
Ranking and unranking trees with a given number or a given set

of leaves

Jeffery B. Remmel
Department of Mathematics

U.C.S.D., La Jolla, CA, 92093-0112
jremmel@ucsd.edu

S. Gill Williamson
Department of Computer Science and Engineering

U.C.S.D., La Jolla, CA, 92093-0404
gwilliamson@ucsd.edu

MR Subject Classifications: 05A15, 05C05, 05C20, 05C30

Abstract

In this paper, we provide algorithms to rank and unrank certain degree-restricted classes
of Cayley trees. Specifically, we consider classes of trees that have a given set of leaves or that
have a fixed number k of leaves. Using properties of a bijection due to Eğecioğlu and Remmel
[3], we reduce the problem of ranking and unranking these classes of degree-restricted trees
to corresponding problems of ranking and unranking certain classes of set partitions. For
fixed k, the number of Cayley trees with n vertices and k leaves grows roughly as n! and
hence the ranks have O(nlog2(n)) bits. Our ranking and unranking algorithms require at
most O(n2) comparisons of numbers y ≤ n plus O(n) operations of multiplication, division,
addition, substraction and comparision on numbers x of length O(nlog(n)).

1 Introduction

In computational combinatorics, it is important to be able to efficiently rank, unrank, and
randomly generate (uniformly) basic classes of combinatorial objects. A ranking algorithm for a
finite set S is a bijection from S to the set {0, · · · , |S|−1}. An unranking algorithm is the inverse
of a ranking algorithm. Ranking and unranking techniques are useful for storage and retrieval of
elements of S. Uniform random generation plays a role in Monte Carlo methods and in search
algorithms such as hill climbing or genetic algorithms over classes of combinatorial objects.
Uniform random generation of objects is always possible if one has an unranking algorithm
since one can generate, uniformly, an integer in {0, · · · , |S| − 1} and unrank.

We consider the set Cn of trees with vertex set [n] = {1, . . . , n}. These trees are sometimes
called Cayley trees and can be viewed as the set of spanning trees of the complete graph Kn.
Ranking and unranking algorithms for the set Cn have been described by many authors. Indeed,
efficient ranking and unranking algorithms have been given for classes of trees and forests that
considerably generalize the Cayley trees (e.g., [3], [4], [5], [6], [7]).

In a previous paper [14], we considered a more refined problem, namely, the problem of
ranking and unranking subsets of Cn with a specified degree sequences or a specified multiset of
degrees. Let ~Cn,1 be the set of directed trees on V that are rooted at 1. That is, a directed tree

T ∈ ~Cn,1 has all its edges directed towards its root 1. We replace Cn with the equivalent set
~Cn,1. For any tree T ∈ Cn,

∑n
i=1 degT (i) = 2n− 2. If ~s = 〈s1, . . . , sn〉 is a sequence of positive
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integers such that
∑n

i=1 si = 2n−2, then we let ~Cn,~s = {T ∈ ~Cn,1 : 〈degT (1), . . . , degT (n)〉 = ~s}.
Remmel and Williamson [14] proved that

|~Cn,~s| =
(

n− 2

s1 − 1, . . . , sn − 1

)
. (1)

Similarly if S = {1α1 , . . . , (n−1)αn−1} is a multiset such that
∑n−1

i=1 αi ·i = 2n−2 and
∑n

i=1 αi =

n, then we let ~Cn,S = {T ∈ ~Cn,1 : {degT (1), . . . , degT (n)} = S}. It is easy to see from (1) that

|Cn,S | =
(

n

α1, . . . , αn

)(
n− 2

s1 − 1, . . . , sn − 1

)
. (2)

The basis of the ranking and unranking algorithms in [14] for ~Cn,~s or ~Cn,S hinged on certian

special properties of a bijection Θ between ~Cn,1 and the class of functions Fn = {f : {2, . . . , n−
1} → [n]} defined by Eğecioğlu and Remmel [3]. That is, in [14], we proved that for any vertex
i, 1 + |f−1(i)| equals that degree of i in the tree T = Θ(f) when Θ(f) is considered as an
undirected graph. This property allowed us to reduce the problem or ranking and unranking
trees in ~Cn,~s or ~Cn,S to the problem of ranking and unranking certain classes of set partitions
of [n]. We were then able to modify known techniques for ranking and unranking set partitions
[15, 11] to construct efficient ranking and unranking algorithms for ~Cn,~s or ~Cn,S .

In this paper, we shall give efficient algorithms to rank and unrank two other natural subsets
of ~Cn,1, namely, the set of trees which have a given number of leaves or a prespecified set of
leaves. If G = (V,E) is digraph and v ∈ V , we let

indegG(v) = |{u : (u, v) ∈ E}|,

outdegG(v) = |{u : (v, u) ∈ E}| and

degG(v) = indegG(v) + outdegG(v).

If T ∈ ~Cn,1, then we say that i is a leaf of T if and only if degT (i) = 1. Fix k such that

2 ≤ k ≤ n − 1 and ~Ckn,1 equal the set of trees T in ~Cn,1 with k leaves. Similarly, if L is any

subset of {1, . . . , n} of size k, we let ~Ck,Ln,1 equal the set of trees T ∈ ~Cn,1 such that i is a leaf of T
if and only if i ∈ L. The main goal of this paper is to construct efficient ranking and unranking
algorithms for the sets ~Ck,Ln,1 or ~Ckn,1.

Just as in the case of the construction of the ranking and unranking algorithms for ~Cn,~s
or ~Cn,S [14], the Eğecioğlu and Remmel bijection Θ allows us to reduce the problem problem

ranking and unranking algorithms ~Ck,Ln,1 or ~Ckn,1 to the problem of finding ranking and unranking
certain classes of set partitions. That is, we can restate the fundamental property of the bijection
Θ : Fn → ~Cn,1 as

degΘ(f)(i) = |f−1(i)|+ 1 (3)

for all f ∈ Fn and i ∈ [n]. Now suppose that L is a subset of [n] of size k where 2 ≤ k ≤ n. Then

by (3), it follows that if T ∈ ~Ck,Ln,1 and f = Θ−1(T ), then f−1(i) = ∅ if and only if i ∈ L. Thus if

J = [n]−L = {j1 < . . . < jn−k}, then 〈f−1(j1), . . . , f−1(jn−k)〉 must be an ordered set partition
of {2, . . . , n− 1} into n− k nonempty parts. Conversely, if we are given an ordered set partition
π = 〈π1, . . . , πn−k〉 of {2, . . . , n−1} into n−k non-empty parts, we can define a function f ∈ Fn
such that f−1(i) = ∅ if and only if i ∈ L by setting f−1(jt) = πt for t = 1, . . . , n− k. It follows
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that |~Ck,Ln,1 | is equal to the number of ordered set partitions of {2, . . . , n − 1} into n − k parts.
We then develop algorithms for ranking and unranking such classes of ordered set partitions by
modifying ranking and unranking algorithms for the decreasing functions, permutations, and
unordered set partitions found in [15].

Let Sn,k denote the number of unordered set partitions of [n] into k parts. The numbers Sn,k
are call the Stirling numbers of the second kind and they satisfy the following recursion:

Sn,k = 0 if either k > n or n < 0,

S0,0 = 1, and

Sn+1,k = Sn,k−1 + kSn,k.

Table 1 below gives the values of Sn,k for 1 ≤ n ≤ 9.

m
n

1 2 3 4 5 6 7 8 1

1 1

2 1 1

3 1 3 1

4 1 7 6

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

Table 1 The values of Sn,k

It follows from our arguments above that

|~Ck,Ln,1 | = (n− k)!Sn−2,n−k. (4)

Similarly for any k such that 2 ≤ k ≤ n − 1, it is easy to see that ~Ckn,1 is the disjoint union of

all Ck,Ln such that L ⊆ [n] of size k and hence

|~Ckn| =
(
n

k

)
(n− k)!Sn−2,n−k. (5)

Note that both |~Ck,Ln | and |~Ckn| can be as large as asO(n!) so that the numbers involved in ranking
and unranking can require O(nlog(n)) bits. We show that our ranking and unranking algorithms
require at most O(n2) comparisons of numbers y ≤ n plus O(n) operations of multiplication,

division, addition, substraction and comparision on numbers x < |~Ck,Ln | (x < |~Ckn|).
The outline of this paper is as follows. In Section 2, we describe the bijection Θ : Fn → ~Cn,1

of [3] and discuss some of its key properties. In Section 3, we show that both Θ and Θ−1 can
be computed in linear time. This result allows us to reduce the problem of efficiently ranking
and unranking trees in ~Cn,~s or ~Cn,S to the problem of efficiently ranking and unranking certain
classes of ordered set partitions. In section 4, we shall recall the algorithms due to Williamson
[15] for ranking and unranking decreasing functions, permutations and unordered set partitions
which will be the building blocks of our final ranking and unranking algorithms. Finally in
Section 5, we shall give our ranking and unranking algorithms for the sets ~Ck,Ln or ~Ckn and give
examples.
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2 The Θ Bijection and its Properties

In this section, we shall review the bijection Θ : Fn → ~Cn,1 due to Eğecioğlu and Remmel [3]
and give some of its properties.

