
Ranking and unranking trees with given degree sequences

Jeffery B. Remmel
Department of Mathematics

U.C.S.D., La Jolla, CA, 92093-0112
jremmel@ucsd.edu

S. Gill Williamson
Department of Computer Science and Engineering

U.C.S.D., La Jolla, CA, 92093-0114
gwilliamson@ucsd.edu

MR Subject Classifications: 05A15, 05C05, 05C20, 05C30

Abstract

In this paper, we provide algorithms to rank and unrank certain degree-restricted classes
of Cayley trees. Specifically, we consider classes of trees that have a given degree sequence
or a given multiset of degrees. Using special properties of a bijection due to Eğecioğlu and
Remmel [3], we show that one can reduce the problem of ranking and unranking these classes
of degree-restricted trees to corresponding problems of ranking and unranking certain classes
of set partitions. If the underlying set of trees have n vertices, then the largest ranks involved
in each case are of order n! so that it takes O(nlog(n) bits just to write down the ranks.
Our ranking and unranking algorithms for these degree-restricted classes are as efficient as
can be expected since we show that they require O(n2log(n) bit operations if the underlying
trees have n vertices.

1 Introduction

In computational combinatorics, it is important to be able to efficiently rank, unrank, and
randomly generate (uniformly) basic classes of combinatorial objects. A ranking algorithm for a
finite set S is a bijection from S to the set {0, · · · , |S|−1}. An unranking algorithm is the inverse
of a ranking algorithm. Ranking and unranking techniques are useful for storage and retrieval of
elements of S. Uniform random generation plays a role in Monte Carlo methods and in search
algorithms such as hill climbing or genetic algorithms over classes of combinatorial objects.
Uniform random generation of objects is always possible if one has an unranking algorithm
since one can generate, uniformly, an integer in {0, · · · , |S| − 1} and unrank.

Given the set V = {1, · · · , n}, we consider the set Cn of trees with vertex set V . These
trees are sometimes called Cayley trees and can be viewed as the set of spanning trees of the
complete graph Kn. Ranking and unranking algorithms for the set Cn have been described by
many authors. Indeed, efficient ranking and unranking algorithms have been given for classes
of trees and forests that considerably generalize the Cayley trees (e.g., [3], [4], [5], [6], [7]).

In this paper we consider more refined problem,namely, ranking and unranking subsets of
Cn with specified degree sequences or a specified multisets of degrees. The resolution of this
refined problem hinges on having a bijection with certain very special properties. Let ~Cn,1 be

the set of directed trees on V that are rooted at 1. That is, a directed tree T ∈ ~Cn,1 has all

its edges directed towards its root 1. We replace Cn with the equivalent set ~Cn,1. For any tree
T ∈ Cn,

∑n
i=1 degT (i) = 2n − 2. Let ~s = 〈s1, . . . , sn〉 be any sequence of positive integers such

1

ar
X

iv
:1

00
9.

20
59

v1
 [

m
at

h.
C

O
]

 1
0

Se
p

20
10

that
∑n

i=1 si = 2n − 2. Then we let ~Cn,~s = {T ∈ ~Cn,1 : 〈degT (1), . . . , degT (n)〉 = ~s}. It will
easily follow from our results in section 2 that

|~Cn,~s| =
(

n− 2

s1 − 1, . . . , sn − 1

)
. (1)

Similarly if S = {1α1 , . . . , (n−1)αn−1} is a multiset such that
∑n−1

i=1 αi ·i = 2n−2 and
∑n

i=1 αi =

n, then we let ~Cn,S = {T ∈ ~Cn,1 : {degT (1), . . . , degT (n)} = S}. It is easy to see from (1) that

|~Cn,S | =
(

n

α1, . . . , αn

)(
n− 2

s1 − 1, . . . , sn − 1

)
. (2)

In [3], Eğecioğlu and Remmel constructed a fundamental bijection Θ between the class of
functions Fn = {f : {2, . . . , n − 1} → {1, . . . , n}} and the set ~Cn,1. We shall exploit a key
property of this bijection which is that for any vertex i, 1 + |f−1(i)| equals that degree of i in
the tree T = Θ(f) when Θ(f) is considered as an undirected graph. This property allows us to
reduce the problem or ranking and unranking trees in ~Cn,~s or ~Cn,S to the problem of ranking
and unranking certain set partitions. We then use known techniques for ranking and unranking
set partitions [14].

Note that both the |~Cn,~s| and |~Cn,S | can be as large as as the order of n! so that the numbers
involved in ranking and unranking will require on the order of nlog(n) bits just to write down.
We shall show that our algorithms for the ranking and unranking algorithms for ~Cn,~s and ~Cn,S
are as efficient as can be expected in that given a tree T , it will require at most O(n2) comparisons
of numbers y ≤ n plus O(n) operations of multiplication, division, addition, substraction and
comparision on numbers x < |~Cn,~s| (x < |~Cn,S |) to find the rank of T in ~Cn,~s (~Cn,S) so that it

will take O(n2log(n)) bit operations for ranking in either ~Cn,~s or ~Cn,S . Similarly, we will show

that that the unranking algorithms ~Cn,~s or ~Cn,S will reqire at most O(n2log(n)) bit operations.

The outline of this paper is as follows. In Section 2, we describe the bijection Θ : Fn → ~Cn,1
of [3] and discuss some of its key properties. In Section 3, we show that both Θ and Θ−1 can
be computed in linear time. This result allows us to reduce the problem of efficiently ranking
and unranking trees in ~Cn,~s or ~Cn,S to the problem of efficiently ranking and unranking certain
classes of set partitions. In Section 4, we shall give ranking and unranking algorithms for the
classes of set partitions corresponding the sets ~Cn,~s and ~Cn,S .

2 The Θ Bijection and its Properties

In this section, we shall review the bijection Θ : Fn → ~Cn,1 due to Eğecioğlu and Remmel [3]
and give some of its properties.

Let [n] = {1, 2, . . . , n}. For each function f : {2, . . . , n − 1} → [n], we associate a directed
graph f , graph(f) = ([n], E) by setting E = {〈i, f(i)〉 : i = 2, . . . , n − 1}. Following [13], given
any directed edge (i, j) where 1 ≤ i, j ≤ n, we define the weight of (i, j), W ((i, j)), by

W ((i, j)) =

{
pisj if i < j,
qitj if i ≥ j (3)

where pi, qi, si, ti are variables for i = 1, . . . , n. We shall call a directed edge (i, j) a descent edge
if i ≥ j and an ascent edge if i < j. We then define the weight of any digraph G = ([n], E) by

W (G) =
∏

(i,j)∈E

W ((i, j)). (4)

2

A moment’s thought will convince one that, in general, the digraph corresponding to a function
f ∈ Fn will consists of 2 root-directed trees rooted at vertices 1 and n respectively, with all edges
directed toward their roots, plus a number of directed cycles of length ≥ 1. For each vertex v
on a given cycle, there is possibly a root-directed tree attached to v with v as the root and all
edges directed toward v. Note the fact that there are trees rooted at vertices 1 and n is due to
the fact that these elements are not in the domain of f . Thus there can be no directed edges out
of any of these vertices. We let the weight of f , W (f), be the weight of the digraph graph(f)
associated with f .

To define the bijection Θ, we first imagine that the directed graph corresponding to f ∈ F
is drawn so that

(a) the trees rooted at n and 1 are drawn on the extreme left and the extreme right respectively
with their edges directed upwards,

(b) the cycles are drawn so that their vertices form a directed path on the line between n and
j, with one back edge above the line, and the root-directed tree attached to any vertex on
a cycle is drawn below the line between n and 1 with its edges directed upwards,

(c) each cycle ci is arranged so that its maximum element mi is on the right, and

(d) the cycles are arranged from left to right by decreasing maximal elements.

