countable set
A = {ai : i < ω} and s1, . . . , sn such that A ⊆ 〈s1, . . . , sn〉—that in the representation

ai = wi(s1, . . . , sn)

the length of the word wi does not depend on the particular choice of ai, but that it is
determined only by the index i. In other words, the Sierpiński property occurs in some
sense in a “uniform” way. More formally, call a semigroup S strongly distorted if there
exists a sequence of natural numbers (ℓn)n<ω and M < ω such that for any sequence
(an)n<ω of elements of S there exist s1, . . . , sM ∈ S and a sequence of words (wn)n<ω

(over an M -letter alphabet) such that |wn| 6 ℓn and an = wn(s1, . . . , sM ) for all n < ω.
Here is the result that puts strongly distorted semigroups into the context of the initial
motivation of this paper.

Lemma 1.1 ([26, Lemma 2.4]) If S is a non-finitely generated and strongly distorted
semigroup, then S has the Bergman property.

Therefore, any strongly distorted uncountable semigroup has the Bergman property.
This observation is the link showing that Lemma 3.10.3 and the proof of Theorem 3.10.4
in [34] in fact establish the Bergman property for End(R). However, the good thing
about the latter theorem is that it is not really about the random graph, as it very easily
admits a generalization that we present here. But first recall the classical category-
theoretical notion of a coproduct. If {Ai : i ∈ I} is a family of first-order structures
belonging to a concrete category C (where objects are structures and morphisms are
their homomorphisms), then their coproduct (or free sum), denoted by

∐∗

i∈I Ai, is a
structure S ∈ C with the following properties:

(a) there are embeddings ιi : Ai → S for any i ∈ I;

(b) for any B ∈ C and any homomorphisms ϕi : Ai → B, i ∈ I, there exists a unique
homomorphism ϕ : S → B such that ϕιi = ϕi holds for all i ∈ I.

(In this paper, mappings are composed right-to left, so that fg is a function for which
fg(x) means f(g(x). For a set X , 1X will always denote the identity mapping on X .)
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Whenever it exists, the coproduct is unique up to an isomorphism, and it is generated
by

⋃
i∈I ιi(Ai).

So, here is the “abstract” version of Theorem 3.10.4 from [34].

Theorem 1.2 (Mitchell [28], Péresse [34]) Let A be an infinite structure with a sub-
structure B satisfying the following conditions:

(i) B ∼=
∐

n<ω An, where An
∼= A for each n < ω;

(ii) any homomorphism ϕ : B → A can be extended to ϕ̂ ∈ End(A).

Then End(A) is strongly distorted. In addition, the Sierpiński index of End(A) is 6 3.

Proof. Let f0, f1, . . . be any countable sequence of endomorphisms of A. We construct
g1, g2, g3 ∈ End(A) such that fk ∈ 〈g1, g2, g3〉 for any k > 0. Also, we will freely assume
that each An is actually contained in B.

First of all, let g1 : A→ A0 be any isomorphism. Furthermore, let hn : An → An+1,
n < ω, be isomorphisms. By (i) and the definition of the coproduct, since each hn maps
into B, there is a homomorphism h : B → B (that is, h ∈ End(B)) such that h|An

= hn
for any n < ω. By condition (ii), h can be extended to an endomorphism of A, which
we denote by g2. Then for any n < ω we have g2|An

= hn and tn = gn2 g1 : A→ An is an
isomorphism.

Now we define the key endomorphism g3, which can be informally thought of as
a “compressed form” of the sequence {fk}k>0, where each fk is “packed up” into the
copy Ak of A. Since t−1

k : Ak → A is an isomorphism, it follows that ψk = fkt
−1
k is a

homomorphism of Ak into A. Similarly as above, by (i) there exists a homomorphism
ψ : B → A such that ψ|Ak

= ψk for each k > 0. However, by (ii) there is an extension
of ψ to g3 ∈ End(A). Note that g3|Ak

= ψk holds as well.
It remains to recover fk from g3. Indeed, since tk maps into Ak,

g3g
k
2g1 = g3tk = ψktk = fkt

−1
k tk = fk,

as wanted. So, not only that fk ∈ 〈g1, g2, g3〉, but we uniformly have that the length of
the product representing fk is ℓk = k + 2. �

Of course, the coproduct in the category of (simple) graphs is just the disjoint union
of the given family of graphs. Hence,

∐
n<ω R exists, and, since it is a countably infinite

graph, it embeds into R. In addition, as established in Lemma 3.10.3. of [34], R has
the remarkable property that for any countable graph G there is an induced subgraph
G′ of R, isomorphic to G, such that any homomorphism ϕ : G′ → R extends to an
endomorphism ϕ̂ of R. As End(R) is known to be uncountable, it follows that it has the
Bergman property.

Our main goal here is to see to which extent we can utilize the above theorem in
order to cover the cases of some of the most important infinite structures arising as
Fräıssé limits. At this stage, it is more or less clear that the condition (i) for Flim(C ) is
related to the existence of coproducts in the concrete category to which the members of C

belong. However, the really intriguing condition here is (ii), the possibility of extending
a homomorphism from a certain substructure of Flim(C ). More precisely, we will be
interested in the conditions under which for any A ∈ C there exists a substructure A′

of F = Flim(C ) such that A′ ∼= A and any homomorphism ϕ : A′ → F can be extended
to an endomorphism of F . These conditions must be nontrivial, as the next example
shows.
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Example 1.3 Let Hn denote the Henson graph [16, 24], that is, the Fräıssé limit of the
class of all finite simple graphs omitting Kn, the complete graph (clique) on n vertices,
n > 3. Now, Hn clearly contains copies of Kn−1 and Kn−1 and any bijection of vertices
f : Kn−1 → Kn−1 is a graph homomorphism. However, f cannot be extended to an

endomorphism f̂ of Hn because there is a vertex u adjacent to each vertex of the anti-
clique Kn−1, so that f̂(u) would be adjacent to each vertex of the clique Kn−1, which is
impossible by the definition of Hn. Therefore, Hn is not homomorphism-homogeneous.
In addition, as shown in [33], every endomorphism of Hn is injective, so not every endo-
morphism of a (finite) subgraph of Hn can be extended to a member of End(Hn) (just
take two non-adjacent vertices u, v and map them both into u).