Let [n] = {1, 2, . . . , n}. For each function f : {2, . . . , n − 1} → [n], we associate a directed
graph f , graph(f) = ([n], E) by setting E = {〈i, f(i)〉 : i = 2, . . . , n − 1}. Following [13], given
any directed edge (i, j) where 1 ≤ i, j ≤ n, we define the weight of (i, j), W ((i, j)), by

W ((i, j)) =

{
pisj if i < j,
qitj if i ≥ j (6)

where pi, qi, si, ti are variables for i = 1, . . . , n. We shall call a directed edge (i, j) a descent edge
if i ≥ j and an ascent edge if i < j. We then define the weight of any digraph G = ([n], E) by

W (G) =
∏

(i,j)∈E

W ((i, j)). (7)

A moment’s thought will convince one that, in general, the digraph corresponding to a function
f ∈ Fn will consists of 2 root-directed trees rooted at vertices 1 and n respectively, with all edges
directed toward their roots, plus a number of directed cycles of length ≥ 1. For each vertex v
on a given cycle, there is possibly a root-directed tree attached to v with v as the root and all
edges directed toward v. Note the fact that there are trees rooted at vertices 1 and n is due to
the fact that these elements are not in the domain of f . Thus there can be no directed edges out
of any of these vertices. We let the weight of f , W (f), be the weight of the digraph graph(f)
associated with f .

To define the bijection Θ, we first imagine that the directed graph corresponding to f ∈ F
is drawn so that

(a) the trees rooted at n and 1 are drawn on the extreme left and the extreme right respectively
with their edges directed upwards,

(b) the cycles are drawn so that their vertices form a directed path on the line between n and
1, with one back edge above the line, and the root-directed tree attached to any vertex on
a cycle is drawn below the line between n and 1 with its edges directed upwards,

(c) each cycle ci is arranged so that its maximum element mi is on the right, and

(d) the cycles are arranged from left to right by decreasing maximal elements.

Figure 1 pictures a function f drawn according to the rules (a)-(d) where n = 23.
This given, suppose that the digraph of f is drawn as described above and the cycles of

f are c1(f), . . . , ca(f), reading from left to right. We let rci(f) and lci(f) denote the right and
left endpoints of the cycle ci(f) for i = 1, . . . , a. Note that if ci(f) is a 1-cycle, then we
let rci(f) = lci(f) be the element in the 1-cycle. Θ(f) is obtained from f by simply deleting
the back edges (rci(f), lci(f)) for i = 1, . . . , a and adding the directed edges (rci(f), lci+1(f)) for
i = 1, . . . , a− 1 plus the directed edges (n, lc1(f)) and (rca(f), 1). That is, we remove all the back
edges that are above the line, and then we connect n to the lefthand endpoint of the first cycle,
the righthand endpoint of each cycle to the lefthand endpoint of the cycle following it, and we
connect the righthand endpoint of the last cycle to 1. For example, Θ(f) is pictured in Figure 2
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Figure 1: The digraph of a function.
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Figure 2: Θ(f).

for the f given in Figure 1. If there are no cycles in f , then Θ(f) is simply the result of adding
the directed edge (n, 1) to the digraph of f .

To see that Θ is a bijection, we shall describe how to define Θ−1. The key observation is
that we need only recover that the directed edges (rci(f), lci+1(f)) for i = 1, . . . , a − 1. However
it is easy to see that rc1(f) = m1 is the largest element on the path from n to 1 in the tree Θ(f).
That is, m1 is then largest element in its cycle and by definition, it is larger than all the largest
elements in any other cycle so that m1 must be the largest interior element on the path from n
to 1. Then by the same reasoning, rc2(f) = m2 is the largest element on the path from m1 to 1,

etc. Thus we can find m1, . . . ,mt. More formally, given a tree T ∈ ~Cn,1, consider the path

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

where mi is the maximum interior vertex on the path from mi−1 to 1, 1 ≤ i ≤ t. If (mi−1,mi) is
an edge on this path, then it is understood that xi, . . . ,mi = mi consists of just one vertex and
we define xi = mi. Note that by definition m0 = n > m1 > . . . > mt. We obtain the digraph
Θ−1(T ) from T via the following procedure.

Procedure for computing Θ−1(T ) :

(1) First we declare that any edge e of T which is not an edge of the path from n to 1 is an edge
of Θ−1(T ).

(2) Next we remove all edges of the form (mt, 1) or (mi−1, xi) for 1 ≤ i ≤ t.

Finally for each i with 1 ≤ i ≤ t, we consider the subpath xi, . . . ,mi.

(3) If mi = xi, create a directed loop (mi,mi).

(4) If mi 6= xi, convert the subpath xi, . . . ,mi into the
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directed cycle xi, . . . ,mi, xi.

Next we consider two important properties of the bijection Θ. First Θ has an important
weight preserving property. We claim that if Θ(f) = T , then

qnt1W (f) = W (T ). (8)

That is, by our conventions, any backedge (rci(f), lci(f)) are descent edges so that its weight is
qrci(f)tlci(f) . Thus the total weight of the backedges is

a∏
i=1

qrci(f)tlci(f) . (9)

Our argument above shows that all the new edges that we add are also descent edges so that
the weight of the new edges is

qntlc1(f)(
a−1∏
i=1

qrci(f)tlci+1(f)
)qrca(f)

t1 = qnt1

a∏
i=1

qrci(f)tlci(f) . (10)

Since all the remaining edges have the same weight in both the digraph of f and in the digraph
Θ(f), it follows that qnt1W (f) = W (Θ(f)) as claimed.

It is easy to see that

∑
f∈Fn

W (f) =
n−1∏
i=2

[qi(t1 + · · ·+ ti) + pi(si+1 + · · ·+ sn)]. (11)

Thus we have the following result which is implicit in [3] and it explicit in [13].

Theorem 1.

∑
T∈ ~Cn,1

W (T ) = qnt1

n−1∏
i=2

[qi(t1 + · · ·+ ti) + pi(si+1 + · · ·+ sn)]. (12)

Next we turn to a second key property of the Θ bijection. It is easy to see from Figures
1 and 2 that deleting the back edges (rci(f), lci(f)) for i = 1, . . . , a in graph(f) and adding the
directed edges (rci(f), lci+1(f)) for i = 1, . . . , a−1 plus the directed edges (n, lc1(f)) and (rca(f), 1)
to get Θ(f) does not change the indegree of any vertex except vertex 1. That is,

indeggraph(f)(i) = indegΘ(f)(i) for i = 2, . . . , n. (13)

It is also easy to see that in going from graph(f) to Θ(f), the indegree of vertex 1 increases by
1, i.e.,

1 + indeggraph(f)(i) = indegΘ(f)(1). (14)

When we consider Θ(f) as an undirected graph T , then it is easy to see that degT (i) =
outdegΘ(f) + indegΘ(f). Thus since the outdegree of i in Θ(f) is 1 if i 6= 1 and the outde-
gree of 1 in Θ(f) is zero, equations (13) and (14) imply the following theorem.
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Theorem 2. Suppose that T is the undirected tree corresponding to Θ(f) where f ∈ Fn, then
for i = 1, . . . , n,

degT (i) = 1 + |f−1(i)|. (15)

Proof By our definition of graph(f), it follows that indeggraph(f)(i) = |f−1(i)| for i = 1, . . . , n.
Thus by (13), for i = 2, . . . , n,

degT (i) = outdegΘ(f)(i) + indegΘ(f)(i)

= 1 + indegΘ(f)(i)

= 1 + indeggraph(f)(i)

= 1 + |f−1(i)|.

Similarly by (14),

degT (1) = outdegΘ(f)(1) + indegΘ(f)(1)

= 0 + indegΘ(f)(1)

= 1 + indeggraph(f)(1)

= 1 + |f−1(1)|.

�

3 Construction of the spanning forests from the the function
table in time O(n)

In this section, we shall briefly outline the proof that one can compute the bijections Θ and its
inverse in linear time. Suppose we are given f ∈ Fn. Our basic data structure for the function
f is a list of pairs 〈i, f(i)〉 for i = 2, . . . , n − 1. Our goal is to construct the directed graph of
Θ(f) from our data structure for f , that is, for i = 1, . . . , n, we want to find the set of pairs,
〈i, ti〉, such that there is directed edge from i to ti in Θ(f). We shall prove the following.

Theorem 3. We can compute the bijection Θ : Fn → ~Cn,1 and its inverse in linear time.

Proof. We shall not try to give the most efficient algorithm to construct Θ(f) from f . In-
stead, we shall give an outline the basic procedure which shows that one can construct Θ(f)
from f in linear time. For ease of presentation, we shall organize our procedure so that it makes
four linear time passes through the basic data structure for f to produce the data structure for
Θ(f).

Pass 1. Goal: Find, in linear time in n, a set of representatives t1, . . . , tr of the cycles of
the directed graph of the function f .
To help us find t1, . . . , tr, we shall maintain an array A[2], A[3], · · ·A[n − 1], where for each i,
A[i] = (ci, pi, qi) is a triple of integers such ci ∈ {0, . . . , n− 1} and {pi, qi} ⊆ {−1, 2, · · · , n− 1}.
The ci’s will help us keep track of what loop we are in relative to the sequence of operations
described below. Then our idea is to maintain, through the pi and qi, a doubly linked list of the
locations i in A where ci = 0, and we obtain pointers to the first and last elements of this doubly
linked list. It is a standard exercise that these data structures can be maintained in linear time.
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Initially, all the ci’s will be zero. In general, if ci = 0, then pi will be the largest integer j
such that 2 ≤ j < i for which cj = 0 if there is such a j and pi = −1 otherwise. Similarly, we
set qi > i to be the smallest integer k such that n− 1 ≥ k > i for which ck = 0 if there is such
a k and qi = −1 if there is no such k. If c2 > 0, then q2 is the smallest integer j > 2 such that
cj = 0 and q2 = −1 if there is no such integer j. If cn−1 > 0, then pn−1 is the largest integer
k < n1 such that ck = 0 and pn−1 = −1 if there is no such integer k.