Figure 1 pictures a function f drawn according to the rules (a)-(d) where n = 23.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2

10

20

12

11

23

22

12

3

20

14

17

5

11

3

5

1

19

6

15

3

i f(i)

6 11 20

7

5 12

17 22 18

119 14 3 1023

15 16

21

4

13 8

9

15

Figure 1: The digraph of a function

This given, suppose that the digraph of f is drawn as described above and the cycles of
f are c1(f), . . . , ca(f), reading from left to right. We let rci(f) and lci(f) denote the right and
left endpoints of the cycle ci(f) for i = 1, . . . , a. Note that if ci(f) is a 1-cycle, then we
let rci(f) = lci(f) be the element in the 1-cycle. Θ(f) is obtained from f by simply deleting
the back edges (rci(f), lci(f)) for i = 1, . . . , a and adding the directed edges (rci(f), lci+1(f)) for
i = 1, . . . , a− 1 plus the directed edges (n, lc1(f)) and (rca(f), 1). That is, we remove all the back
edges that are above the line, and then we connect n to the lefthand endpoint of the first cycle,
the righthand endpoint of each cycle to the lefthand endpoint of the cycle following it, and we
connect the righthand endpoint of the last cycle to 1. For example, Θ(f) is pictured in Figure 2
for the f given in Figure 1. If there are no cycles in f , then Θ(f) is simply the result of adding
the directed edge (n, 1) to the digraph of f .

3

2

4 9 2

26

5

17

13

1411 20

15

21

4

19 1012

9

1

18

3

1622

8

23

7

6

Figure 2: Θ(f)

To see that Θ is a bijection, we shall describe how to define Θ−1. The key observation is
that we need only recover that the directed edges (rci(f), lci+1(f)) for i = 1, . . . , a − 1. However
it is easy to see that rc1(f) = m1 is the largest element on the path from n to 1 in the tree Θ(f).
That is, m1 is then largest element in its cycle and by definition, it is larger than all the largest
elements in any other cycle so that m1 must be the largest interior element on the path from n
to 1. Then by the same reasoning, rc2(f) = m2 is the largest element on the path from m1 to 1,

etc. Thus we can find m1, . . . ,mt. More formally, given a tree T ∈ ~Cn,1, consider the path

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

where mi is the maximum interior vertex on the path from mi−1 to 1, 1 ≤ i ≤ t. If (mi−1,mi) is
an edge on this path, then it is understood that xi, . . . ,mi = mi consists of just one vertex and
we define xi = mi. Note that by definition m0 = n > m1 > . . . > mt. We obtain the digraph
Θ−1(T) from T via the following procedure.

Procedure for computing Θ−1(T) :

(1) First we declare that any edge e of T which is not an edge of the path from n to j is an edge
of Θ−1(T).

(2) Next we remove all edges of the form (mt, 1) or (mi−1, xi) for 1 ≤ i ≤ t.

Finally for each i with 1 ≤ i ≤ t, we consider the subpath xi, . . . ,mi.

(3) If mi = xi, create a directed loop (mi,mi).

(4) If mi 6= xi, convert the subpath xi, . . . ,mi into the
directed cycle xi, . . . ,mi, xi.

Next we consider two important properties of the bijection Θ. First Θ has an important
weight preserving property. We claim that if Θ(f) = T , then

qnt1W (f) = W (T). (5)

That is, by our conventions, any backedge (rci(f), lci(f)) are descent edges so that its weight is
qrci(f)tlci(f) . Thus the total weight of the backedges is

a∏
i=1

qrci(f)tlci(f) . (6)

4

Our argument above shows that all the new edges that we add are also descent edges so that
the weight of the new edges is

qntlc1(f)(
a−1∏
i=1

qrci(f)tlci+1(f)
)qrca(f)

t1 = qnt1

a∏
i=1

qrci(f)tlci(f) . (7)

Since all the remaining edges have the same weight in both the digraph of f and in the digraph
Θ(f), it follows that qnt1W (f) = W (Θ(f)) as claimed.

It is easy to see that

∑
f∈Fn

W (f) =
n−1∏
i=2

[qi(t1 + · · ·+ ti) + pi(si+1 + · · ·+ sn)]. (8)

Thus we have the following result which is implicit in [3] and it explicit in [13].

Theorem 1.

∑
T∈ ~Cn,1

W (T) = qnt1

n−1∏
i=2

[qi(t1 + · · ·+ ti) + pi(si+1 + · · ·+ sn)]. (9)

Next we turn to a second key property of the Θ bijection. It is easy to see from Figures
1 and 2 that deleting the back edges (rci(f), lci(f)) for i = 1, . . . , a in graph(f) and adding the
directed edges (rci(f), lci+1(f)) for i = 1, . . . , a−1 plus the directed edges (n, lc1(f)) and (rca(f), 1)
to get Θ(f) does not change the indegree of any vertex except vertex 1. That is,

indeggraph(f)(i) = indegΘ(f)(i) for i = 2, . . . , n. (10)

It is also easy to see that in going from graph(f) to Θ(f), the indegree of vertex 1 increases by
1, i.e.,

1 + indeggraph(f)(i) = indegΘ(f)(1). (11)

When we consider Θ(f) as an undirected graph T , then it is easy to see that degT (i) =
outdegΘ(f) + indegΘ(f). Thus since the outdegree of i in Θ(f) is 1 if i 6= 1 and the outde-
gree of 1 in Θ(f) is zero, equations (10) and (11) imply the following Theorem.

Theorem 2. Suppose that T is the undirected tree corresponding to Θ(f) where f ∈ Fn, then
for i = 1, . . . , n,

degT (i) = 1 + |f−1(i)|. (12)

Proof By our definition of graph(f), it follows that indeggraph(f)(i) = |f−1(i)| for i = 1, . . . , n.
Thus by (10), for i = 2, . . . , n,

degT (i) = outdegΘ(f)(i) + indegΘ(f)(i)

= 1 + indegΘ(f)(i)

= 1 + indeggraph(f)(i)

= 1 + |f−1(i)|.

5

Similarly by (11),

degT (1) = outdegΘ(f)(1) + indegΘ(f)(1)

= 0 + indegΘ(f)(1)

= 1 + indeggraph(f)(1)

= 1 + |f−1(1)|.

�

3 Construction of the spanning forests from the the function
table in time O(n)

In this section, we shall briefly outline the proof that one can compute the bijections Θ and its
inverse in linear time. Suppose we are given f ∈ Fn. Our basic data structure for the function
f is a list of pairs 〈i, f(i)〉 for i = 2, . . . , n − 1. Our goal is to construct the directed graph of
Θ(f) from our data structure for f , that is, for i = 1, . . . , n, we want to find the set of pairs,
〈i, ti〉, such that there is directed edge from i to ti in Θ(f). We shall prove the following.

Theorem 3. We can compute the bijection Θ : Fn → ~Cn,1 and its inverse in linear time.

Proof. We shall not try to give the most efficient algorithm to construct Θ(f) from f . In-
stead, we shall give an outline the basic procedure which shows that one can construct Θ(f)
from f in linear time. For ease of presentation, we shall organize our procedure so that it makes
four linear time passes through the basic data structure for f to produce the data structure for
Θ(f).

Pass 1. Goal: Find, in linear time in n, a set of representatives t1, . . . , tr of the cycles of
the directed graph of the function f .
To help us find t1, . . . , tr, we shall maintain an array A[2], A[3], · · ·A[n − 1], where for each i,
A[i] = (ci, pi, qi) is a triple of integers such ci ∈ {0, . . . , n− 1} and {pi, qi} ⊆ {−1, 2, · · · , n− 1}.
The ci’s will help us keep track of what loop we are in relative to the sequence of operations
described below. Then our idea is to maintain, through the pi and qi, a doubly linked list of the
locations i in A where ci = 0, and we obtain pointers to the first and last elements of this doubly
linked list. It is a standard exercise that these data structures can be maintained in linear time.