2 Preliminaries

In order to handle Fräıssé limits efficiently, we require some auxiliary tools connected to
them. However, instead of just referring to some of the standard textbooks on model
theory (such as [21]) for the basics of amalgamation theory and the general construction
of the limit of a Fräıssé class, for our purpose we will need to be slightly more precise and
explicit in certain details of that construction. Therefore, to keep the note reasonably
self-contained and complete, we will recall in this section several facts that are otherwise
regarded as folklore in model theory.

2.1 The amalgamation property and amalgamated free sums

Recall that an amalgam is a quintuple (A,B,C, f1, f2) consisting of structures A,B,C
together with two embeddings f1 : A → B and f2 : A → C. If A,B,C ∈ C for some
class C , then we have an amalgam in C . The amalgamation property for C , mentioned
earlier, asserts that any amalgam in C can be embedded into a structure D ∈ C , i.e.
that there are embeddings g1 : B → D and g2 : C → D such that g1f1 = g2f2. If C is a
class of finitely generated structures with the AP (for example, a Fräıssé class), then it
is known that the statement of the AP extends to non-finitely generated members of C

in the following sense.

Lemma 2.1 Let (A,B,C, f1, f2) be an amalgam such that A ∈ C and B,C ∈ C . Then
it can be embedded into some structure D ∈ C .

Proof. Both B and C can be written as the union of a chain of their finitely generated
substructures: B =

⋃
n<ω Bn and C =

⋃
n<ω Cn; to see this, just enumerate the elements

of these structures as B = {b0, b1, . . . } and C = {c0, c1, . . . } and define Bn to be the
substructure of B generated by {b0, . . . , bn} (and similarly for C). In addition, since A is
finitely generated, there is no loss of generality in assuming that each Bn contains f1(A)
and that each Cn contains f2(A).

Thus (A,B0, C0, f1, f2) is an amalgam in C , so it can be embedded into some D′
0 ∈ C

by means of g
(0)
1 : B0 → D′

0 and g
(0)
2 : C0 → D′

0. Now (B0, B1, D
′
0,1B0 , g

(0)
1 ) is an

amalgam in C , so there are a structure D′
1 ∈ C and embeddings g

(1)
1 : B1 → D′

1 and

g
(1)
2 : D′

0 → D′
1 such that g

(1)
1 |B0 = g

(1)
2 g

(0)
1 . We proceed by induction; what we obtain

5



is the following infinite commutative diagram:

C0

g
(0)
2 // D′

0

g
(1)
2 // D′

1

g
(2)
2 // . . .

g
(n)
2 // D′

n

g
(n+1)
2 // D′

n+1

g
(n+2)
2 // . . .

A

f2

OO

f1 // B0

g
(0)
1

OO

⊆ // B1

g
(1)
1

OO

⊆ // . . . ⊆ // Bn

g
(n)
1

OO

⊆ // Bn+1

g
(n+1)
1

OO

⊆ // . . .

By takingD′ = limn→∞D′
n (a structure containing isomorphic copiesD′′

n of eachD′
n such

that D′′
n, n < ω, form a chain and D′ =

⋃
n<ωD

′′
n) we obtain embeddings g′1 : B → D′

and g′2 : C0 → D′ such that g′1f1 = g′2f2. Moreover, D′ ∈ C because every finitely
generated substructure of D′ embeds into D′

n for some n, and C is closed for taking
substructures.

The argument presented so far shows that any amalgam (A,B,C, f1, f2) with A,C ∈
C and B ∈ C can be embedded into some D′ ∈ C . Now starting with (A,B,C0, f1, f2)
and D0 = D′, from this assertion we inductively construct the following diagram:

B
g′

1 // D0
// D1

// . . . // Dn
// Dn+1

// . . .

A

f21

OO

f2 // C0

g′

2

OO

⊆ // C1

OO

⊆ // . . . ⊆ // Cn

OO

⊆ // Cn+1

OO

⊆ // . . .

where all unlabelled arrows are embeddings. Again, by taking D to be the limit of
{Dn : n > 0} we obtain a structure which embeds the amalgam (A,B,C, f1, f2). �

It would be very useful in what follows to fix a canonical way for embedding an
amalgam (A,B,C, f1, f2) such that A ∈ C and B,C ∈ C into a structure from C . Such
possibility is provided by the standard categorical notion of the pushout (see [25] for a
background in basic category theory). Recall that if f : X → Y and g : X → Z are two
morphisms, then their pushout is an object P together with two morphisms i1 : Y → P
and i2 : Z → P such that the following diagram commutes:

Y
i1 // P

X

f

OO

g
// Z

i2

OO

while for any object Q and morphisms j1 : Y → Q and j2 : Z → Q there exists a unique
morphism h : P → Q such that j1 = hi1, j2 = hi2:

Y

i1 ��?
??

??
??