We initialize A by setting A[2] = (0,−1, q2), A[i] = (0, i − 1, i + 1) for m + 1 < i < n − 1,
and A[n− 1] = (0, pn−1,−1). If 2 < n− 1 then q2 = 3 and pn−1 = n− 2. Otherwise (2 = n− 1),
these quantities are both −1.

LOOP(1): Start with i1 = 2, setting c2 = 1. Compute f0(2), f1(2), f2(2), . . . , fk1(2), each
time updating A by setting cfj(2) = 1 and adjusting pointers, until, prior to setting cfk1 (2) = 1,
we discover that either

(1) fk1(2) ∈ {1, n}, in which case we have reached a node in graph(f) which is not in the
domain of f and we start over again with the 2 replaced by the smallest i for which ci = 0, or

(2) x = fk1(2) already satisfies cx = 1. This condition indicates that the value x has al-
ready occurred in the sequence 2, f(2), f2(2), . . . , fk1(2). Then we set t1 = fk1(2).

LOOP(2): Start with i2 = qm+1 which is the location of the first i such that ci = 0,
and repeat the calculation of LOOP1 with i2 instead of i1 = 2. In this manner, generate
f0(i2), f1(i2), f2(i2), . . . , fk2(i2), each time updating A by setting cfj(i2) = 2 and adjusting
pointers, until either

(1) fk1(i2) ∈ {1, n}, in which case we have reached a node in graph(f) which is not in the
domain of f and we start over again with the i2 replaced by the smallest i for which ci = 0, or

(2) x = fk1(i2) already satisfies cx = 2. (This condition indicates that the value x has al-
ready occurred in the sequence i2, f(i2), f2(i2), . . . , fk1(i2).) Then we set t2 = fk1(i2).

We continue this process until q2 = −1. At this point, we will have generated t1, . . . , tr, where the
last loop was LOOP(r). The array A will be such that, for all 2 ≤ i ≤ n−1, 1 ≤ ci ≤ r identifies
the LOOP in which that particular domain value i occurred in our computation described above.

Pass 2. Goal: For i = 1, . . . , r, find the largest element mi in the cycle determined by ti.
It is easy to see that this computation can be done in linear time by one pass through the array
A computed in Pass 1 above. At the end of Pass 2, we set li = f(mi). Thus when we draw the
cycle containing ti according to our definition of Θj(f), mi will be right most element in the
and li will be the left most element of the cycle containing ti. However, at this point, we have
not ordered the cycles appropriately. This ordering will be done in the next pass.

Pass 3. Goal: Sort (l1,m1), . . . , (lk,mk) so that they are appropriately ordered according the
criterion for the bijection Θ(f) as described in by condition (a) -(d).

Since we order the cycles from left to right according to decreasing maximal elements, it is
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then easy to see that our desired ordering can be constructed via a lexicographic bucket sort.
(See Williamson’s book [15] for details on the fact that a lexicographic bucket sort can be carried
out in linear time.)

Pass 4. Goal: Construct the digraph of Θ(f) from the digraph of f .

We modify the table for f to produce the table for Θ(f) as follows. Assume that (l1,m1), . . . , (lk,mk)
is the sorted list coming out of Pass 3. Then we modify the table for f so that we add entries for
the directed edges 〈n, l1〉 and 〈mk, 1〉 and modify entries of the pairs starting with m1, . . . ,mk

so that their corresponding second elements are l2, . . . , lk, 1 respectively. This can be done in
linear time using our data structures.

Next, consider the problem of computing the inverse of Θ. Suppose that we are given the
data structure of the tree T ∈ ~C1, i.e. we are given a set of pairs , 〈i, ti〉, such that there is a
directed edge from i to ti in T . Recall that the computation of Θ−1(T ) consists of two basic steps.

Step 1. Given a tree T ∈ ~Cn,1, consider the path

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

where mi is the maximum interior vertex on the path from mi−1 to 1, 1 ≤ i ≤ t. If (mi−1,mi)
is an edge on this path, then it is understood that xi, . . . ,mi = mi consists of just one vertex
and we define xi = mi. Note that by definition m0 = n > m1 > . . . > mt.

First it is easy to see that by making one pass through the data structure for F , we can construct
the directed path n → a1 → . . . → ar where 1 = ar. In fact, we can construct a doubly linked
list (n, a1, . . . , ar−1, 1) with pointers to the first and last elements in linear time. If we traverse
the list in reverse order, (1, ar−1, . . . , a1, n), then it easy to see that mt = ar−1, mt1 is the next
element in the list (ar−2, . . . , a1) which is greater than mt and, in general, having found mi = as,
then mi−1 is the first element in the list (as−1, . . . , a1) which is greater than mi. Thus it is not
difficult to see that we can use our doubly linked list to produce the factorization

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

in linear time.

Step 2. We obtain the digraph Θ−1(T ) from T via the following procedure.

Procedure for computing Θ−1
j (F ) :

(1) First we declare that any edge e of T which is not an edge of the path from n to 1 is an edge
of Θ−1(T ).

(2) Next we remove all edges of the form (mt, 1) or (mi−1, xi) for 1 ≤ i ≤ t.

Finally for each i with 1 ≤ i ≤ t, we consider the subpath xi, . . . ,mi.

(3) If mi = xi, create a directed loop (mi,mi).
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(4) If mi 6= xi, then , convert the subpath xi, . . . ,mi into the
directed cycle xi, . . . ,mi, xi.

Again it is easy to see that we can use the data structure for T , our doubly linked list, and
our path factorization, m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, j to construct the data
structure for graph(f) where f = Θ−1(T ) in linear time. �.

Given that we can carry out the bijection Θ and its inverses in linear time, it follows that
in linear time, we can reduce the problem of constructing ranking and unranking algorithms
for Cn to the problem of constructing ranking and unranking algorithms for the corresponding
function class Fn.

4 Machinary for Ranking and Unranking Algorithms.

Fix k such that 2 ≤ k ≤ n− 1. Recall that ~Ckn,1 equals the set of trees T in ~Cn,1 with k leaves.

Similarly, if L is any subset of {1, . . . , n} of size k, we let ~Ck,Ln,1 equal the set of trees T ∈ ~Cn,1
such that i is a leaf of T if and only if i ∈ L. The main goal of this section is to develop the
basic machinary that is needed to give our final ranking and unranking algorithms for the sets
~Ck,Ln,1 or ~Ckn,1.

Our ranking and unranking algorithms for ~Ckn,1 are based on six reductions.

1. By the Eğecioğlu and Remmel bijection Θ of section 2, the problem of ranking and un-
ranking trees in ~Ckn,1 can be reduced to the problem of ranking and unranking the set Fn,k
of functions f : 2, . . . , n− 1→ [n] such that |{i ∈ [n] : f−1(i) = ∅}| = k.

2. To specify the set of i ∈ [n] such that f−1(i) = ∅ for an f ∈ Fn,k, we specify a decreasing
function gf : {1, . . . , k} → [n] whose range if {i : f−1(i) = ∅}. Let DFn,k denote the set of
decreasing functions f : {1, . . . , k} → {1, . . . , n}. Then given g ∈ DFn,k, we let Fn,g equal
the set of functions f : 2, . . . , n− 1→ [n] such that {i ∈ [n] : f−1(i) = ∅} = range(g).

3. Given gf ∈ DFn,k, we specify a function f ∈ Fn,g, by giving an ordered set partition πf of
[n−2] into n−k parts. That is, suppose that π = 〈π1, . . . , πn−k〉 is an ordered set partition
of [n−2] into n−k parts and [n]−range(g) = {i1 < · · · < in−k}. Let π+ = 〈π+

1 , . . . , π
+
n−k〉

denote the set partition of {2, . . . , n − 1} which results from π by replacing each element
x ≤ n− 2 by x + 1. Then we can specify an f ∈ Fn,g by declaring that f−1(ij) = π+

j for
j = 1, . . . , n− k.

4. To specify an ordered set partition of [n−2] into n−k parts, we shall specify an unordered
set partition Γf = 〈Γ1, . . . ,Γn−k〉 of [n−2] into n−k parts where min(Γ1) < · · · < min(Γk)
and a permutation σf = σ1 . . . σn−k in the symmetric group Sn−k. That is, given Γf and
σf , we let Γσ be the ordered set partition of [n−2] into k parts where Γσ = 〈Γσ1 , . . . ,Γσn−k

〉.

5. We shall associate to each permutation σ = σ1 . . . σn ∈ Sn, a sequence, hσ, called the direct
insertion sequence associated with σ. We defined hσ = (h(1), . . . , h(n)) by recursion as
follows. First if σ ∈ S1, hσ = (0). If n ≥ 0 and σ = σ1 . . . , σn ∈ Sn where σ1 = j, then let
σ− be the permutation derived from σ2 . . . σn where we replace each i > j in the sequence
σ2 . . . σn by i − 1. For example, if σ = 4 1 2 5 6 3, then σ− = 1 2 4 5 3. This given,
suppose hσ− = (h−(1), . . . , h−(n− 1)), then we define hσ = (j − 1, h−(1), . . . , h−(n− 1)).
For example, σ = 4 1 2 5 6 3, then hσ = (3, 0, 0, 1, 1, 0).

10



6. We shall associate to each unordered set partition Γ = 〈Γ1, . . . ,Γn−k〉 of [n− 2] into n− k
parts where min(Γ1) < · · · < min(Γn−k), a sequence sΓ = (s(1), . . . , s(n − 2)) associated
to its corresponding restricted growth function. That is, s(i) = j − 1 if and only if i ∈ Γj .
For example, suppose Γ = 〈{1, 4}, {2, 3, 8}, {5}, {6, 7}〉, then sγ = (0, 1, 1, 0, 2, 3, 3, 1).