Initially, all the ci’s will be zero. In general, if ci = 0, then pi will be the largest integer j
such that 2 ≤ j < i for which cj = 0 if there is such a j and pi = −1 otherwise. Similarly, we
set qi > i to be the smallest integer k such that n− 1 ≥ k > i for which ck = 0 if there is such
a k and qi = −1 if there is no such k. If c2 > 0, then q2 is the smallest integer j > 2 such that
cj = 0 and q2 = −1 if there is no such integer j. If cn−1 > 0, then pn−1 is the largest integer
k < n1 such that ck = 0 and pn−1 = −1 if there is no such integer k.

We initialize A by setting A[2] = (0,−1, q2), A[i] = (0, i − 1, i + 1) for m + 1 < i < n − 1,
and A[n− 1] = (0, pn−1,−1). If 2 < n− 1 then q2 = 3 and pn−1 = n− 2. Otherwise (2 = n− 1),
these quantities are both −1.

LOOP(1): Start with i1 = 2, setting c2 = 1. Compute f0(2), f1(2), f2(2), . . . , fk1(2), each
time updating A by setting cfj(2) = 1 and adjusting pointers, until, prior to setting cfk1 (2) = 1,

6

we discover that either

(1) fk1(2) ∈ {1, n}, in which case we have reached a node in graph(f) which is not in the
domain of f and we start over again with the 2 replaced by the smallest i for which ci = 0, or

(2) x = fk1(2) already satisfies cx = 1. This condition indicates that the value x has al-
ready occurred in the sequence 2, f(2), f2(2), . . . , fk1(2). Then we set t1 = fk1(2).

LOOP(2): Start with i2 = qm+1 which is the location of the first i such that ci = 0,
and repeat the calculation of LOOP1 with i2 instead of i1 = 2. In this manner, generate
f0(i2), f1(i2), f2(i2), . . . , fk2(i2), each time updating A by setting cfj(i2) = 2 and adjusting
pointers, until either

(1) fk1(i2) ∈ {1, n}, in which case we have reached a node in graph(f) which is not in the
domain of f and we start over again with the i2 replaced by the smallest i for which ci = 0, or

(2) x = fk1(i2) already satisfies cx = 2. (This condition indicates that the value x has al-
ready occurred in the sequence i2, f(i2), f2(i2), . . . , fk1(i2).) Then we set t2 = fk1(i2).

We continue this process until q2 = −1. At this point, we will have generated t1, . . . , tr, where the
last loop was LOOP(r). The array A will be such that, for all 2 ≤ i ≤ n−1, 1 ≤ ci ≤ r identifies
the LOOP in which that particular domain value i occurred in our computation described above.

Pass 2. Goal: For i = 1, . . . , r, find the largest element mi in the cycle determined by ti.
It is easy to see that this computation can be done in linear time by one pass through the array
A computed in Pass 1 above. At the end of Pass 2, we set li = f(mi). Thus when we draw the
cycle containing ti according to our definition of Θj(f), mi will be right most element in the
and li will be the left most element of the cycle containing ti. However, at this point, we have
not ordered the cycles appropriately. This ordering will be done in the next pass.

Pass 3. Goal: Sort (l1,m1), . . . , (lk,mk) so that they are appropriately ordered according the
criterion for the bijection Θ(f) as described in by condition (a) -(d).

Since we order the cycles from left to right according to decreasing maximal elements, it is
then easy to see that our desired ordering can be constructed via a lexicographic bucket sort.
(See Williamson’s book [14] for details on the fact that a lexicographic bucket sort can be carried
out in linear time.)

Pass 4. Goal: Construct the digraph of Θ(f) from the digraph of f .

We modify the table for f to produce the table for Θ(f) as follows. Assume that (l1,m1), . . . , (lk,mk)
is the sorted list coming out of Pass 3. Then we modify the table for f so that we add entries for
the directed edges 〈n, l1〉 and 〈mk, 1〉 and modify entries of the pairs starting with m1, . . . ,mk

so that their corresponding second elements are l2, . . . , lk, 1 respectively. This can be done in
linear time using our data structures.

Next, consider the problem of computing the inverse of Θ. Suppose that we are given the

7

data structure of the tree T ∈ ~C1, i.e. we are given a set of pairs , 〈i, ti〉, such that there is a
directed edge from i to ti in T . Recall that the computation of Θ−1(T) consists of two basic steps.

Step 1. Given a tree T ∈ ~Cn,1, consider the path

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

where mi is the maximum interior vertex on the path from mi−1 to 1, 1 ≤ i ≤ t. If (mi−1,mi)
is an edge on this path, then it is understood that xi, . . . ,mi = mi consists of just one vertex
and we define xi = mi. Note that by definition m0 = n > m1 > . . . > mt.

First it is easy to see that by making one pass through the data structure for F , we can construct
the directed path n → a1 → . . . → ar where 1 = ar. In fact, we can construct a doubly linked
list (n, a1, . . . , ar−1, 1) with pointers to the first and last elements in linear time. If we traverse
the list in reverse order, (1, ar−1, . . . , a1, n), then it easy to see that mt = ar−1, mt1 is the next
element in the list (ar−2, . . . , a1) which is greater than mt and, in general, having found mi = as,
then mi−1 is the first element in the list (as−1, . . . , a1) which is greater than mi. Thus it is not
difficult to see that we can use our doubly linked list to produce the factorization

m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, 1

in linear time.

Step 2. We obtain the digraph Θ−1(T) from T via the following procedure.

Procedure for computing Θ−1
j (F) :

(1) First we declare that any edge e of T which is not an edge of the path from n to 1 is an edge
of Θ−1(T).

(2) Next we remove all edges of the form (mt, 1) or (mi−1, xi) for 1 ≤ i ≤ t.

Finally for each i with 1 ≤ i ≤ t, we consider the subpath xi, . . . ,mi.

(3) If mi = xi, create a directed loop (mi,mi).

(4) If mi 6= xi, then , convert the subpath xi, . . . ,mi into the
directed cycle xi, . . . ,mi, xi.

Again it is easy to see that we can use the data structure for T , our doubly linked list, and
our path factorization, m0 = n, x1, . . . ,m1, x2, . . .m2, . . . , xt, . . . ,mt, j to construct the data
structure for graph(f) where f = Θ−1(T) in linear time. �.

Given that we can carry out the bijection Θ and its inverses in linear time, it follows that
in linear time, we can reduce the problem of constructing ranking and unranking algorithms
for ~Cn,1 to the problem of constructing ranking and unranking algorithms for the corresponding
function class Fn. In the next section, we will construct our desired ranking and unranking
algorithms for the function classes corresponding to sets of trees ~Cn,~s and ~Cn,S described in the
introduction.

8

4 Ranking and Unranking Algorithms for Trees with a Fixed
Degree Sequence.

Recall that if T ∈ Cn, then
∑n

i=1 degT (i) = 2n−2. Let ~s = 〈s1, . . . , sn〉 be any sequence of posi-

tive integers such that
∑n

i=1 si = 2n−2. Then we define ~Cn,~s = {T ∈ ~Cn,1 : 〈degT (1), . . . , degT (n)〉 =

~s}. Similarly if S = {1α1 , . . . , (n − 1)αn−1} is a multiset such that
∑n−1

i=1 αi · i = 2n − 2 and∑n
i=1 αi = n, then we define ~Cn,S = {T ∈ ~Cn,1 : {degT (1), . . . , degT (n)} = S}. The main goal

of this section is to construct n2log(n) time algorithms for ranking and unranking trees in ~Cn,~s
and ~Cn,S .