?
j1

''OOOOOOOOOOOOOO

X

f

??~~~~~~~~

g
��@

@@
@@

@@
@ P

h // Q

Z

i2

??�������� j2

77oooooooooooooo

In concrete categories of structures we often consider the case when f, g are embed-
dings, whence in the presence of the AP the homomorphisms i1, i2 must be injective as
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well. Hence, P can be thought of as the “smallest” structure embedding the amalgam
(X,Y, Z, f, g).

Accordingly, a structure P will be called the amalgamated free sum of Y and Z with
respect to X if there exist embeddings i1 : Y → P and i2 : Z → P such that P (with i1
and i2) is the pushout of the amalgam (X,Y, Z, f, g). If so, we write P = Y ∗X Z. It is
easy to check that the amalgamated free sum, if it exists, is unique up to an isomorphism,
and that it is generated by i1(Y ) ∪ i2(Z). We will consider Fräıssé classes satisfying the
following condition, which is a rather strong form of the AP:

(†) For any amalgam (A,B,C, f1, f2) such that A ∈ C , B,C ∈ C , the amalgamated
free sum B ∗A C exists and belongs to C .

For example, if C belongs to a concrete category in which coproducts and coequilizers
always exist, then (†) is automatically satisfied.

2.2 From amalgamated sums to the construction of Fräıssé limits

Let C be a Fräıssé class satisfying (†). Equipped with the construction of the amalga-
mated free sum, we first describe a particular extension A⋆ for an arbitrary structure
A ∈ C . This is in fact a generalization of one of the standard constructions of the random
graph described in [5] and an adaptation of the general approach from [21].

First of all, recall that a structure C is a one-point extension of its substructure B
of there is an element x ∈ C \ B such that C is generated by B ∪ {x}. Trivially, if B is
finitely generated, so is C.

Now let {(Bi, Ci) : i < ω} be the enumeration of all pairs of structures such that
Bi ∈ C is a finitely generated substructure of A, while Ci is a one-point extension of Bi

belonging to C ; for each isomorphism type we take one such extension. We construct
a chain of structures Ai, i > 0, by successive amalgamations of these extensions. More
precisely, let A0 = A and assume that An has already been constructed for some n >

0 such that A ⊆ An ∈ C . Then Bn is a substructure of A and so of An, whence
(Bn, An, Cn,1Bn

,1Bn
) is an amalgam such that Bn, Cn ∈ C and An ∈ C . By Lemma

2.1, there exists a structure An+1 ∈ C which embeds this amalgam. Due to (†), we may
eliminate unnecessary degrees of freedom and let An+1 = An ∗Bn

Cn. Clearly, there is
no loss of generality in assuming that An ⊆ An+1, so that A is a substructure of An+1.
Finally, we let

A⋆ =
⋃

n<ω

An.

Of course, this construction can be iterated, so that we apply ℵ0 successive rounds of
amalgamation. Namely, let A(0) = A and define A(n+1) = (A(n))⋆ for all n > 0. We set

F(A) =
⋃

n<ω

A(n),

which is an extension of A. Clearly, any finitely generated substructure of F(A) must
belong to some A(m), and since A(m) ∈ C the finitely generated structure in question
belongs to C ; hence, F(A) ∈ C .

Proposition 2.2 For any A ∈ C , F(A) is isomorphic to the Fräıssé limit of C .

7



Proof. This is a consequence of another well-known result of Fräıssé [14]: namely, it
suffices to prove that F(A) realizes all one-point extensions in C (effectively, this says
that Flim(C ) is the unique existentially closed structure in C ). This means that for
each finitely generated substructure B of F(A) and its one-point extension C ∈ C there
should be an embedding f : C → F(A) such that f |B = 1B.

However, this is very easy to check. Namely, as already remarked, B must be a

substructure of A(m) for some m > 0. Hence, if {(B
(m)
i , C

(m)
i ) : i < ω} is the enu-

meration of pairs of structures required for the construction of A(m+1) = (A(m))⋆, then

(B,C) = (B
(m)
j , C

(m)
j ) for some j. So, in the course of producing A

(m)
j+1 from A

(m)
j we

embed the amalgam (B,A
(m)
j , C,1B ,1B) into A

(m)
j+1, and so into A(m+1). The restriction

of the latter embedding to C is precisely the required one. �

For example, it is straightforward to see that the amalgamated free sum of two
simple graphs G1 = (V1, E1) and G2 = (V2, E2) sharing a common induced subgraph on
V = V1 ∩ V2 is simply the graph on V1 ∪ V2 whose edges are E1 ∪ E2 (in a somewhat
simplified form, one may say that the free sum of the amalgam is the amalgam itself).
Therefore, for an arbitrary countable graph G = (V,E), the graph G⋆ is obtained by
adjoining a vertex uA for each finite subset A ⊆ V such that uA is joined by an edge to
v ∈ V if and only if v ∈ A. By iterating this construction, we build a countable graph
R(G) “around” the initial graph G. As remarked in [4, 5], regardless of the choice of G,
we always end up with R(G) ∼= R, the countably infinite random graph.

3 Homomorphism-homogeneous Fräıssé limits

In an attempt to put the notion of ultrahomogeneity into a more general setting of arbi-
trary homomorphisms of first-order structures, Cameron and Nešetřil introduced in [8]
the property of homomorphism-homogeneity. Namely, a structure A is homomorphism-
homogeneous if any homomorphism B → C between its finitely generated substructures
can be extended to an endomorphism of A. Recent results concerning characterizations
of this property in various classes of structures include [7, 9, 22, 27, 35]. In this section we
make a brief pause towards our aim to record a condition equivalent to homomorphism-
homogeneity of a Fräıssé limit.