It follows that we can specify any f ∈ Fn,k by a triple 〈g, σ,Γ〉 where g ∈∈ DFn,k, σ ∈ Sn−k
and Γ is an unordered set partition of [n − 2] into n − k parts. We can thus identity f with a
triple of sequences

Seq(f) = 〈(g(1), . . . , g(k)), (h(1), . . . , h(n− k)), (s(1), . . . , s(n− 2))〉

where hσ = (h(1), . . . , h(n− k)) and sΓ = (s(1), . . . , s(n− 2)). We can then order the functions
f ∈ Fn,k according to the lexicographic order of their associated sequences Seq(f).

3

2Θ
−1

(T)  =

T  =

5 6

19

9 1

5 6

7

8

4 2

3

8

74

Figure 3: A tree in ~C5
9,1.

For example, consider the tree in T ∈ ~C5
9,1 pictured in Figure 3. We have also pictured

Θ−1(T ) = f so that f can be specified by its table of preimages f−1(1), . . . , f−1(9) given in
Table 2.

f−1(1) f−1(2) f−1(3) f−1(4) f−1(5) f−1(6) f−1(7) f−1(8) f−1(9)

{5, 6} {2, 3} ∅ {7} ∅ ∅ {4, 8} ∅ ∅

Table 2

Thus f is associated with the decreasing functions gf ∈ DF9,5 given by gf = (9, 8, 6, 5, 3)
and the ordered set partition π+

f = 〈{5, 6}, {2, 3}, {7}, {4, 8}〉 of {2, . . . , 8} into 4 parts. Let
πf = 〈{4, 5}, {1, 2}, {6}, {3, 7}〉 be the ordered set partition of [7] into 4 parts which results
by replacing each element i in π+

f by i − 1. Then πf is specified by the underlying unordered
set partition Γf = 〈{1, 2}, {3, 7}, {4, 5}, {6}〉 and the permutation σf = 3 1 4 2. Finally σf
associated to insertion order sequence hσf = (2, 0, 1, 0) and Γ is associated to the restricted
growth function sΓf

= (0, 0, 1, 2, 2, 3, 1). Thus

Seq(f) = 〈(9, 8, 6, 5, 3), (2, 0, 1, 0), (0, 0, 1, 2, 2, 3, 1)〉.

In the next subsection, we shall provide the basic lemmas about ranking and unranking leaves
of trees which will allow us to reduce the problem of ranking Seq(Fn,k) = {Seq(f) : f ∈ Fn,k}
according to lexicographic order to the problems of ranking and unranking decreasing functions
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according to lexicographic order, of ranking and unranking insertion sequences of permutations
according to lexicographic order, and of ranking and unranking restricted growth functions
according to lexicographic order.

4.1 Basic Lemmas for Ranking and Unranking Algorithms.

To develop our ranking and unranking algorithms for ~Ckn,1 and ~Ck,Ln,1 , we first need to make some
general remarks about ranking and unranking paths in planar trees. Given a rooted planar tree
T , let L(T ) be the numbers of leaves of T and Path(T ) be the set of paths which go from the
root to a leaf. Then for any path p ∈ Path(T ), we define the rank of p relative to T , rankT (p),
to be the number of leaves of T that lie to the left of p.

Given two rooted planar trees T1 and T2, T1⊗T2 is the tree that results from T1 by replacing
each leaf of T1 by a copy of T2, see Figure 3. If the vertices of T1 and T2 are labeled, then
we shall label the vertices of T1 ⊗ T2 according to the convention that each vertex v in T1

have the same label in T1 ⊗ T2 that it has in T1 and each vertex w in a copy of T2 that is
decendent from a leaf labeled l in T1 has a label (l, s) where s is the label of w in T2. Given
rooted planar trees T1, . . . , Tk where k ≥ 3, we can define T1 ⊗ T2 ⊗ · · · ⊗ Tk by induction as
(T1 ⊗ · · · ⊗ Tk−1)⊗ Tk. Similarly if T1 . . . , Tk are labeled rooted planar trees, we can define the
labeling of T1 ⊗ T2 ⊗ · · · ⊗ Tk by the same inductive process.

T =

=T
2

T
1

=T
2 1

Figure 4: The operation T1 ⊗ T2.

Now suppose that we are given two rooted planar trees T1 and T2 and suppose that p1 ∈
Path(T1) and p2 ∈ Path(T2). Then we define the path p1 ⊗ p2 in T1 ⊗ T2 which follows p1 to
its leaf l in T1 and then follows p2 in the copy of T2 that sits below leaf l to a leaf (l, l′) in
T1 ⊗ T2. Similarly, given paths pi ∈ Ti for i = 1, . . . k, we can define a path p = p1 ⊗ · · · ⊗ pk ∈
Path(T1 ⊗ T2 ⊗ · · · ⊗ Tk) by induction as (p1 ⊗ · · · ⊗ pk−1)⊗ pk.

Next we give two simple lemmas that tell us how to rank and unrank the set of paths in
such trees.

Lemma 4. Suppose that T1, . . . , Tk are rooted planar trees and T = T1 ⊗ T2 ⊗ · · · ⊗ Tk. Then
for any path p = p1 ⊗ · · · ⊗ pk ∈ Path(T ),

rankT (p) =

k∑
j=1

rankTj (pj)

k∏
l=j+1

L(Tl) (16)
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Proof. We proceed by induction on k. Let us assume that T1, . . . Tk are labeled rooted planar
trees.

First suppose that k = 2 and that p1 is a path that goes from the root of T1 to a leaf labeled
11 and p2 goes from the root of T2 to a leaf labeled l2. Thus p1 ⊗ p2 goes from the root of
T1 ⊗ T2 to the leaf l1 in T1 and then proceeds to the leaf (l1, l2) in T1 ⊗ T2. Now for each leaf
l′ to the left of l1 in T2, there are L(T2) leaves of T1 ⊗ T2 that lie to left of (l1, l2) coming from
the leaves of the copy of T2 that sits below l′. Thus there are a total of L(T2) · rankT1(p1) such
leaves. The only other leaves of T1 ⊗ T2 that lie to left of p1 ⊗ p2 are the leaves of the form
(l1, l

′′) where l′′ is to left of p2 in T2. There are rankT2(p2) such leaves. Thus there are a total
of rankT2(p2) + L(T2) · rankT1(p1) leaves to left of p1 ⊗ p2 and hence

rankT1⊗T2(p1 ⊗ p2) = rankT2(p2) + L(T2) · rankT1(p1)

as desired.
Next assume that (16) holds for k < n and that n ≥ 3. Then

rankT1⊗···⊗Tn(p1 ⊗ · · · ⊗ pn) =

rank(T1⊗···⊗Tn−1)⊗Tn(p1 ⊗ · · · ⊗ pn−1)⊗ pn) =

rankTn(pn) + L(Tn)(
n−1∑
j=1

rankTj (pj)
n−1∏
l=j+1

L(Tl)) =

n∑
j=1

rankTj (pj)

n∏
l=j+1

L(Tl).

�.
This given, it is easy to develop an algorithm for unranking in a product of trees. The proof

of this lemma can be found in [15].

Lemma 5. Suppose that T1, . . . , Tk are rooted planar trees and T = T1 ⊗ T2 ⊗ · · · ⊗ Tk. Then
given a p ∈ Path(T ) such that rankT (p) = r0, p = p1⊗· · ·⊗pk ∈ Path(T ) where rankTi(pi) = qi
and

r0 = q1

k∏
l=2

L(Tl) + r1 where 0 ≤ r1 <
∏k
l=2 L(Tl), (17)

r1 = q2

k∏
l=3

L(Tl) + r2 where 0 ≤ r2 <
∏k
l=3 L(Tl), (18)

... (19)

rk−2 = qk−1L(Tk) + rk−1 where 0 ≤ rk−1 < L(Tk) and (20)

rk−1 = qk (21)

Our idea is to construct trees TDFn,k
, TIOn and TRGn,k

so that

1. the paths of TDFn,k
correspond to the decreasing functions in DFn,k ranked according to

the lexicographic order,
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2. the paths of TIOn correspond to the permutations of Sn ranked according to the lexico-
graphic order on their insertion sequences, and

3. the paths of TRGn,k
correspond to set restricted growth functions RGn,k ranked according

to the lexicographic order.

It will then easily follow that the paths of

TDFn,k
⊗ TIOk

⊗ TRGn−2,k

naturally correspond to the sequences in Seq(Fn,k) = {Seq(f) : f ∈ Fn,k} ranked according
to lexicographic order. Thus we can use Lemmas 4 and 5 to obtain a ranking and unranking
algorithms to Seq(Fn,k) relative to the lexicographic order once we have constructed the trees
TDFn,k

, TIOn and TRGn,k
and developed ranking and unranking algorithms for them. Our

next three subsections will be devoted to constructing the trees TDFn,k
, TIOn and TRGn,k

and
specifying ranking and unranking algorithms for them.

4.2 Ranking and Unranking Decreasing Functions.

In this subsection, we consider the problem of ranking and unranking the set DFn,k of decreasing
functions f : {1, . . . , k} → {1, . . . , n} relative to lexicographic order. A number of authors
have developed ranking and unranking algorithms for DFn,k. We shall follow the method of
Williamson [15]. First, we identify a function f : {1, . . . , k} → {1, . . . , n} with the decreasing
sequence 〈f(1), . . . , f(k)〉 where n ≥ f(1) > . . . > f(k) ≥ 1. We can then think of the sequences
as specifying a path in a planar tree TDFn,k

which can be constructed recursively as follows. At
level 1, the nodes of TDFn,k

are labeled k, . . . , n from left to right specifying the choices for f(1).
Next below a node j at level one, we attach a tree corresponding to TDFj−1,k−1

where a tree
TDFa,1 consists of a tree with a single vertex labeled a. Figure 3 pictures the tree TDF6,3 .