So assume that ~s = 〈s1, . . . , sn〉 is a sequence of positive integers such that
∑n

i=1 si = 2n−2.
By Theorem 2, it follows that if Θ(f) = T , then degT (i) = 1 + |f−1(i)| for i = 1, . . . n. It follows
that

Θ−1(~Cn,~s) = {f ∈ Fn : 〈|f−1(1)|, . . . , |f−1(n)|〉 = 〈s1 − 1, . . . , sn − 1〉}. (13)

Since a function f ∈ Fn is clearly determined by the sequence 〈f−1(1), . . . , f−1(n)〉, it follows
from our results in Section 2 that the problem of finding an algorithms to rank and unrank
trees ~Cn,~s can be reduced to the problem of ranking and unranking ordered set partitions
〈π1, . . . , πn〉 of {2, . . . , n − 1} where the sizes of the sets are specified. That is, we need to
find an algorithm to rank and unrank ordered set partitions in Πn,~s, the set of all sequences
of pairwise disjoint sets 〈π1, . . . , πn〉 such that

⋃n
k=1 πk = {2, . . . , n − 1} and |πk| = sk − 1

for k = 1, . . . , n. The total number of elements in Πn,~s is clearly the multinomial coefficient(
n−2

s1−1,...,sn−1

)
=
(
n−2
s1−1

)(
n−2−(s1−1)

s2−1

)
· · ·
(n−2−(

∑n
i=1 si−1)

sn−1

)
. Thus our first step is to develop a sim-

ple algorithm to rank and unrank objects corresponding to a product of binomial coefficients∏k
i=1

(
ai
bi

)
.

For a single binomial coefficient
(
n
k

)
, we shall rank and unrank the set DFn,k of decreasing

functions f : {1, . . . , k} → {1, . . . , n} relative to lexicographic order. A number of authors
have developed ranking and unranking algorithms for DFn,k. We shall follow the method of
Williamson [14]. First, we identify a function f : {1, . . . , k} → {1, . . . , n} with the decreasing
sequence 〈f(1), . . . , f(k)〉 where n ≥ f(1) > . . . > f(k) ≥ 1. We can then think of the sequences
as specifying a node in a planar tree TDFn,k

which can be constructed recursively as follows.
At level 1, the nodes of TDFn,k

are labeled k, . . . , n from left to right specifying the choices for
f(1). Next below a node j at level one, we attach a tree corresponding to TDFj−1,k−1

where a
tree TDFa,1 consists of a tree with a single vertex labeled a. Figure 3 pictures the tree TDF6,3 .

543 6

2 2 2 23 3 34 4 5

1 1 1 1 1 1 1 1 1 12 2 2 2 2 23 3 3 4

(6,2,1)

Figure 3: The tree TDF6,3

Then the decreasing sequence (6,2,1) corresponds to the node which is specified with an
arrow. It is clear that the sequences corresponding to the nodes at the bottom of the tree TDF6,3

appear in lexicographic order from left to right. Thus the rank of any sequence 〈f(1), . . . , f(k)〉 ∈

9

DFn,k is the number of nodes at the bottom of the tree to the left of the node corresponding to
〈f(1), . . . , f(k)〉. Hence the sequence 〈6, 2, 1〉 has rank 10 in the tree TDF6,3 .

This given, suppose we are given a sequence 〈f(1), . . . , f(k)〉 in TDFn,k
. Then the number of

leaves in the subtrees corresponding the nodes k, . . . , f(1)−1 are respectively
(
k−1
k−1

)
,
(
k
k−1

)
, . . . ,

(f(1)−2
k−1

)
.

Thus the total number of leaves in those subtrees is(
k − 1

k − 1

)
+

(
k

k − 1

)
+ · · ·+

(
f(1)− 2

k − 1

)
=

(
f(1)− 1

k

)
.

Here we have used the well known identity that
∑t−1

s=k−1

(
s

k−1

)
=
(
t
k

)
. It follows that the rank of

〈f(1), . . . , f(k)〉 in TDFn,k
equals

(f(1)−1
k

)
plus the rank of 〈f(2), . . . , f(k)〉 in TDFf(1)−1,k−1

. The
following result, stated in [14], then easily follows by induction.

Theorem 4. Let f : {1, . . . , k} → {1, . . . , n} be a descreasing function. Then the rank of f
relative to the lexicographic order on DFn,k is

rankDFn,k
(f) =

(
f(1)− 1

k

)
+

(
f(2)− 1

k − 1

)
+ · · ·+

(
f(k)− 1

1

)
. (14)

It is then easy to see from Theorem 4, that the following procedure, as described by
Williamson in [14], gives the unranking procedure for DFn,k.

Theorem 5. The following procedure UNRANK(m) computes

f = 〈f(1), . . . , f(k)〉

such that RankDFn,k
(f) = m for any 1 ≤ k ≤ n and 0 ≤ m ≤

(
n
k

)
− 1.

Procedure UNRANK(m)

initialize m′ := m, t := 1, s := k; (1 ≤ k ≤ n, 0 ≤ m ≤
(
n
k

)
− 1)

while t ≤ k do

begin f(t)− 1 = max{y :
(
y
s

)
≤ m′};

m′ := m′ −
(
f(t)−1
s

)
;

t := t+ 1;

s := s− 1;

end

Note that |DFa1,b1 × DFa2,b2 × · · · × DFat,bt | =
∏t
i=1

(
ai
bi

)
. Thus we can use DFa1,b1 ×

DFa2,b2 × · · ·×DFat,bt as the set of objects corresponding to a product of binomial coefficients.
We shall idenitfy an element

(f1, . . . , ft) ∈ DFa1,b1 ×DFa2,b2 × · · · × DFat,bt

with a sequence

〈f1(1), . . . , f1(b1), f2(1), . . . , f2(b2), . . . , ft(1), . . . , ft(bt)〉

10

and rank these sequences according to lexicographic order. To define our ranking and unranking
proceedure for this set of sequences, we first need to define a product relation on planar trees.

Given a rooted planar tree T , let L(T) be the numbers of leaves of T and Path(T) be the
set of paths which go from the root to a leaf. Then for any path p ∈ Path(T), we define the
rank of p relative to T , rankT (p), to be the number of leaves of T that lie to the left of p.

Given two rooted planar trees T1 and T2, T1⊗T2 is the tree that results from T1 by replacing
each leaf of T1 by a copy of T2, see Figure 3. If the vertices of T1 and T2 are labeled, then
we shall label the vertices of T1 ⊗ T2 according to the convention that each vertex v in T1

have the same label in T1 ⊗ T2 that it has in T1 and each vertex w in a copy of T2 that is
decendent from a leaf labeled l in T1 has a label (l, s) where s is the label of w in T2. Given
rooted planar trees T1, . . . , Tk where k ≥ 3, we can define T1 ⊗ T2 ⊗ · · · ⊗ Tk by induction as
(T1 ⊗ · · · ⊗ Tk−1)⊗ Tk. Similarly if T1 . . . , Tk are labeled rooted planar trees, we can define the
labeling of T1 ⊗ T2 ⊗ · · · ⊗ Tk by the same inductive process.

T =

=T
2

T
1

=T
2 1

Figure 4: The operation T1 ⊗ T2.

Now suppose that we are given two rooted planar trees T1 and T2 and suppose that p1 ∈
Path(T1) and p2 ∈ Path(T2). Then we define the path p1 ⊗ p2 in T1 ⊗ T2 which follows p1 to
its leaf l in T1 and then follows p2 in the copy of T2 that sits below leaf l to a leaf (l, l′) in
T1 ⊗ T2. Similarly, given paths pi ∈ Ti for i = 1, . . . k, we can define a path p = p1 ⊗ · · · ⊗ pk ∈
Path(T1 ⊗ T2 ⊗ · · · ⊗ Tk) by induction as (p1 ⊗ · · · ⊗ pk−1)⊗ pk.

Next we give two simple lemmas that tell us how to rank and unrank the set of paths in
such trees.

Lemma 6. Suppose that T1, . . . , Tk are rooted planar trees and T = T1 ⊗ T2 ⊗ · · · ⊗ Tk. Then
for any path p = p1 ⊗ · · · ⊗ pk ∈ Path(T),

rankT (p) =

k∑
j=1

rankTj (pj)

k∏
l=j+1

L(Tl) (15)

Proof. We proceed by induction on k. Let us assume that T1, . . . Tk are labeled rooted planar
trees.