To this end, we introduce yet another property that a Fräıssé class C may or may
not satisfy. We say that C satisfies the one-point homomorphism extension property
(1PHEP) if for anyB,B′, C ∈ C such that C is a one-point extension ofB, C = 〈B∪{x}〉,
any surjective homomorphism ϕ : B → B′ can be extended to a homomorphism ϕ′ : C →
C′ for some C′ ∈ C containing B′. If we require that ϕ′ is surjective as well, then it is
clear that either C′ = B′, or C′ is a one-point extension ofB′, namely C′ = 〈B′∪{ϕ′(x)}〉.

Remark 3.1 It is quite easy to show that for any class of finitely generated structures
of a fixed signature, the 1PHEP is equivalent to the seemingly more general homo-
amalgamation property (HAP), which, even though it is not explicitly formulated, tran-
spires from the treatment in Section 4 of [8]. Namely, the HAP is the assertion that for
anyA,B1, B2 ∈ C , any homomorphism ϕ : A→ B1 and any embedding f : A→ B2 there
is a structure D ∈ C , an embedding f ′ : B1 → D and a homomorphism ϕ′ : B2 → D
such that f ′ϕ = ϕ′f . However, the more specific form of the 1PHEP might be slightly
easier to check, as the following examples show.
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Example 3.2 The class of all finite simple graphs has the 1PHEP. Indeed, let ϕ : G→ H
be a surjective graph homomorphism, and let G′ be a graph obtained from G by adjoining
a new vertex x (and some new edges involving x). Construct a new graph H ′ obtained
by adjoining a new vertex x′ to H , while for v ∈ V (H) we set that (x′, v) ∈ E(H ′) if
and only if (x, u) ∈ E(G′) for some u ∈ V (G) such that ϕ(u) = v. Then it is easily
verified that ϕ′ : G′ → H ′ obtained by extending ϕ by ϕ′(x) = x′ is a (surjective) graph
homomorphism.

Example 3.3 We have already seen that the Fräıssé class of all Kn-free finite simple
graphs fails to satisfy the 1PHEP: a bijection from the vertices of an anti-clique of size
n − 1 to a clique of the same size cannot be extended within the considered class to a
vertex adjacent to all vertices of the anti-clique.

On the other hand, the “complementary” Fräıssé class to the above one, that of all
Kn-free finite simple graphs has the 1PHEP: it is quite straightforward to check that the
construction from the previous example will work for this class as well.

Example 3.4 The class of all finite posets has the 1PHEP. To see this, let B be a finite
poset, C = B ∪ {x} its one-point extension, and ϕ : B → B′ an order-preserving map (a
poset homomorphism). Let

L = {b ∈ B : b < x} and U = {b ∈ B : x < b}.

Since ℓ < u holds for any ℓ ∈ L and u ∈ U we have ϕ(ℓ) 6 ϕ(u). So, ϕ(L)∩ϕ(U) is either
empty, or a singleton. In the former case, define an extension C′ of B′ by “inserting” a
new element y between L′ = ϕ(L) and U ′ = ϕ(U); this is possible as ℓ′ < u′ holds for any
ℓ′ ∈ L′, u′ ∈ U ′. It is now a routine to check that the mapping ϕ′ such that ϕ′|B = ϕ
and ϕ′(x) = y is a poset homomorphism C → C′. If, however, ϕ(L) ∩ ϕ(U) = {x′}
then extend ϕ to ϕ′ : C → B′ by defining ϕ′(x) = x′; once again, ϕ′ turns out to be a
homomorphism.

Recall that metric spaces can be viewed as first-order structures over an uncountable
language consisting of binary relational symbols indexed by the positive reals such that
(x, y) ∈ Rα (α ∈ R+) if and only if d(x, y) < α. (Of course, we may as well restrict
ourselves to metric spaces with rational distances, thus obtaining a countable signature
for such structures.) From such a point of view, homomorphisms of metric spaces are
just non-expanding functions ϕ so that we have

d(ϕ(x), ϕ(y)) 6 d(x, y)

for any x, y. Then, naturally, the notion of an automorphism coincides with that of an
isometry, a distance-preserving permutation.

Lemma 3.5 The class of finite metric spaces has the 1PHEP. The same applies to (the
Fräıssé class of) finite metric spaces with rational distances.

Proof. Let ϕ : M → M ′ be a surjective homomorphism of finite metric spaces, and let
M1 be a one-point extension ofM , with y being the new point. Our aim is to prove that
there exists a metric space M ′

1 = M ′ ∪ {y′}, a one-point extension of M ′, such that for
each x ∈ M we have d(y′, ϕ(x)) 6 d(y, x). Then we can extend ϕ to a homomorphism
ϕ̂ :M1 →M ′

1 by defining ϕ̂(y) = y′.

9



Let M = {xi : i < n}, and for each i, j < n, i 6= j, denote dij = d(xi, xj) and
ai = d(y, xi). First of all, we are going to consider the special case when ϕ, the initial
homomorphism, is a bijection. Then denote x′i = ϕ(xi) ∈ M ′ and d′ij = d(x′i, x

′
j) 6 dij

for i, j < n, i 6= j. We are looking for a sequence of positive real numbers bi, i < n,
such that a (hypothetical) point y′ with d(y′, x′i) = bi for all i < n satisfies all the
triangle inequalities with the already existing points of M ′. In other words, the required
conditions are:

(1) bi + bj > d′ij ,

(2) bi + d′ij > bj

with i, j < n, i 6= j, in both cases. In addition, we need the third condition

(3) bi 6 ai for all i < n.