543 6

2 2 2 23 3 34 4 5

1 1 1 1 1 1 1 1 1 12 2 2 2 2 23 3 3 4

(6,2,1)

Figure 5: The tree TDF7,3 .

Then the decreasing sequence (6,2,1) corresponds to the path from the root to the node
which is specified with an arrow. It is clear that the sequences corresponding to the paths the
tree TDF6,3 appear in lexicographic order from left to right. Thus the rank of any sequence
〈f(1), . . . , f(k)〉 ∈ DFn,k is the number of leaves of the tree to the left of the path corresponding
to 〈f(1), . . . , f(k)〉. Hence the sequence 〈6, 2, 1〉 has rank 10 in the tree TDF6,3 .

This given, suppose we are given a sequence 〈f(1), . . . , f(k)〉 in TDFn,k
. Then the number of

leaves in the subtrees corresponding the nodes k, . . . , f(1)−1 are respectively
(
k−1
k−1

)
,
(
k
k−1

)
, . . . ,

(f(1)−2
k−1

)
.

Thus the total number of leaves in those subtrees is(
k − 1

k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
f(1)− 2

k − 1

)
=

(
f(1)− 1

k

)
.
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Here we have used the well known identity that
∑t−1

s=k−1

(
s

k−1

)
=
(
t
k

)
. It follows that the rank of

〈f(1), . . . , f(k)〉 in TDFn,k
equals

(f(1)−1
k

)
plus the rank of 〈f(2), . . . , f(k)〉 in TDFf(1)−1,k−1

. The
following result, stated in [15], then easily follows by induction.

Theorem 6. Let f : {1, . . . , k} → {1, . . . , n} be a descreasing function. Then the rank of f
relative to the lexicographic order on DFn,k is

rankDFn,k
(f) =

(
f(1)− 1

k

)
+

(
f(2)− 1

k − 1

)
+ · · ·+

(
f(k)− 1

1

)
. (22)

It is then easy to see from Theorem 6, that the following procedure, as described by
Williamson in [15], gives the unranking procedure for DFn,k.

Theorem 7. The following procedure UNRANK(m) computes

f = 〈f(1), . . . , f(k)〉

such that RankDFn,k
(f) = m for any 1 ≤ k ≤ n and 0 ≤ m ≤

(
n
k

)
− 1.

Procedure UNRANK(m)

initialize m′ := m, t := 1, s := k; (1 ≤ k ≤ n, 0 ≤ m ≤
(
n
k

)
− 1)

while t ≤ k do

begin f(t)− 1 = max{y :
(
y
s

)
≤ m′};

m′ := m′ −
(
f(t)−1
s

)
;

t := t+ 1;

s := s− 1;

end

4.3 Ranking and Unranking Permutations

The problem of ranking and unranking permutations according to lexicographic order on inser-
tion sequences is quite easy. We can then think of the insertion sequence hσ = (h(1), . . . , h(n))
of a permutation σ ∈ Sn as specifying a path in a planar tree TIOn which can be constructed
recursively as follows. At level 1, the nodes of TIOn are labeled 0, . . . , n − 1 from left to right
specifying the choices for h1. Next below a node j at level one, we attach a tree corresponding
to TIOn−1 where a tree TIO1 consists of a tree with a single vertex labeled 0. Figure 6 pictures
the tree TS3 .

This given, it easy to see from our definitions that the following theorems, which can be
found in [15], hold.

Theorem 8. Let Sn denote the symmetric group of all permutations of [n]. Order Sn by defining
σ < τ iff hσ ≤lex hτ , then the rank of σ, Rank(σ) = |{τ ∈ Sn : τ < σ}|, can be computed by the
formula

Rank(σ) =

n−1∑
k=1

h(i) · (n− i)! (23)

if hσ = (h(1), . . . , h(n)).
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0 0 0

0 1

1 1 1

2

0 0 0 0 0 0

Figure 6: The tree TIO3 .

Theorem 9. Let Sn denote the symmetric group of all permutations of [n]. Order Sn by defining
σ < τ iff hσ ≤lex hτ . Then if 0 ≤ p ≤ n! − 1, then we construct the insertion sequence
hσ = (h(1), . . . , h(n)) of the permuation σ ∈ Sn such that Rank(σ) = p as follows. Let p = p0,
then set hn = 0 and compute the following k = 0, . . . , n− 2:

p0 = h(1)(n− 1)! + p1 where p1 < (n− 1)!

p1 = h(2)(n− 2)! + p2 where p2 < (n− 2)!

...

pk = h(k + 1)(n− k)! + pk where pk < (n− k)!

...

5 Ranking and Unranking Algorithms for Unordered Set Par-
titions.

The main purpose of this section is to give ranking and unranking algorithms for the set of
all unordered set partitions of [n] into k parts, Sn,k. We shall follow the general approach of
Williamson [15] and give algorithms to rank and unrank the set of surjective restricted growth
functions relative to lexicographic order. A restricted growth function f : [n]→ {0, 1, . . . , k−1}
is a function such that

(i) f(1) = 0 and

(ii) for all 1 < i ≤ n, f(i) ≤ 1 +max({f(1), . . . , f(i− 1)}).

We let RGn,k denote the set of all restricted growth functions f that map [n] onto {0, 1, . . . , k−
1}. There is a natural one-to-one correspondence I between RGn,k and Sn,k. That is, suppose
π = 〈π1, . . . , πk〉 is a set partition of [n] into k parts where min(π1) < . . . < min(πk). Then
define I(π) = fπ ∈ RGn,k by letting fπ(i) = j − 1 where i ∈ πj for all i ∈ [n]. It is easy to see
that if f ∈ RGn,k, then I−1(f) = πf = 〈f−1(0), . . . , f−1(k − 1)〉. We shall identify a restricted
growth function f ∈ RGn,k with the sequence 〈f(1), . . . , f(n)〉 and then order RGn,k via the
lexicographic order on such sequences.

Let 〈f(1), . . . , f(n − j)〉, 0 ≤ j ≤ n − 1, be a restricted growth function and suppose that
max({f(1), . . . , f(n− j)}) = m where 0 ≤ m ≤ k − 1. Let

E(k)(j,m, f(1), . . . , f(n− j)) = (24)

{〈xn−j+1, . . . , xn〉 | 〈f(1), . . . , f(n− j), xn−j+1, . . . , xn〉 ∈ RGn,k}.

16



The set E(k)(j,m, f(1), . . . , f(n− j)) represents all ways of extending the sequence
f(1), . . . , f(n− j) to a surjective restricted growth function. Note that
(1) E(k)(0,m, f(1), . . . , f(n)) = ∅ for m 6= k − 1,
(2) E(k)(0, k − 1, f(1), . . . , f(n)) = {ε} where ε is the empty string, and
(3) for 0 < j ≤ n− 1,

E(k)(j,m, f(1), . . . , f(n− j)) =
m⋃
t=0

t ∗ E(k)(j − 1,m, f(1), . . . , f(n− j), t)

∪(m+ 1) ∗ E(k)(j − 1,m+ 1, f(1), . . . , f(n− j),m+ 1).

This union is disjoint. The notation t ∗X means concatenate t with each element in X. Recall
that we have assumed above that max({f(1), . . . , f(n− j)}) = m. In the sets

E(k)(j − 1,m, f(1), . . . , f(n− j), t)

we have 0 ≤ t ≤ m, thus in the function

〈f(1), . . . , f(n− j), f(n− j + 1)〉 = 〈f(1), . . . , f(n− j), t〉

we still have max({f(1), . . . , f(n − j + 1)}) = m. Given that max({f(1), . . . , f(n − j)}) = m,
we can also assign f(n− j+1) = m+1 and still have 〈f(1), . . . , f(n− j+1)〉 a restricted growth
function. The set (m+ 1)∗E(k)(j−1,m+ 1, f(1), . . . , f(n− j),m+ 1) includes all such elements
in E(k)(j,m, f(1), . . . , f(n− j)). Note that E(k)(j,m, f(1), . . . , f(n− j)) does not depend on the
actual values of f(1), . . . , f(n− j). Setting

|E(k)(j,m, f(1), . . . , f(n− j))| = E(k)(j,m)

we have the following recursion

E(k)(j,m) = (m+ 1)E(k)(j − 1,m) + E(k)(j − 1,m+ 1)

The initial values are E(0,m) = 0 if m 6= k− 1, E(0, k− 1) = 1. This recursion will be the basis
for our ranking and unranking procedures for RGn,k and hence for Sn,k.

For example, Table 3 below lists the values of E(4)(m,n).

m
n

0 1 2 3 4 5 6 7

0 0 0 0 1 0 0 0 0

1 0 0 1 4 0 0 0

2 0 1 7 16 0 0

3 1 9 37 64 0

4 10 55 175 256

5 65 285 781

6 350 1351

7 1701

Table 3 E(4)(m,n)
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It is easy to construct a planar tree Tn whose paths correspond to restricted growth functions
(αn−1, αn−2, . . . , α0) by having the root of the Tn labelled with 0 and by induction if a node
corresponds to a path (αn−1, . . . , αt+1), then the descendants of that node would be labeled from
left to right with 0, . . . ,mt,mt+1 where mt = max({αn−1, . . . , αt+1}); see Figure reffigure:RecT.
The tree TRGn,k

would consists of those nodes which lies on a path (αn−1, αn−2, . . . , α0) such
that max({αn−1, αn−2, . . . , α0}) = k− 1. For example, S4,3 = 6 and the tree TRG4,3 is pictured
in Figure 7

α

α

α

α

0

1

2

3 0

0

1

2

1

1 2

2 2 0 1 2

0

Figure 7: The tree TRG4,3 .