First suppose that k = 2 and that p1 is a path that goes from the root of T1 to a leaf labeled
11 and p2 goes from the root of T2 to a leaf labeled l2. Thus p1 ⊗ p2 goes from the root of
T1 ⊗ T2 to the leaf l1 in T1 and then proceeds to the leaf (l1, l2) in T1 ⊗ T2. Now for each leaf
l′ to the left of l1 in T2, there are L(T2) leaves of T1 ⊗ T2 that lie to left of (l1, l2) coming from

11

the leaves of the copy of T2 that sits below l′. Thus there are a total of L(T2) · rankT1(p1) such
leaves. The only other leaves of T1 ⊗ T2 that lie to left of p1 ⊗ p2 are the leaves of the form
(l1, l

′′) where l′′ is to left of p2 in T2. There are rankT2(p2) such leaves. Thus there are a total
of rankT2(p2) + L(T2) · rankT1(p1) leaves to left of p1 ⊗ p2 and hence

rankT1⊗T2(p1 ⊗ p2) = rankT2(p2) + L(T2) · rankT1(p1)

as desired.
Next assume that (15) holds for k < n and that n ≥ 3. Then

rankT1⊗···⊗Tn(p1 ⊗ · · · ⊗ pn) =

rank(T1⊗···⊗Tn−1)⊗Tn(p1 ⊗ · · · ⊗ pn−1)⊗ pn) =

rankTn(pn) + L(Tn)(
n−1∑
j=1

rankTj (pj)
n−1∏
l=j+1

L(Tl)) =

n∑
j=1

rankTj (pj)

n∏
l=j+1

L(Tl).

�.
This given, it is easy to develop an algorithm for unranking in a product of trees. The proof

of this lemma can be found in [14].

Lemma 7. Suppose that T1, . . . , Tk are rooted planar trees and T = T1 ⊗ T2 ⊗ · · · ⊗ Tk. Then
given a p ∈ Path(T) such that rankT (p) = r0, p = p1⊗· · ·⊗pk ∈ Path(T) where rankTi(pi) = qi
and

r0 = q1

k∏
l=2

L(Tl) + r1 where 0 ≤ r1 <
∏k
l=2 L(Tl), (16)

r1 = q2

k∏
l=3

L(Tl) + r2 where 0 ≤ r2 <
∏k
l=3 L(Tl), (17)

... (18)

rk−2 = qk−1L(Tk) + rk−1 where 0 ≤ rk−1 < L(Tk) and (19)

rk−1 = qk (20)

It follows that ranking and unranking our sequences

〈f1(1), . . . , f1(b1), f2(1), . . . , f2(b2), . . . , ft(1), . . . , ft(bt)〉

coresponding to an element (f1, . . . , ft) ∈ DFa1,b1 ×DFa2,b2 × · · · × DFat,bt , we need only rank
and unrank the leaves with respect to the tree

T(a1,b1),...,(at,bt) = TDFa1,b1
⊗ TDFa2,b2

⊗ · · · ⊗ TDFat,bt
. (21)

That is, consider a path p = p1 ⊗ p2 ⊗ · · · ⊗ pt ∈ T(a1,b1),...,(at,bt). For each i, pi corresponds to a
sequence 〈fi(1), . . . , fi(bi)〉 in DFai,bi and hence p corresponds to the sequence

〈f1(1), . . . , f1(b1), f2(1), . . . , f2(b2), . . . , ft(1), . . . , ft(bt)〉.

12

We are now in position to give an algorithm to rank and unrank ordered set partitions in Πn,~s,
the set of all sequences of pairwise disjoint sets 〈π1, . . . , πn〉 such that

⋃n
k=1 πk = {2, . . . , n− 1}

and |πk| = sk − 1 for k = 1, . . . , n. Since the total number of elements in Πn,~s is clearly the

multinomial coefficient
(

n−2
s1−1,...,sn−1

)
=
(
n−2
s1−1

)(
n−2−(s1−1)

s2−1

)
· · ·
(n−2−(

∑n
i=1 si−1)

sn−1

)
, we shall identify

an ordered set partition π = 〈π1, . . . , πn〉 with an element

(f1, . . . , fn) ∈ DFn−2,s1−1 ×DFn−2−(s1−1),s2−1 × · · · × DFn−2−(
∑n

i=1 si−1),sn−1

as follows. Suppose that n = 12 and ~s = (s1, . . . , s12) = (1, 1, 3, 1, 4, 1, 3, 1, 2, 1, 3, 1). Note that∑12
i=1 si = 2(12)−2 = 22 so that this is a possible degree sequence for a tree in ~C12. For example,

the tree T0 ∈ ~C12,1 pictured in Figure 5 has this degree sequence when considered as a tree.

112

T
0

9

6

35 711

48 102

Θ ()T0

−1112

9

6

48 102

5 11 3 7

Figure 5: The tree T0

Note that in this case, 〈s1 − 1, . . . , s12 − 1〉 = 〈0, 0, 2, 0, 3, 0, 2, 0, 1, 0, 2, 0〉. Also in Figure 5,
we have pictured the graph of f = Θ−1(T0) and in this case

πT0 = 〈f−1(1), . . . , f−1(12)〉 = 〈∅, ∅, {10, 7}, ∅, {11, 8, 4}, ∅, {9, 3}, ∅, {6}, ∅, {5, 2}, ∅〉.

It will be more efficient for our ranking and unranking procedure to order the set partition by
increasing size of the parts. Thus we will make one pass through the to extract the |f−1(i)| for
each i and its relative rank for those parts of the same size. In this case, we would produce the
following list
〈(1, 0, 0), (2, 0, 1), (3, 2, 0), (4, 0, 2), (5, 3, 0), (6, 0, 3), (7, 2, 1), (8, 0, 4), (9, 1, 0), (10, 0, 5), (11, 2, 2), (12, 0, 6)〉.

Here for example, then entry (7, 2, 1) means that the size of f−1(7) is 2 and there is one element
i < 7 such that |f−1(i)| = 2. We can then do a lexicographic bucket sort to produce a list of
the elements according to lexicographic order on the last two entries of this list in linear time,
see [14]. Thus in our example we would produce the following list.
〈(1, 0, 0), (2, 0, 1), (4, 0, 2), (6, 0, 3), (8, 0, 4), (10, 0, 5), (12, 0, 6), (9, 1, 0), (7, 2, 1), (3, 2, 0), (11, 2, 2), (5, 3, 0)〉.
The set partition corresponding to this order is

〈∅, ∅, ∅, ∅, ∅, ∅, ∅, {6}, {10, 7}, {9, 3}, {5, 2}, {11, 8, 4}〉.

We can ignore the ∅’s and just consider the reduced partition

πT0 = 〈{6}, {10, 7}, {9, 3}, {5, 2}, {11, 8, 4}〉.

More generally, let D = {2, . . . , n − 1}. Let π = (B1, . . . , Bk) be an ordered set partition of
D where each block Bi is nonempty and ordered in decreasing order, Bi = {bi,1 > . . . > bi,ti},

13

that comes from some element π in Π12,~s as described above. Let (r1,1, . . . , r1,t1) be the ordered
sequence of ranks of the respective (b1,1, . . . , b1,t1) in D. In general, let (ri,1, . . . , ri,ti) be the
ranks of the respective (bi,1, . . . , bi,ti) in D \ ∪i−1

j=1Bj . For πT0 ,
(r1,1) = (5) can be considered an element of DF10,1

(r2,1, r2,2) = (8, 5) can be considered an element of DF9,2

(r3,1, r3,2) = (6, 2) can be considered an element of DF7,2

(r4,1, r4,2) = (3, 1) can be considered an element of DF5,2

(r5,1, r5,2, r5,3) = (3, 2, 1) can be considered an element of DF3,3

Thus we can think of πT0 as the sequence 〈6, 8, 5, 6, 2, 3, 1, 3, 2, 1〉 coming from an element of
DF10,1 × DF9,2 × DF7,2 × DF5,2 × DF3,3 or as a leaf in the tree TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗
TDF5,2 ⊗ TDF3,3 . Note that the size of the trees needed for the product lemma, Lemma 6, are

|TDF3,3 | =
(

3
3

)
= 1,

|TDF5,2 ⊗ TDF3,3 | =
(

5
2

)
·
(

3
3

)
= 10,

|TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 210,

|TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =
(

9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 7560,

|TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =
(

10
1

)(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 75600.