There is no loss of generality in assuming that a0 6 a1 6 · · · 6 an−1. Now consider
the sequence defined by b0 = a0 and

bi = min
06k<i

{ai, ak + d′ki}

for 0 < i < n. We claim that these numbers constitute a solution of the system of
inequalities (1)–(3) above. Indeed, the condition (3) is immediately satisfied. For (1),
we distinguish three subcases. If bi = ak + d′ki and bj = am + d′mj for some k < i and
m < j, then

bi + bj = d′ik + ak + am + d′mj > d′ik + dkm + d′mj > d′ik + d′km + d′mj > d′ij ,

since M,M ′ are metric spaces and ϕ is non-expanding. On the other hand, if bi = ai
and bj = aj , then bi + bj = ai + aj > dij > d′ij . Finally, if bi = ak + d′ki for some k < i
and bj = aj (the symmetric case is analogous), then

bi + bj = aj + ak + d′ki > djk + d′ki > d′jk + d′ki > d′ji = d′ij .

Concerning (2), assume first that i < j. Then if bi = ai we have bi + d′ij = ai + d′ij 6 bj
by the definition of bj; if, however, bi = ak + d′ki for some k < i then

bi + d′ij = ak + d′ki + d′ij > ak + d′kj > bj ,

as k < i < j. So, it remains to discuss the possibility i > j. If bi = ak+d
′
ki for some k < i,

and, in addition, we have k < j as well, then again bi+d
′
ij = ak+d

′
ki+d

′
ij > ak+d

′
kj > bj .

Otherwise, either k > j, or bi = ai, both cases implying bi > ak > aj > bj , so (2) holds.
This completes the case when ϕ is injective, since M ′

1 is obtained by adjoining a point
y′ to M ′ such that d(y′, x′i) = bi for all i < n.

Turning to the general case, when ϕ is not necessarily a bijection, for any z ∈ M ′

choose a point xz ∈ ϕ−1(z) ⊆ M whose distance to y is minimal among all elements
of ϕ−1(z) (that is, we have d(y,xz) 6 d(y, x) for all x ∈ M such that ϕ(x) = z). Let
M0 = {xz : z ∈M ′}. Now ϕ|M0 :M0 → M ′ is a bijective homomorphism of finite metric
spaces, so by the previous considerations it follows that there is a one-point extension
M ′

1 ofM
′ and a homomorphism ψ :M0∪{y} →M ′

1 extending ϕ|M0 . But then ϕ̂ = ψ∪ϕ
is the required extension of ϕ, since for any x ∈M we have

d(ϕ̂(y), ϕ̂(x)) = d(y′, ϕ(x)) = d(ψ(y), ψ(xϕ(x))) 6 d(y,xϕ(x)) 6 d(y, x),
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as wanted. It remains to note that if all ai, dij , d
′
ij are rational numbers, so are all bi,

thus the second part of the assertion follows, too. �

The 1PHEP occurs in algebraic structures as well, where it is intimately related to
the congruence extension property (CEP), see [15]. Recall that an algebra A has the
CEP if for any subalgebra B of A and any congruence ρ of B there exists a θ ∈ ConA
whose restriction to B is precisely ρ, that is, θ ∩ (B ×B) = ρ.

Lemma 3.6 Let C be a class of algebras closed for taking homomorphic images. If all
members of C have the CEP, then C has the 1PHEP.

Proof. Let C = 〈B ∪ {x}〉 and let ϕ : B → B′ be a surjective homomorphism, where
B,B′, C ∈ C . Then ρ = kerϕ is a congruence of B (such that B/kerϕ ∼= B′), so by
the CEP there exists a congruence θ of C such that θ ∩ (B × B) = kerϕ. Now consider
the natural homomorphism νθ : C → C/θ. The image of B, νθ(B), is isomorphic to
B/(θ ∩ (B × B)), which is by the given conditions ∼= B′. Therefore, C/θ ∈ C can be
considered as an extension of B′, whence νθ is an extension of ϕ. �

By invoking the fact that the varieties of semilattices, distributive lattices, Boolean
algebras and vector spaces over a given field F all possess the CEP, we obtain the following
conclusion.

Corollary 3.7 Each of the Fräıssé classes of all finite semilattices, all finite distributive
lattices, all finite Boolean algebras and all finite-dimensional vector spaces over a field F

have the 1PHEP.

Now we provide a characterization of homomorphism-homogeneous Fräıssé limits.
It reduces a property of the intricate structure of such a limit to a “local” property of
finitely generated structures from C which usually have much more transparent features.
A related result is contained in [8, Proposition 4.1].

Proposition 3.8 Let C be a Fräıssé class. Then the Fräıssé limit of C is homomor-
phism-homogeneous if and only if C has the 1PHEP.

Proof. Throughout the proof, let F = Flim(C ).
(⇒) Let B,B′, C ∈ C be such that C is a one-point extension (or any extension of

finite relative rank, for that matter) of B, and let ξ : B → B′ be a surjective homomor-
phism. By the properties of the Fräıssé limit, there is no loss of generality if we assume
that B,B′, C are in fact substructures of F . However, by the given conditions then there
is a ξ̂ ∈ End(F ) extending ξ, so that ξ′ = ξ̂|C : C → ξ̂(C) is the homomorphism required
by the 1PHEP.