More generally, it is easy to see that if we are at node corresponding to the sequence
(αn−1, . . . , αt+1) in TRGn,k

where mt = max(αn−1, . . . , αt+1) < k− 1, then, as pictured in figure

8, our choices for αt is either 0, 1, . . . ,mt,mt + 1. Moreover by our definition of E(k)(t,mt),
the number of leaves in each of the subtrees where we branch to either 0, 1, . . . ,mt is exactly
E(k)(t,mt) and the number of leaves in the subtree where we branch to mt+ 1 is E(k)(t,mt+ 1).
It follows that if we take the branch corresponding to j out the node corresponding to the se-
quence (αn−1, . . . , αt+1), then the number of nodes in the subtrees to the left of that branch
is j · E(k)(t,mt). If we are at node corresponding to the sequence (αn−1, . . . , αt+1) in TRGn,k

where mt = max(αn−1, . . . , αt+1) = k − 1, then we can only branch to either 0, 1, . . . ,mt but
it is still the case that, if we take the branch corresponding to j out the node correspond-
ing to the sequence (αn−1, . . . , αt+1), then the number of nodes in the subtrees to the left of
that branch is j · E(k)(t,mt). The following result of Williamson [15] for ranking sequences
f = (αn−1, αn−2, . . . , α0) be an element of RGn,k relative to lexicographic order, then easily
follows by induction.

α
n−1 , . . . , α

t+1
( ) α

n−1 , . . . , α
t+1

( )

E(t , m  )t E(t , m  )t E(t , m  )t

max=
t

m

0 1 m t m  + 1tα t

E(t, m  + 1)t

Figure 8: Typical node in TRGn,k
.

Theorem 10. Let f = (αn−1, αn−2, . . . , α0) be an element of RGn,k and for each t = 0, 1, . . . , n−
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2, let mt = max({αn−1, . . . , αt+1}). Then

rankRGn,k
(f) =

n−2∑
t=0

αtE
(k)(t,mt). (25)

For example, suppose that f = (0, 1, 0, 2, 0, 3, 1, 2) = (α7, . . . , α0) ∈ RG8,4. Then for t =
0, . . . , 6, we let mt = max({α7, . . . , αt+1}) so that m0 = 3,m1 = 3,m2 = 2,m3 = 2,m4 =
1,m5 = 1 and m6 = 0. Thus using the values of E(4)(n,m) from Table 3, we see that

rankRGn,k
(f) =

6∑
t=0

αtE
(4)(t,mt)

= 2 · E(4)(0, 3) + 1 · E(4)(1, 3) + 3 · E(4)(2, 2) + 0 · E(4)(3, 2) +

2 · E(4)(4, 1) + 0 · E(4)(5, 1) + 1 · E(4)(6, 0)

= 2 · 1 + 1 · 4 + 3 · 7 + 0 · 37 +

2 · 55 + 0 · 285 + 1 · 350

= 487.

One can also use Figure 8 to give an inductive proof of the validity of the following unranking
algorithm for the element of RGn,k relative to lexicographic order.

Theorem 11. Let 0 ≤ r < Sn,k where Sn,k is the number of set partitions of [n] into k parts.
Then we can construct f = (αn−1, αn−2, . . . , α0) ∈ RGn,k such that rankRGn,k

(f) = r as follows.

Step n− 1 Set αn−1 = 0.

Step n− 2 Set mn−2 = 0 and let αn−2 equal the largest s such that 0 ≤ s ≤ mn−1 + 1 and
sE(k)(n− 2,mn−1) ≤ r. Then set

r : r − αn−2E
(k)(n− 2,mn−1).

Step t Assume that we have defined αn−1, . . . , αt+1. Let mt = max({αn−1, . . . , αt+1}). Then
set αt equal the largest s such that 0 ≤ s ≤ mt + 1 and sE(k)(t,mt) ≤ r. Then set

r : r − αtE(k)(t,mt).

Thus, for example, to compute the f = (α7, . . . , α0) ∈ RG8,4 whose rank is 1000, we would
carry out the following steps.

Step 7. We set r = 1000 and α7 = 0.

Step 6. m6 = α7 = 0. E(4)(6, 0) = 350. Since 1 · E(4)(6, 0) = 350 < 1000, then α6 = 1 and we
set r = 1000− 350 = 650.

Step 5. m5 = max({0, 1}) = 1. E(4)(5, 1) = 285. Since 2 · E(4)(5, 1) = 570 < 650, then α5 = 2
and we set r = 650− 570 = 80.

Step 4. m4 = max({0, 1, 2}) = 2. E(4)(4, 2) = 175. Since 0 · E(4)(4, 2) = 0 < 80 < 1 ·
E(4)(4, 2) = 175, then α4 = 0 and we set r = 80− 0 · 175 = 80.
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Step 3. m3 = max({0, 1, 2, 0}) = 2. E(4)(3, 2) = 37. Since 2 · E(4)(3, 2) = 74 < 80 < 3 ·
E(4)(3, 2) = 111, then α4 = 2 and we set r = 80− 2 · 37 = 6.

Step 2. m2 = max({0, 1, 2, 0, 2}) = 2. E(4)(2, 2) = 7. Since 0 · E(4)(2, 2) = 0 < 6 < 1 ·
E(4)(3, 2) = 7, then α2 = 0 and we set r = 6− 0 · 7 = 6.

Step 1. m1 = max({0, 1, 2, 0, 2, 0}) = 2. E(4)(1, 2) = 1. Since 3 · E(4)(1, 2) = 3 < 6, then
α1 = 3 and we set r = 6− 3 · 1 = 3.

Step 0. m0 = max({0, 1, 2, 0, 2, 0, 3}) = 3. E(4)(0, 3) = 1. Since 3 · E(4)(0, 3) = 3 ≤ 3 <
4 · E(4)(0, 3) = 4, then α0 = 3 and we set r = 3− 3 · 1 = 0.

Thus the restricted growth function f = (0, 1, 2, 0, 2, 0, 3, 3) is the element of rank 1000 in RG8,4.

6 Ranking and Unranking Algorithms for ~Ck,L
n,1 or ~Ck

n,1

The main goal of this section is to give our final ranking and unranking algorithms for the sets
~Ck,Ln,1 or ~Ckn,1.

We start by considering the ranking and unranking algorithms for ~Ckn,1. Recall

|~Ckn,1| =
(
n

k

)
× (n− k)!× Sn−2,n−k.

Ranking Algorithm for ~Ckn,1.

Step 1 Given T ∈ ~Ckn,1, construct f = Θ−1(T ).

We assume that we start with the data structure for a tree T ∈ ~Ckn,1 which consists of pairs

〈i, j〉 such that (i, j) is a directed edge in T . We then compute f = Θ−1(T ). By our results in
section 3, we can construct the set of pairs 〈i, j〉 such that f(i) = j in linear time.

Step 2. Find g ∈ DFn,k, h ∈ IOn−k, and s ∈ RGn−2,n−k such that Seq(f) = 〈(g(1), . . . g(k)), (h(1), . . . , h(n−
k)), (s(1), . . . , s(n− 2))〉.
Note that by making one pass through the data structure for f , we can construct of table
Table(f) = 〈(1, V1), . . . , (n, Vn)〉 where for each i, Vi = ∅ if f−1(i) = ∅ or Vi a linked list of
the elements of f−1(i) in increasing order if f−1(i) 6= ∅. For example if we start with the tree
T ∈ ~C5

9,1 and f = Θ−1(T ) pictured in Figure 3, then one can see from Table 1 that we would
produce the following table.

Table(f) = 〈(1, (5, 6)), (2, (2, 3)), (3, ∅), (4, (7)), (5, ∅), (6, ∅), (7, (4, 8)), (8, ∅), (9, ∅)〉. (26)

We can then read Table(f) from right to left to construct the decreasing sequence

(g(1), . . . , g(k))

of those i such that f−1(i) = ∅. Such elements correspond to the leaves of the tree T by Theorem
2. Thus is clear that we can construct (g(1), . . . , g(k)) from T in linear time. For the tree T
pictured in Figure 3, we would produce

(g(1), . . . , g(5)) = (9, 8, 6, 5, 3). (27)
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By reading Table(f) from left to right, we can construct the ordered set partition of {2, . . . , n−
1} into n − k parts, π+(f) = 〈π+

1 , . . . , π
+
n−k〉, which consists of the Vi’s which are nonempty in

Table(f) and a set of pointer from π+
j to j. For our example,

π+(f) = 〈(5, 6), (2, 3), (7), (4, 8)〉. (28)

Next we make a pass through π+(f) and create

(i) a new ordered set partition π(f) = 〈π1, . . . , πn−k〉 of [n − 2] into n − k parts along with
pointers from πj to j by replacing each element i by i− 1,

(ii) a sequence u(f) = (u(1), . . . , u(n− k) where u(i) = min(π+
i )− 1, and

(iii) a sequence v(f) = (v(1), . . . , v(n − 2)) where v(i) = 0 if i appears in u(f) and v(i) = 1
otherwise.