Thus we can apply Lemma 6 and conclude that the

rank(πT0) = rankDF10,1(〈5〉)× 7560

+rankDF9,2(〈8, 5〉)× 210

+rankDF7,2(〈6, 2〉)× 10

+rankDF5,2(〈3, 1〉)× 1.

By Theorem 4, we have that

rankDF10,1(〈5〉) =

(
5− 1

1

)
= 4,

rankDF9,2(〈8, 5〉) =

(
8− 1

2

)
+

(
5− 1

1

)
= 21 + 4 = 25,

rankDF7,2(〈6, 2〉) =

(
6− 1

2

)
+

(
2− 1

1

)
= 10 + 1 = 11, and

rankDF5,2(〈3, 1〉) =

(
3− 1

2

)
+

(
1− 1

1

)
= 1 + 0 = 1.

Thus
rank(π0) = (4× 7560) + (25× 210) + (11× 10) + (1× 1) = 35, 601.

Hence the tree T0 pictured in Figure 5 has rank 35,601 among all the trees
T ∈ ~C12,〈0,0,2,0,3,0,2,0,1,0,2,0〉.

If we are given, the degree sequence ~s, we can assume that we preprocess the sizes of the trees
needed to apply the product lemma, Lemma 6. Thus we need only compute O(n) products,
additions, and multinomial coefficients. Again given, ~s, we can construct a table of all the
possible binomial coefficients that we need as part of the preprocessing. Thus to find the rank of
tree T0 requires only a linear number of muliplications, additions and table look ups for numbers
x < |~Cn,~s|. Since each x requires at most O(nlog(n)) bits, it is easy to see that these operations
require at most O(n2log(n)) bit operations. The only other contribution to the complexity of

14

the algorithm is the time it takes go from the representation of the tree to the corresponding
rank sequences

〈r1,1, . . . , r1,t1 , r2,1, . . . , r2,t2 , . . . , rk,1, . . . , rk,tk〉.

It is easy to see from the fact that we can compute Θ−1 in linear time that we can start with a
tree and produce the ordered set partition πT = (B1, . . . , Bk) in linear time. Thus to complete
our analysis of the the complexity of the ranking prodeedure, we need to know the complexity
of the transformation between the (B1, . . . , Bk) and ranks

〈r1,1, . . . , r1,t1 , r2,1, . . . , r2,t2 , . . . , rk,1, . . . , rk,tk〉.

Lemma 8. Let D = {2, . . . , n − 1}. Let (B1, . . . , Bk) be an ordered partition of D where each
block Bi is nonempty and ordered in decreasing order, Bi = (bi,1, . . . , bi,ti). Let (r1,1, . . . , r1,t1) be
the ordered sequence of ranks of the respective (b1,1, . . . , b1,t1) in D. In general, let (ri,1, . . . , ri,ti)
be the ranks of the respective (bi,1, . . . , bi,ti) in D \ ∪i−1

j=1Bj. Given the sequences (ri,1, . . . , ri,ti),

i = 1, . . . , k, the sets partition B1, . . . , Bk can be constructed in worst case time O(n2log(n)).
Conversly, given the set partition B1, . . . , Bk the sequences (ri,1, . . . , ri,ti), i = 1, . . . , k can be
constructed in worst case time O(n2log(n)).

Proof. First we can make one pass through the list and set bi,j : bi,j − 1 so (B1, . . . , Bk)
become an ordered partition of {1, . . . , n−2}. Conversly, we can go from an ordered set partition
(B1, . . . , Bk) of {1, . . . , n−2} to an ordered set partition of {2, . . . , n−1} by setting bi,j := bi,j+1.
Thus there is no loss in assuming that (B1, . . . , Bk) is an ordered partition of {1, . . . , n− 2}.

This given, it will then be the case that (b1,1, . . . , b1,t1) = (ri,1, . . . , ri,ti). Then it will take
O(n) comparisions of numbers less than or equal to n to construct a sequence f(1), . . . , f(n)
where f(i) = |{b1, j : b1, j < i, j = 1, . . . , t1}|. Then it will take nlog(n) steps to create
the sequences (b̄i,1, . . . , b̄i,ti) for i = 2, . . . , k where b̄i,j = bi,j − f(bi,j). It then easily follows
that we have reduced the problem to finding the transformation from the ranks (ri,1, . . . , ri,ti),
i = 2, . . . , k, to set partitions B̄2, . . . , B̄k which we can do by recursion.

It then easily follows that given the set partition B1, . . . , Bk the sequences (ri,1, . . . , ri,ti),
i = 1, . . . , k can be constructed in worst case time O(n2log(n)) and that given the (ri,1, . . . , ri,ti),
i = 1, . . . , k, we can construct the set partition B1, . . . , Bk in worst case time O(n2log(n)). �

It then follows that our ranking procedure for ~Cn,~s requires O(n2log(n) bit operations.

The unranking procedure for ~Cn~s comes from simply reversing the ranking procedure using
Theorem 5 and Lemma 7. Again we will exhibit the procedure by finding the tree T1 whose
rank is 50,005 in ~C12,〈0,0,2,0,3,0,2,0,1,0,2,0〉. The first step is to carry out the series of quotients and
remainders according to Lemma 7. In our case, this leads to the following calculations.

50, 005 = (6× 7560) + 4645

4645 = (22× 210) + 25

25 = (2× 10) + 5

5 = (5× 1) + 0.

It then follows that we can construct the sequence corresponding to πT1 by concatonating the
sequences ~u1, . . . , ~u5 where

1. ~u1 is the decreasing function of rank 6 in DF10,1,

15

2. ~u2 is the decreasing function of rank 22 in DF9,2,

3. ~u3 is the decreasing function of rank 2 in DF7,2,

4. ~u4 is the decreasing function of rank 5 in DF5,2 and

5. ~u5 is the decreasing function of rank 0 in DF3,3.

It is clear that the sequence of rank 6 in DF10,1 is 〈7〉.
To find the element 〈f(1), f(2)〉 of rank 22 in DF9,2, we use the procedure in Theorem 5.

We start by setting m′ := 22 and s = 2. Since
(

7
2

)
= 21 < 22 <

(
8
2

)
= 28, then f(1) − 1 = 7

and hence f(1) = 8. Then we set m′ := 22 − 21 = 1 and s = 1. Since 1 −
(

1
1

)
= 0, we get that

f(2)− 1 = 1 or f(2) = 2. Thus 〈8, 2〉 has rank 22 in DF9,2.
To find the element 〈f(1), f(2)〉 of rank 2 in DF7,2, we again use the procedure in Theorem

5. We start by setting m′ := 2 and s = 2. Since
(

2
2

)
= 1 < 2 <

(
3
2

)
= 3, then f(1) − 1 = 2

and hence f(1) = 3. Then we set m′ := 2 − 1 = 1 and s = 1. Since 1 −
(

1
1

)
= 0, we get that

f(2)− 1 = 1 or f(2) = 2. Thus 〈3, 2〉 has rank 2 in DF7,2.
To find the element 〈f(1), f(2)〉 of rank 5 in DF5,2, we again use the procedure in Theorem

5. We start by setting m′ := 2 and s = 2. Since
(

3
2

)
= 3 < 5 <

(
4
2

)
= 6, f(1)− 1 = 3 and hence

f(1) = 4. Then we set m′ := 5− 3 = 2 and s = 1. Since 2−
(

2
1

)
= 0, we get that f(2)− 1 = 2

or f(2) = 3. Thus 〈4, 3〉 has rank 2 in DF5,2.
Finally there is only one element in DF3,3 which is 〈3, 2, 1〉. Since the last step is alway

trivial, it is most efficient to have the last sequence be as long as possible. This is why we order
the sizes of the set partition by increasing order.