(⇐) Let A be a finitely generated substructure of F , while ϕ : A → F is a homo-
morphism. Then, since F is countable, there exists a chain {Fi : i < ω} of finitely
generated substructures of F such that F0 = A, Fi+1 is a one-point extension of Fi for
each i > 0, and F =

⋃
i<ω Fi. We construct by induction a chain of homomorphisms

ϕi : Fi → F starting with ϕ0 = ϕ. By the 1PHEP, given ϕj for some j > 0, there exists
a finitely generated structure B′

j+1 ∈ C , which is an extension of Bj = ϕj(Fj), and a
homomorphism ψj+1 : Fj+1 → B′

j+1 that extends ϕj (i.e. ψj+1|Bj
= ϕj). Now since

F is the Fräıssé limit of C , there exists an embedding fj+1 : B′
j+1 → F which is the

11



identity mapping on Bj ; define Bj+1 = fj+1(B
′
j+1) ⊆ F . Whence, ϕj+1 = fj+1ψj+1 is a

homomorphism Fj+1 → F that extends ϕj . It remains to define

ϕ̂ =
⋃

i<ω

ϕi

to obtain an endomorphism of F that extends ϕ. �

By combining the previous proposition, Corollary 3.7, Lemma 3.5 and the examples
that precede it, we arrive at the following result.

Corollary 3.9 Each of the following Fräıssé limits is homomorphism-homogeneous: R,
Hn for all n > 3, UQ, P, Ω, D, A, and V

F
∞, the ℵ0-dimensional vector space over a fixed

field F.

Remark 3.10 Based on Lemma 3.5 and an analogous approach as in Proposition 3.8,
it is now quite easy to prove that the Urysohn space U [38], the completion of UQ,
is homomorphism-homogeneous as well. Namely, if X ⊆ U is a finite metric space
and ϕ : X → U is a homomorphism, then one can select a countable dense subspace
Y ⊆ U isometric to UQ and use Lemma 3.5 to obtain a homomorphism ϕ′ : X ∪ Y → U

extending ϕ. Now it remains to remark that: (a) U is the completion of X ∪ Y , and (b)
every homomorphism of metric spaces is a uniformly continuous mapping (since it is in
fact a Lipschitz function with constant 1), whence the properties of the completion of a
metric space yield an endomorphism ϕ̂ of U extending ϕ.

4 Homomorphism extensions and the Bergman prop-

erty

We start immediately with a condition ensuring that an instance of a Fräıssé limit—as
constructed in Subsection 2.2—satisfies the condition (ii) from Theorem 1.2, related to
the possibility of extending arbitrary homomorphisms (i.e. partial endomorphisms) into
such a limit.

Theorem 4.1 Let C be a Fräıssé class satisfying (†) and the 1PHEP. Then every ho-
momorphism ϕ : A→ F(A) can be extended to a ϕ̂ ∈ End(F(A)).

Proof. Let ϕ : A → F(A) be any homomorphism. Our aim is to obtain a sequence of
homomorphisms ϕ(0) = ϕ ⊆ ϕ(1) ⊆ ϕ(2) ⊆ . . . , where ϕ(n) : A(n) → F(A), whence

ϕ̂ =
⋃

n<ω

ϕ(n)

will be the desired endomorphism of F(A). Therefore, we start with the assumption that
the required sequence has already been constructed up to ϕ(n) for some n > 0.

In addition, recall that A(n+1) has been obtained from A(n) by successive amalgama-
tions of all possible (up to isomorphism) one-point C -extensions

{(B
(n)
i , C

(n)
i ) : i < ω}

of finitely generated substructures of A(n). This results in a sequence of structures

A
(n)
0 = A(n) ⊆ A

(n)
1 ⊆ . . . whose limit is (A(n))⋆ = A(n+1). Accordingly, we construct a

12



tower of homomorphisms ϕ
(n)
i : A

(n)
i → F(A), i > 0, as follows, starting with ϕ

(n)
0 = ϕ(n)

and assuming that ϕ
(n)
k has already been constructed.

Now, since C satisfies (†), we know that A
(n)
k+1 is obtained as the amalgamated free

sum of
(B

(n)
k , A

(n)
k , C

(n)
k ,1

B
(n)
k

,1
B

(n)
k

).

For brevity, denote B′ = ϕ(n)(B
(n)
k ) and consider the homomorphism between finitely

generated C -structures φ = ϕ(n)|
B

(n)
k

: B
(n)
k → B′. Since B′ is finitely generated, there

exists an index p < ω such that B′ ⊆ A(p). By the 1PHEP, there exist a structure
C′ ∈ C—that is either B′, or its one-point extension—and a surjective homomorphism

ε : C
(n)
k → C′ agreeing with ϕ(n) (that is, with φ) on B

(n)
k . Moreover, if C′ 6= B′, then

the extension (B′, C′) can be identified (up to isomorphism) with (B
(p+1)
j , C

(p+1)
j ) for

some j. In any case, we may assume that ε(C
(n)
k ) is a (finitely generated) substructure

of A(p+1).
What we have right now is depicted in the following diagram:

A
(n)
k

⊆ ""EE
EE

EE
EE

ϕ
(n)
k

))RRRRRRRRRRRRRRRRRR

B
(n)
k

⊆

=={{{{{{{{

⊆ !!B
BB

BB
BB

B
A

(n)
k+1

F(A)

C
(n)
k

⊆

<<yyyyyyyy

ε
// C

(p+1)
j

⊆

<<yyyyyyyyy

By (†) and the choice of A
(n)
k+1, there exist a homomorphism ϕ

(n)
k+1 : A

(n)
k+1 → F(A)

completing the above diagram to a commutative one. In particular, ϕ
(n)
k+1 is an extension

of ϕ
(n)
k . Finally,

ϕ(n+1) =
⋃

i<ω

ϕ
(n)
i

is a homomorphism A(n+1) → F(A), and so we are done. �

Corollary 4.2 If C is a Fräıssé class satisfying (†) and the 1PHEP, then for any A ∈ C

there exists a substructure A′ of F = Flim(C ) such that A′ ∼= A and any homomorphism
ϕ : A′ → F can be extended to an endomorphism of F .