For our given example of f , we would produce

π(f) = 〈(4, 5), (1, 2), (6), (3, 7)〉, (29)

u(f) = (4, 1, 6, 3), (30)

and
v(f) = (0, 1, 0, 0, 1, 0, 1). (31)

Again, it is easy to see that we can construct π(f), u(f), and v(f) in linear time from T .
Next we use v(f) to construct δ(f) = (δ(1), . . . , δ(n−k)) where δ(1) = 0 and for 1 < i ≤ n−2,

δ(i) =
∑i−1

j=1 v(j). Thus δ(i) is the number of j < i such j is not a minimum element in one of
the parts π(f). It follows that if we let σ = (σ(1), . . . , σ(n − k)) = (u(1) − δ(u(i)), . . . , u(n −
k) − δ(n − k)), then σ is a permutation of n − k which represent the relative order of parts of
π(f) according to increasing minimal elements. For example, for our given example of f ,

δ(f) = (0, 0, 1, 1, 1, 2, 2) (32)

and
σ = (4− 1, 1− 0, 6− 2, 3− 1) = (3, 1, 4, 2) (33)

Note that if we order the parts of π(f) according to increasing minimal elements to get π−(f) =
〈π−1 , . . . , π

−
n−k〉, the πi = π−σ(i). For our given example of f ,

π−(f) = 〈(1, 2), (4, 5), (6), (3, 7)〉. (34)

Note that we change the pointer on π(f) = 〈π1, . . . , πn−k〉 so that πj pointers to σj−1, the part
of π(f) which has the smallest minimal element will point to 0, the part of π(f) which has the
second smallest minimal element will point to 1, etc. It follows that if we make another pass
through π(f) and as we encounter an element x, we record σj − 1 where the part that contains
x in π(f) points to j, we can construct the sequence s(f) = (s(1), . . . , s(n− k)), then s(f) will
be the restricted growth function associated to the unorderd set partition π−(f). For our given
f , this process would produce

s(f) = (0, 0, 1, 2, 2, 3, 1). (35)
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Again it is easy to see that we can produce s(f) in linear time from T .
Finally we need to construct the direct insertion sequence h(f) = (h(1), . . . , h(n− k)) for σ.

We can produce the insertion sequence by recursion. That is, h(1) = σ(1)−1 and (h(2), . . . , h(n−
k)) is the insertion sequence for the permutation τ = (τ(1), . . . , τ(n−k−1)) where τ(i) = σ(i+1)
if σ(i+ 1) < σ(1) and τ(i) = σ(i+ 1)− 1 if σ(i+ 1) > σ(1). Thus it requires 0((n− k)2) steps
to produce h(f). For our given example of f ,

h(f) = (2, 0, 1, 0). (36)

It follows that it require O(n2) step to produce Seq(f).

Step 3. Use the algorithms of section 4 to compute rankDFn,k
(g(f)), rankIOn−k

(h(f)), and
rankRGn−2,n−k

(s(f)).
It is easy to see from our ranking algorithms of section 4 that if we start with table of binomial
coefficients and E(n−k)(r, s), then it requires O(n) operations of addition, multiplication, and
comparisions to compute each of rankDFn,k

(g(f)), rankIOn−k
(h(f)), and rankRGn−2,n−k

(s(f)).
Since the integers involved have length at most O(nlog(n)), it follows that it requires O(n2log(n))
steps to compute rankDFn,k

(g(f)), rankIOn−k
(h(f)), and rankRGn−2,n−k

(s(f)).
For our given f ,

rankDF9,5(g(f)) =
5∑
i=1

(
g(i)− i

6− i

)
(37)

=

(
9

5

)
+

(
7

4

)
+

(
5

3

)
+

(
4

2

)
+

(
2

1

)
= 56 + 35 + 10 + 6 + 2 = 109,

rankIO4(h(f)) =
4∑
i=1

h(i)(n− i)! (38)

= (2× 3!) + (0× 2!) + (1× 1!) + (0× 0!)

= 7,

and if s(f) = (α6, α5, . . . , α0) and mi = max({α6, . . . , αi+1}), then

rankRG7,4(s(f)) =
5∑
i=0

αiE
(4)(i,mi) (39)

= (0× E(4)(5, 0)) + (1× E(4)(4, 0)) + (2× E(4)(3, 1))

+(2× E(4)(2, 2)) + (3× E(4)(1, 2)) + (1× E(4)(0, 3))

= (0× 65) + (1× 10) + (2× 9) + (2× 7) + (3× 1) + (1× 1) = 46.

Step 4 It then follows from our analysis in section 4 that

rank ~Ck
n,1

= rankDFn,k
(g(f)) · (n− k)!Sn−2,n−k (40)

+rankIOn−k
(h(f)) · Sn−2,n−k

+rankRGn−2,n−k
(s(f)).
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For our given f , n = 9, k = 5, (n− k)! = 4! = 24, S7,4 = 350, 4!× 350 = 8400. Thus

rank ~C5
9,1

(T ) = (109× 8400) + (7× 350) + (46) = 918, 096 (41)

Thus the T pictured in Figure 3 is the tree with rank 918,096 in ~C5
9,1.

The unranking algorithm for ~Ckn,1 is relatively straight forward given the unranking algo-
rithms discussed in section 4.

Unranking Algorithm for ~Ckn,1.

Problem: Given r such that 0 ≤ r <
(
n
k

)
× (n − k)! × Sn−2,n−k, find T ∈ ~Ckn,1 such that

rank ~Ck
n,1

(T ) = r.

Step I Find r1 r2, and r3 such that

r = r1 × (n− k)!Sn−2,n−k + u1 where 0 ≤ u1 < (n− k)!Sn−2,n−k

u1 = r2 × Sn−2,n−k + u2 where 0 ≤ u2 < Sn−2,n−k

r3 = u2. (42)

Step II Find g ∈ DFn,k, h ∈ IOn−k and s ∈ RGn−2,n−k such that

r1 = rankDFn,k
(g) (43)

r2 = rankIOn−k
(h) (44)

r3 = rankRGn−2,n−k
(s) (45)

Step III Find f ∈ Fn such that

Seq(f) = 〈(g(1), . . . , g(k)), (h(1), . . . , h(n− k)), (s(1), . . . , s(n− 2))〉. (46)

Step IV Let T = Θ(f).

Note that since we are dealing with numbers whose length is of O(nlog(n), Step I requires
O(nlog(n)) steps. The unranking algorithms for DFn,k, IOn−k and RGn−2,n−k each require
O(n) operations of addition, mulitiplication, division and comparisons. Again, since we are
dealing with numbers whose length is of O(nlog(n), Step II requires O(n2log(n)) steps. It is not
difficult to see that we can reconstruction f from g, h and s in O(n2) so that Step III requires
O(n2) steps. Finally Step IV can be carried out in O(n) steps so that the unranking proceedure
requires O(n2log(n)) steps.

For an example of our unranking algorithms for ~Ckn,1, suppose that we want to find the tree

T ∈ ~C5
9,1 whose rank is 600,000. In this case, (9− 5)!S7,4 = 8400 and S7,4 = 350. Thus for Step

I, we find that

600, 000 = 71× 8400 + 3600

3600 = 10× 350 + 100.
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Thus r1 = 71, r2 = 10 and r3 = 100.
For Step II, first we apply the uranking proceedure for DF9,5 from section 4.2 to find

g ∈ DF9,5 such that rankDF9,5(g) = 71. We set m′ = 71.

Then g(1) − 1 = max{y :
(
y
5

)
≤ 71}. Note that

(
8
5

)
= 56 < 71 < 126 =

(
9
5

)
. Thus g(1) − 1 = 8

and hence g(1) = 9. We then set m′ = 71− 56 = 15.

Then g(2) − 1 = max{y :
(
y
4

)
≤ 15}. Note that

(
6
4

)
= 15. Thus g(2) − 1 = 6 and hence

g(2) = 7. We then set m′ = 15− 15 = 0.

Then g(3) − 1 = max{y :
(
y
3

)
≤ 0}. Note that

(
2
3

)
= 0. Thus g(3) − 1 = 2 and hence

g(3) = 3. We then set m′ = 0.

Then g(2) − 1 = max{y :
(
y
2

)
≤ 0}. Note that

(
1
2

)
= 0. Thus g(2) − 1 = 1 and hence

g(2) = 2. We then set m′ = 0.

Then g(1) − 1 = max{y :
(
y
1

)
≤ 0}. Note that

(
0
1

)
= 0. Thus g(1) − 1 = 0 and hence

g(1) = 1.

Thus (g(1), . . . , g(5)) = (9, 7, 3, 2, 1).
Next we apply the unranking proceedure for IO4 from section 4.3 to find h ∈ IO4 such that

rankIO4(g) = 10. We set h(4) = 0 and p0 = 10.

Then 10 = 1× 3! + 4 and 4 < 3! so that h(1) = 1 and p1 = 4.

Then 4 = 2× 2! + 0 so that h(2) = 2 and p2 = 0.

Then 0 = 0× 1! + 0 so that h(3) = 0 and p3 = 0.

Thus (h(1), h(2), h(3), h(4)) = (1, 2, 0, 0) and h is the direction insertion sequence of the permu-
tation σ = 2 4 1 3.

Finally we apply the unranking proceedure forRG7,4 from section 4.4 to find s = (α6, . . . , α0)
such that rankRG7,4(s) = 100.

First we set α6 = 0 and r = 100.

Then m5 = α6 = 0 and by Table 2, E(4)(5, 0) = 65. Thus the maximum value of s such
that s ≤ m5 + 1 and sE(4)(5, 0) ≤ 100 is s = 1. Thus α5 = 1 and we set r = 100− 65 = 35.

Then m4 = max({α6, α5}) = 1 and by Table 2, E(4)(4, 1) = 55. Thus the maximum value
of s such that s ≤ m4 + 1 and sE(4)(4, 1) ≤ 35 is s = 0. Thus α4 = 0 and we set r = 35.

Then m3 = max({α6, α5, α4}) = 1 and by Table 2, E(4)(3, 1) = 9. Thus the maximum value of
s such that s ≤ m3+1 and sE(4)(3, 1) ≤ 35 is s = 2. Thus α3 = 2 and we set r = 35−(2·9) = 17.