Thus the sequence corresponding to the tree πT1 is

〈7, 8, 2, 3, 2, 4, 3, 3, 2, 1〉.

It is easy to reconstruct πT1 from this sequence and hence

πT1 = 〈{8}, {10, 3}, {5, 4}, {9, 7}, {11, 6, 2}〉.

It then follows that

πT1 = 〈∅, ∅, {10, 3}, ∅, {11, 6, 2}, ∅, {5, 4}, ∅, {8}, ∅, {9, 7}, ∅〉.

The function f1 corresponding to πT1 and its image under Θ are pictured in Figure 6.
The problem of ranking and unranking trees with a given multiset of degrees is just an

extension of the the problem ranking and unranking trees with a given sequence of degrees.
That is, the distribution of degrees is just another set partition. For example, consider the
sequence of degrees for the tree T0 pictured in Figure 5, ~s = 〈0, 0, 2, 0, 3, 0, 2, 0, 1, 0, 2, 0, 0〉. We
can view that sequence as a set partition, ∆(~s) = 〈∆0, . . . ,∆3〉 where ∆i is the set of places
where i appears in the sequence ~s. In our example, we would identify ~s with the set partition

∆(~s) = 〈{1, 2, 4, 6, 8, 10, 12}, {9}, {3, 7, 11}, {5}〉.

Just as in the case where we ranked and unranked set partitions associated with trees in
~Cn,~s, it is more efficient if we rearrange the set partition by increasing size. This means that
we must have a data structure to record the degrees associated with the set partition which in

16

13117512

6 2
9

8

104

1712

6 2
9

8

104

5 11 3

Θ ()

f
1

f 1

Figure 6: The tree of rank 50,005 in ~C12,〈0,0,2,0,3,0,2,0,1,0,2,0〉

this case is just the triples (∆i, |∆i|, i). It is easy to see that we can produce such a list in linear
time from the tree. In our example, we would produce the list

∆(~s) = 〈({1, 2, 4, 6, 8, 10, 12}, 7, 0), ({9}, 1, 1), ({3, 7, 11}, 3, 2), ({5}, 1, 3)〉.

Using a lexicographic bucket sort algorithm [14], we can sort this list according to the lexico-
graphic order on the last two entries of the triples to produce the list

∆(~s) = 〈({9}, 1, 1), ({5}, 1, 3), ({3, 7, 11}, 3, 2), ({1, 2, 4, 6, 8, 10, 12}, 7, 0)〉.

Then we use this ordering to produce an ordered set partition π~s where we ignore any empty
partitions. In our example, we would produce

π~s = {9}, {5}, {3, 7, 11}, {1, 2, 4, 6, 8, 10, 12}〉.

Finally, we use this set partition to produce a sequence of decreasing functions. That is, we let
E = {1, . . . , n}. Let π = (A1, . . . , Ak) be an ordered set partition of E where each block Ei
is nonempty and ordered in decreasing order, Ai = {ai,1 > . . . > ai,ti}, that comes from some
element π in π~s as described above. Let (r1,1, . . . , r1,t1) be the ordered sequence of ranks of
the respective (a1,1, . . . , a1,t1) in E. In general, let (ri,1, . . . , ri,ti) be the ranks of the respective
(ai,1, . . . , ai,ti) in E \ ∪i−1

j=1Aj . For our example,
(r1,1) = (9) can be considered an element of DF12,1

(r2,1) = (5) can be considered an element of DF11,1

(r3,1, r3,2, r3,3) = (9, 6, 3) can be considered an element of DF10,3

(r4,1, r4,2, r4,3, r4,4, r4,5, r4,6, r4,7) = (7, 6, 5, 4, 3, 2, 1) can be considered an element of DF7,7,2.
Thus we produce the sequence π~s = 〈9, 5, 9, 6, 3, , 7, 6, 5, 4, 3, 2, 1〉 to code the sequence ~s which
can be considered an element of DF12,1 ×DF11,1 ×DF10,3 ×DF7,7. We can then concatenate
this sequence π~s with the sequence πT0 to produce a sequence Π~s,T0 . In our example,

Π~s,T0 = 〈9, 5, 9, 6, 3, , 7, 6, 5, 4, 3, 2, 16, 8, 5, 6, 2, 3, 1, 3, 2, 1〉

coming from an element of

DF12,1 ×DF11,1 ×DF10,3 ×DF7,7 ×DF10,1 ×DF9,2 ×DF7,2 ×DF5,2 ×DF3,3

17

or as a leaf in the tree

TDF12,1 ⊗ TDF11,1 ⊗ TDF10,3 ⊗ TDF7,7 ⊗ TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 .

Note that the size of the trees needed for the product lemma, Lemma 6, are
|TDF3,3 | =

(
3
3

)
= 1,

|TDF5,2 ⊗ TDF3,3 | =
(

5
2

)
·
(

3
3

)
= 10,

|TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 210,

|TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 7560,

|TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
10
1

)
·
(

9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 75600,

|TDF7,7 ⊗ TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
7
7

)
·
(

10
1

)(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 75600,

|TDF10,3 ⊗ TDF7,7 ⊗ TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
10
3

)
·
(

7
7

)
·
(

10
1

)(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 9, 072, 000,

|TDF11,1 ⊗ TDF10,3 ⊗ TDF7,7 ⊗ TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
11
1

)
·
(

10
3

)
·
(

7
7

)
·
(

10
1

)(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 99, 792, 000,

|TDF12,1 ⊗ TDF11,1 ⊗ TDF10,3 ⊗ TDF7,7 ⊗ TDF10,1 ⊗ TDF9,2 ⊗ TDF7,2 ⊗ TDF5,2 ⊗ TDF3,3 | =(
12
1

)
·
(

11
1

)
·
(

10
3

)
·
(

7
7

)
·
(

10
1

)(
9
2

)
·
(

7
2

)
·
(

5
2

)
·
(

3
3

)
= 1, 197, 504, 000.

Thus there are a total of 1,197,504,000 trees in ~C12,1 whose degree sequence yields the multiset
S = (07, 11, 23, 31). We can then use the product lemma, Lemma 6, to compute the rank of T0

in ~C12,S as follows.

rank ~C12,S
(T0) = rankDF12,1(〈9〉)× 99, 720, 000

+rankDF11,1(〈5〉)× 9, 072, 000

+rankDF10,3(〈9, 6, 3〉)× 75, 600

+rankDF7,7(〈7, 6, 5, 4, 3, 2, 1〉)× 75, 600

+rankDF10,1(〈5〉)× 7, 560

+rankDF9,2(〈8, 5〉)× 210

+rankDF7,2(〈6, 2〉)× 10

+rankDF5,2(〈3, 1〉)× 1.

By Theorem 4, we have that
rankDF12,1(〈9〉) =

(
9−1

1

)
= 8,

rankDF11,1(〈5〉) =
(

5−1
1

)
= 4,

rankDF10,3(〈9, 6, 3〉) =
(

9−1
3

)
+
(

6−1
2

)
+
(

3−1
1

)
= 56 + 10 + 2 = 68,

rankDF7,7(〈7, 6, 5, 4, 3, 2, 1〉) = 0,

rankDF10,1(〈5〉) =
(

5−1
1

)
= 4,

rankDF9,2(〈8, 5〉) =
(

8−1
2

)
+
(

5−1
1

)
== 21 + 4 = 25,

rankDF7,2(〈6, 2〉) =
(

6−1
2

)
+
(

2−1
1

)
= 10 + 1 = 11,

rankDF5,2(〈3, 1〉) =
(

3−1
2

)
+
(

1−1
1

)
= 1 + 0 = 1.

Thus

rank(π0) = (9× 99, 720, 000) + (5× 9, 072, 00) + (68× 75, 600) + (0× 75, 600)

+(4× 7560) + (25× 210) + (11× 10) + (1× 1) = 843, 342, 641.

18

Thus the tree T0 pictured in Figure 5 has rank 843,342,641 among all the trees T ∈ ~C12,(07,11,23,31).