We now get back to applying Lemma 1.1 and Theorem 1.2 to the Bergman property
for endomorphism monoids of Fräıssé limits. Consider the following property related to
Fräıssé classes, which is a close relative of (†):

(‡) For any countable family {Ai : i ∈ I} of structures from C , their free sum
∐∗

i∈I Ai

exists and belongs to C .

Corollary 4.3 Let C be a Fräıssé class satisfying (†), (‡) and the 1PHEP. Then End(F )
is strongly distorted and has Sierpiński index 6 3, where F = Flim(C ). If, in addition,
End(F ) is not finitely generated, then it has the Bergman property.
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Note that one may equivalently replace ‘not finitely generated’ in the above corollary
by ‘uncountable’: indeed, if End(F ) would be countable, then if would be necessarily
finitely generated, because of the finite Sierpiński index. However, it is again Theorem
4.1 that admits to easily establish |End(F )| > ℵ0, F = Flim(C ), for certain classes C ,
as the latter inequality will follow from the existence of a structure A ∈ C such that
|End(A)| > ℵ0. We record the following remark, which is of independent interest as
well. We say that a semigroup T divides a semigroup S if T is a homomorphic image of
a subsemigroup of S.

Lemma 4.4 Let C be a Fräıssé class with (†) and the 1PHEP, and let F = Flim(C ).
Then for any structure A ∈ C we have that End(A) divides End(F ).

Proof. By Corollary 4.2 we have that F contains an isomorphic copy A′ of A such that
any endomorphism of A′ can be extended to en endomorphism of F . Now consider only
those endomorphisms f of F that induce (by restriction) an endomorphism of A′, that is,
f(A′) ⊆ A′. Such endomorphisms form a subsemigroup S of End(F ). Now for f, g ∈ S
let (f, g) ∈ ρ if and only if f |A′ = g|A′ . It is easily seen that ρ is a congruence on S; by
the given conditions, S/ρ ∼= End(A′) ∼= End(A). �

Corollary 4.5 Let C be a Fräıssé class satisfying (†), (‡) and the 1PHEP. If there exists
a structure A ∈ C such that End(A) is uncountable, then End(F ) has the Bergman
property, where F = Flim(C ).

In particular, the endomorphism monoid of any of R, P, Ω, D, A and V F
∞ has the

Bergman property, and is divided by Tℵ0 .

Proof. For R, the countably infinite anti-clique works as A, since now any self-map is an
endomorphism of A. Similarly, the countably infinite anti-chain A shows the required
assertions about End(P). Finally, for limits of Fräıssé classes of algebras it suffices to
note that any self-map on X , the set of free generators of the corresponding free algebra
F (X), induces an endomorphism of F (X), whence we let X to be countably infinite. �

For various reasons, a number of Fräıssé classes and their corresponding limits remain
outside the scope of this approach. As we have seen, some of them, such as the finite
Kn-free simple graphs, fail to have the 1PHEP. Other classes, such as the finite Kn-free
simple graphs and the finite linear orders have the 1PHEP, and they even have (both
amalgamated and free) sums in certain broader concrete categories (of simple graphs and
posets, respectively), but these sums fail to be Kn-free in the former case, or linearly
ordered in the latter. Finally, some structures simply do not have coproducts and/or
amalgamated free sums. For example, there seems to be no meaningful notion of a
coproduct for (rational) metric spaces. This stems from the fact that when we are given
a finite metric space M and we wish to add an a new point x, then the set of possible
vectors of distances of x to the existing elements ofM is in general an unbounded subset
of Rm, where m = |M | (or Qm, if we go for rational distances), thus rendering impossible
the choice of the “farthest point” from M—something which would be required should
the coproduct of M and a singleton space exist. So, since the linear order Q and the
universal rational metric space UQ are historically the ‘oldest’ examples of Fräıssé limits,
it is natural to ask the following questions.

Problem 4.6 Does the monoid of all order-preserving self-maps of Q have the Bergman
property? More generally, what is the case with doubly homogeneous linear orders [10] ?
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Problem 4.7 Does the endomorphism monoid of UQ have the Bergman property? What
about the monoid of all Lipschitz functions of UQ?

Problem 4.8 Do the endomorphism monoids of ultrahomogeneous graphs Hn and Hn,
n > 3, have the Bergman property?

Also, in connection with Corollary 4.3 above, the following tantalizing problem arises.

Problem 4.9 Determine the Sierpiński index of End(R) exactly: is it 2 or 3 ? The
same question applies to any Fräıssé limit under the scope of Corollary 4.3.

5 Relative ranks

In this section we present an application of results from the previous section to relative
ranks of endomorphism monoids of certain Fräıssé limits F within the full transformation
monoid TF . Namely, for a semigroup S, the rank of S is just the minimum cardinality
of a generating set of S. While this is an important invariant for countable semigroups,
for any uncountable semigroup S its rank is |S|, so that the notion becomes vacuous.
Instead, it is useful to consider the rank of S with respect to a distinguished subset
A ⊆ S: the relative rank of S modulo A, denoted rank(S : A), is the minimum cardinality
of B ⊆ S such that 〈A ∪ B〉 = S. Alternatively, we say that rank(S : A) is the relative
rank of A in S. Recently, this notion gained a considerable interest: while [20] can be
viewed as a seminal paper in this vein, some newer important results are contained in
[17, 18, 19, 29, 30].