Then m2 = max({α6, . . . , α3}) = 2 and by Table 2, E(4)(2, 2) = 7. Thus the maximum value of
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s such that s ≤ m2 +1 and sE(4)(2, 2) ≤ 17 is s = 2. Thus α2 = 2 and we set r = 17−(2 ·7) = 3.

Then m1 = max({α6, . . . , α2}) = 2 and by Table 2, E(4)(1, 2) = 1. Thus the maximum value
of s such that s ≤ m1 +1 and sE(4)(1, 2) ≤ 3 is s = 3. Thus α1 = 3 and we set r = 3−(3 ·1) = 0.

Then m0 = max({α6, . . . , α1}) = 3 and by Table 2, E(4)(1, 3) = 1. Thus the maximum value of
s such that s ≤ m0 + 1 and sE(4)(1, 2) ≤ 0 is s = 0. Thus α1 = 0.

Thus s = (0, 1, 0, 2, 2, 3, 0) which corresponds to the set partition 〈(1, 3, 7), (2), (4, 5), (6)〉.
For Step III, we want to construct f ∈ F9 such that

Seq(f) = 〈(9, 7, 3, 2, 1), (1, 2, 0, 0), (0, 1, 0, 2, 2, 3, 0)〉.

Now π−(f) = 〈(1, 3, 7), (2), (4, 5), (6)〉 Since σ = 2 4 1 3, the ordered partition π(f) = 〈(2), (6), (1, 3, 7), (4, 5)〉
and the ordered partition π+(f) = 〈(3), (7), (2, 4, 8), (5, 6)〉. It follows that

Table(f) = 〈∅, ∅, ∅, (3), (7), (2, 4, 8), ∅, (5, 6), ∅〉.

Thus f is specified by the following table.

f−1(1) f−1(2) f−1(3) f−1(4) f−1(5) f−1(6) f−1(7) f−1(8) f−1(9)

∅ ∅ ∅ {3} {7} {, 2, 4, 8} ∅ {5, 6} ∅

The graph of f and the graph of Θ(f) are pictured in Figure 9.

19 6 8

2 4 5

3 7

Θ(  ) = f

f = 

19 6 8

2 4 5

3 7

Figure 9: The element of rank 600,000 in ~C5
9,1.

The ranking and unranking algorithms for ~Ck,Ln,1 where L is a subset of [n] of size k is

essentially the same as the ranking and unranking algorithms for ~Ckn,1 except that the decreasing
function g ∈ DFn,k is precified by L. That is, if L = {l1 < . . . < lk}, then g = (g(1), . . . , g(k)) =
(lk, lk−1, . . . , l1). Now

|~Ck,Ln,1 | = (n− k)!× Sn−2,n−k.

Ranking Algorithm for ~Ck,Ln,1 .

Step 1 Given T ∈ ~Ckn,1, construct f = Θ−1(T ).
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Step 2. Find h ∈ IOn−k, and s ∈ RGn−2,n−k such that

Seq(f) = 〈(g(1), . . . g(k)), (h(1), . . . , h(n− k)), (s(1), . . . , s(n− 2))〉.

Step 3. Use the algorithms of section 4 to compute rankIOn−k
(h) and rankRGn−2,n−k

(s).

Step 4 It then follows from our analysis in section 4 that

rank ~Ck,L
n,1

= rankIOn−k
(h) · Sn−2,n−k + rankRGn−2,n−k(s). (47)

Thus if L = {3, 5, 6, 8, 9}, n = 9, and T is the tree pictured in Figure 3, then it follows from our
previous calculations when we computed rank ~C5

9,1
, that

rank ~C5,{3,5,6,8,9}
9,1

(T ) = (7× 350) + 46 = 2, 496 (48)

Thus the T pictured in Figure 3 is the tree with rank 2,496 in ~C
5,{3,5,6,8,9}
9,1 .

The unranking algorithm for ~Ck,Ln,1 again is essentially the same as the unranking algorithm

for ~Ckn,1 except that we do not have to find the decreasing function g since it is prespecified by L.

Unranking Algorithm for ~Ckn,1.

Problem: Given r such that 0 ≤ r < (n−k)!×Sn−2,n−k, find T ∈ ~Ck,Ln,1 such that rank ~Ck,L
n,1

(T ) = r.

Step I Find r1 and r2 such that

r = r1 × Sn−2,n−k + r2 where 0 ≤ r2 < Sn−2,n−k. (49)

Step II Find h ∈ IOn−k and s ∈ RGn−2,n−k such that

r1 = rankIOn−k
(h) (50)

r2 = rankRGn−2,n−k
(s) (51)

Step III Find f ∈ Fn such that

Seq(f) = 〈(g(1), . . . , g(k)), (h(1), . . . , h(n− k)), (s(1), . . . , s(n− 2))〉. (52)

Step IV Let T = Θ(f).

For an example of our unranking algorithms for ~Ck,Ln,1 , let L = {3, 4, 6, 8, 9} so that g =

(9, 8, 6, 5, 3). Suppose that we want to find the tree T ∈ ~C5,L
9,1 whose rank is 6,000. In this case,

(9− 5)!S7,4 = 8400 and S7,4 = 350. Thus for Step I, we find that

6, 000 = 17× 350 + 50. (53)
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Thus r1 = 17 and r2 = 50.
For Step II, first we apply the uranking proceedure for IO4 from section 4.3 to find h ∈ IO4

such that rankIO4(g) = 17. We set h(4) = 0 and p0 = 17.

Then 17 = 2× 3! + 5 and 5 < 3! so that h(1) = 2 and p1 = 5.

Then 5 = 2× 2! + 1 so that h(2) = 2 and p2 = 1.

Then 1 = 1× 1! + 0 so that h(3) = 1 and p3 = 0.

Thus (h(1), h(2), h(3), h(4)) = (2, 2, 1, 0) and h is the direction insertion sequence of the permu-
tation σ = 3 4 2 1.

Then we apply the unranking proceedure for RG7,4 from section 4.4 to find s = (α6, . . . , α0)
such that rankRG7,4(s) = 50.

First we set α6 = 0 and r = 50.

Then m5 = α6 = 0 and by Table 2, E(4)(5, 0) = 65. Thus the maximum value of s such
that s ≤ m5 + 1 and sE(4)(5, 0) ≤ 50 is s = 0. Thus α5 = 0 and we set r = 50.

Then m4 = max({α6, α5}) = 0 and by Table 2, E(4)(4, 0) = 10. Thus the maximum value
of s such that s ≤ m4 +1 and sE(4)(4, 1) ≤ 50 is s = 1. Thus α4 = 1 and we set r = 50−10 = 40.

Then m3 = max({α6, α5, α4}) = 1 and by Table 2, E(4)(3, 1) = 9. Thus the maximum value of
s such that s ≤ m3+1 and sE(4)(3, 1) ≤ 40 is s = 2. Thus α3 = 2 and we set r = 50−(2·9) = 22.

Then m2 = max({α6, . . . , α3}) = 2 and by Table 2, E(4)(2, 2) = 7. Thus the maximum value of
s such that s ≤ m2 +1 and sE(4)(2, 2) ≤ 22 is s = 3. Thus α2 = 3 and we set r = 22−(3 ·7) = 1.

Then m1 = max({α6, . . . , α2}) = 3 and by Table 2, E(4)(1, 3) = 4. Thus the maximum value of
s such that s ≤ m1 + 1 and sE(4)(1, 3) ≤ 1 is s = 0. Thus α1 = 0 and we set r = 1.

Then m0 = max({α6, . . . , α1}) = 3 and by Table 2, E(4)(0, 3) = 1. Thus the maximum value of
s such that s ≤ m0 + 1 and sE(4)(1, 2) ≤ 1 is s = 1. Thus α1 = 1.

Thus in our case, s = (0, 0, 1, 2, 3, 0, 1) which corresponds to the set partition 〈(1, 2, 6), (3, 7), (4), (5)〉.
For Step III, we want to construct f ∈ F9 such that

Seq(f) = 〈(9, 8, 6, 5, 3), (2, 2, 10), (0, 0, 1, 2, 3, 0, 1)〉.

Now π−(f) = 〈(1, 2, 6), (3, 7), (4), (5)〉. Since σ = 3 4 2 1, the ordered set partition π(f) =
〈(4), (5), (3, 7), (1, 2, 6)〉 and the ordered set partition π+(f) = 〈(5), (6), (4, 8), (2, 3, 7)〉. It follows
that

Table(f) = 〈(5), (6), ∅, (4, 8), ∅, ∅, (2, 3, 7), ∅, ∅〉.

Thus f is specified by the following table.
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f−1(1) f−1(2) f−1(3) f−1(4) f−1(5) f−1(6) f−1(7) f−1(8) f−1(9)

{5} {6} ∅ {4, 8} ∅ ∅ {2, 3, 7} ∅ ∅

The graph of f and the graph of Θ(f) are pictured in Figure 10.
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Figure 10: The element of rank 6,000 in ~C
5,{3,5,6,8,9}
9,1 .

Since the ranking and unranking algorithms for ~Ck,Ln,1 are essentially a subset of the ranking

and unranking algorithms for ~Ckn,1, it follows that both the ranking and uranking algorithms for
~Ck,Ln,1 require O(n2 log(n) steps.

References

[1] C.W. Borchardt, Ueber eine der Interpolation entsprechende Darstellung der Eliminations-
Resultante, J. reine angew. Math. 57 (1860), pp. 111-121.

[2] C.J. Colborn, R.P.J. Day, and J.D. Nel, Unranking and Ranking Spanning Trees of a Graph,
J. of Algorithms, 10, (1989), pp. 271-286.
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