The unranking procedure for ~Cn,S comes from simply reversing the ranking procedure using
Theorem 5 and Lemma 7. Again we will exhibit the procedure by finding the tree T2 whose
rank is 60,000,00 in ~C12,(07,11,23,31). The first step is to carry out the series of quotients and
remainder according to Lemma 7. In our case, this leads to the following calculations.

60, 000, 00 = (6× 99, 792, 000) + 1, 248, 000

1, 248, 000 = (0× 9, 072, 000) + 1, 248, 000

1, 248, 000 = (16× 75, 600) + 38, 400

38, 400 = (0× 75, 600) + 38, 400

38, 400 = (5× 7560) + 600

600 = (2× 210) + 180

180 = (18× 10) + 0

0 = (0× 1) + 0.

It then follows that we can construct the sequence corresponding to π,~s,T2 by concatonating the
sequences ~v1, . . . , ~v9 where

1. ~v1 is the decreasing function of rank 6 in DF12,1,

2. ~v2 is the decreasing function of rank 0 in DF11,1,

3. ~v3 is the decreasing function of rank 16 in DF10,3,

4. ~v4 is the decreasing function of rank 0 in DF7,7 and

5. ~v5 is the decreasing function of rank 5 in DF10,1.

6. ~v6 is the decreasing function of rank 2 in DF9,2.

7. ~v7 is the decreasing function of rank 18 in DF7,2.

8. ~v8 is the decreasing function of rank 0 in DF5,2.

9. ~v9 is the decreasing function of rank 0 in DF3,3.

It is clear that the sequence of rank 6 in DF12,1 is 〈7〉 and the sequence of rank 0 in DF11,1 is 〈1〉.

To find the element 〈f(1), f(2), f(3)〉 of rank 16 in DF10,3, we use the procedure in Theorem 5.
We start by setting m′ := 16 and s = 3. Since

(
5
3

)
= 10 < 16 <

(
6
3

)
= 20, then f(1)− 1 = 5 and

hence f(1) = 6. Then we set m′ := 16− 10 = 1 and s = 2. Since
(

4
2

)
= 6 ≤ 6 <

(
5
2

)
= 10, then

f(2)− 1 = 4 and hence f(2) = 5. Finally we set m′ := 6− 6 = 0 and s = 1. Since 0−
(

0
1

)
= 0,

we get that f(3)− 1 = 0 or f(3) = 1. Thus 〈6, 5, 1〉 has rank 16 in DF10,3.

It is clear that the sequence of rank 0 in DF7,7 is 〈7, 6, 5, 4, 3, 2, 1〉.

Next it is clear that element of rank 5 in DF10,1 is 〈6〉.

19

To find the element 〈f(1), f(2)〉 of rank 2 in DF9,2, we use the procedure in Theorem 5. We
start by setting m′ := 2 and s = 2. Since

(
2
2

)
= 1 < 2 <

(
3
2

)
= 3, then f(1) − 1 = 2 and hence

f(1) = 3. Then we set m′ := 2− 1 = 1 and s = 1. Since 1−
(

1
1

)
= 0, we get that f(2)− 1 = 1

or f(2) = 2. Thus 〈3, 2〉 has rank 2 in DF9,2.

To find the element 〈f(1), f(2)〉 of rank 18 in DF7,2, we again use the procedure in Theo-
rem 5. We start by setting m′ := 18 and s = 2. Since

(
6
2

)
= 15 < 18 <

(
7
2

)
= 21, then

f(1)− 1 = 6 and hence f(1) = 7. Then we set m′ := 18− 15 = 3 and s = 1. Since 3−
(

3
1

)
= 0,

we get that f(2)− 1 = 3 or f(2) = 4. Thus 〈7, 4〉 has rank 18 in DF7,2.

Finally the sequence of rank 0 in DF7,2 is clearly 〈2, 1〉 and the element of rank 0 in DF3,3

is 〈3, 2, 1〉.

Thus the sequences corresponding to the set partitions π~s and πT2 are

π~s : 〈7, 1, 6, 5, 1, 7, 6, 5, 4, 3, 2, 1〉 and

πT2 : 〈6, 3, 2, 7, 4, 2, 1, 3, 2, 1〉.

It is easy to reconstruct πS and πT2 to get that

π~s = 〈{7}, {1}, {8, 6, 2}, {12, 11, 10, 9, 5, 4, 3}〉 and

πT1 = 〈{7}, {4, 3}, {11, 8}, {5, 2}, {10, 9, 6}〉

It then follows that
~s = 〈3, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0〉

and
πT1 = 〈{10, 9, 6}, {4, 3}, ∅, ∅, ∅, {11, 8}, ∅, {7}, ∅, {5, 2}, ∅, ∅, ∅〉.

Thus the function f2 corresponding to πT3 and its image under Θ are pictured in Figure 7.
We note that essentially the same analysis of the complexity of ranking and unranking relative

~Cn,~s applies to the complexity of ranking and unranking relative to ~Cn,S for any multiset S so

that it requires O(n2log(n)) bit operations to rank and unrank relative ~Cn,S .

References

[1] C.W. Borchardt, Ueber eine der Interpolation entsprechende Darstellung der Eliminations-
Resultante, J. reine angew. Math. 57 (1860), pp. 111-121.

[2] C.J. Colborn, R.P.J. Day, and J.D. Nel, Unranking and Ranking Spanning Trees of a Graph,
J. of Algorithms, 10, (1989), pp. 271-286.

[3] Ömer Eğecioğlu and Jeffrey B. Remmel, Bijections for Cayley Trees, Spanning Trees, and
their q-Analogues, Journal of Combinatorial Theory, Series A, Vol. 42. No. 1 (1986), pp.
15-30.

[4] Ömer Eğecioğlu and Jeffrey B. Remmel, A bijection for spanning trees of complete multi-
partite graphs, Congress Numerautum 100 (1994), pp. 225-243.

20

1712

10 9

6

8

5

11

4

2

3

1712

10 9

6

8

5

11

4

2

3

f
2

Θ ()f
2

Figure 7: The tree of rank 60,000,000 in ~C12,(07,11,23,31)

[5] Ömer Eğecioğlu and Jeffrey B. Remmel, Ranking and Unranking Spanning Trees of Com-
plete Multipartite Graphs, Preprint.

[6] O. Eğecioğlu, J. B. Remmel and S. G. Williamson, A Class of Graphs which has Effi-
cient Ranking and Unranking Algorithms for Spanning Trees and Forests, to appear in the
International Journal of the Foundations of Computer Science.

[7] Ö. Eğecioğlu and L.P. Shen, A Bijective Proof for the Number of Labeled q-trees, Ars Com-
binatoria 25B (1988), pp. 3-30.

[8] R. Onodera, Number of trees in the complete N -partite graph, RAAG Res. Notes 3, No.
192 (1973), pp. i +6.

[9] J. Propp and D. Wilson, How to get a perfectly random sample from a generic Markov
Chain and Generate a random spanning tree of a directed graph, J. of Algorithms, 27
(1998), pp 170-217.

[10] H. Prufer, Never Bewies eines Satzes über Permutationen, Arch. Math. Phys. Sci. 27 (1918),
pp. 742-744.

[11] A. Nijenhaus adn H.S. Wilf, Combinatorial Algorithms, 2nd. ed., Academic Press, New
York, (1978).

[12] E.M. Reingold, J. Neivergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice,
Prentice Hall, Englewood Cliffs, N.J., (1977)

[13] J.B. Remmel and S.G. Williamson, Spanning Trees and Function Classes, Electronic Jour-
nal of Combinatorics, (2002), R34.

[14] S.G. Williamson, Combinatorics for Computer Science, Dover Publications, Inc., Meneola,
New York (2002).

21

	1 Introduction
	2 The Bijection and its Properties
	3 Construction of the spanning forests from the the function table in time O(n)
	4 Ranking and Unranking Algorithms for Trees with a Fixed Degree Sequence.