Relative ranks are closely related to the notion of the Sierpiński index; namely, from
the definition of the latter it is easy to deduce the following statement.

Proposition 5.1 Let S be a semigroup with a finite Sierpiński index n, and let A ⊆ S.
Then either rank(S : A) 6 n, or rank(S : A) is uncountable.

In particular, since the Sierpiński index of TX is 2 for any infinite X , the following
holds.

Corollary 5.2 Let X be any infinite set. For any subset A of TX either rank(TX : A) 6
2, or rank(TX : A) > ℵ0.

For example, in [18] a full characterization was given of all infinite posets P such
that rank(TP : End(P )) 6 2. In addition, if P is a chain that is either countable, or
well-ordered, then rank(TP : End(P )) = 1, see [19].

The previous corollary can now be combined with homomorphism extension results
just obtained to show that for a number of Fräıssé limits F the first of the two possibilities
takes place with End(F ) in the role of A, that is, rank(TF : End(F )) 6 2. The key link
is the observation that Lemma 4.1 of [18] (and Lemma 4.10 of [19]) is not really a result
about posets: it will work fine for other structures as well.

Lemma 5.3 Let D be an infinite structure.

(i) If A is a substructure of D such that |A| = |D|, rank(TA : End(A)) 6 2, and any
endomorphism of A extends to an endomorphism of D, then rank(TD : End(D)) 6
2.
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(ii) If there is a subset X ⊆ D, |X | = |D|, such that any mapping X → D can be
extended to an endomorphism of D, then rank(TD : End(D)) 6 1.

Proof. (i) The proof of Lemma 4.1 from [18] applies almost verbatim, but we reproduce it
here for the sake of completeness and comparison to part (ii). So, assume that 〈End(A)∪
{f, g}〉 = TA for some f, g ∈ TA. Let β : D → A be a bijection, and let α ∈ TD be
arbitrary. Then βαβ−1 ∈ TA, thus we have

βαβ−1 = γ1 · · · γm,

where m > 1 and γ1, . . . , γm ∈ End(A) ∪ {f, g}. By the given conditions, for any
γi ∈ End(A) there is a γ̂i ∈ End(D) such that γ̂i|A = γi, while for γi ∈ {f, g} we

define γ̂i ∈ {f̂ , ĝ} to be any function D → D extending γi. By remarking that we have
(γ̂1 · · · γ̂m)|A = γ1 · · · γm it follows that

α = β−1γ̂1 · · · γ̂mβ.

It remains to define δ to be an arbitrary element of TD such that δ|A = β−1 to obtain

α = δγ̂1 · · · γ̂mβ and so 〈End(D)∪{f̂ , ĝ, β, δ}〉 = TD. Since now rank(TD : End(D)) 6 4,
Corollary 5.2 implies rank(TD : End(D)) 6 2.

(ii) Let β : D → X be a bijection and let α ∈ TD be arbitrary. As in (i), we have
βαβ−1 ∈ TX . The given conditions imply that for any f ∈ TX there is an endomorphism
ofD whose restriction toX is f ; therefore, there is a ϕ ∈ End(D) such that ϕ|X = βαβ−1.
This readily implies α = β−1ϕβ. Now β−1 : X → D extends to ψ ∈ End(D), so that
α = ψϕβ. Hence, 〈End(D) ∪ {β}〉 = TD. �

As a direct consequence of the previous lemma and Corollary 4.2 we obtain the
following result.

Corollary 5.4 Let C be a Fräıssé class satisfying (†) and the 1PHEP, while F =
Flim(C ).

(i) If there exists an infinite structure A ∈ C such that rank(TA : End(A)) 6 2, then

rank(TF : End(F )) 6 2.

(ii) If there exists a structure A ∈ C generated by a countably infinite set X such that
any element of TX extends to an endomorphism of A, then

rank(TF : End(F )) 6 1.

In particular, if F is any of R, P, Ω, D, A and V F
∞, then rank(TF : End(F )) = 1.

Remark 5.5 The conclusion of item (ii) holds also for some Fräıssé limits that fail to
satisfy the assumptions of the previous corollary: for example, Theorem 2.1 of [19] shows
that rank(TQ : End(Q)) = 1.

Remark 5.6 There is alternative way to establish that rank(TF : End(F )) = 1 holds for
a Fräıssé limit F , following from the combination of [3, Theorem 11] and [20, Theorem
4.1]. This combination works if the following conditions are met: (1) the pointwise sta-
bilizer in Aut(F ) of every finite subset of F has an infinite orbit; (2) there is an injective
endomorphism of F with a coinfinite image; (3) there is a surjective endomorphism ϕ of
F such that ϕ−1(x) is infinite for infinitely many x ∈ F . For example, it is known that
these conditions hold if F is either the random graph R, or the linear order of Q.
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[1] J. Araújo, J. D. Mitchell, N. Silva, On generating countable sets of endomorphisms, Algebra
Univers. 50 (2003), 61–67.

[2] G. M. Bergman, Generating infinite symmetric groups, Bull. London Math. Soc. 38 (2006),
429–440.

[3] G. M. Bergman, S. Shelah, Closed subgroups of the infinite symmetric group, Algebra

Univers. 55 (2006), 137–173.
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