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Stochastic origin of Gompertzian growths
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This work faces the problem of the origin of the logarithmic character of the Gompertzian growth. We
show that the macroscopic, deterministic Gompertz equation describes the evolution from the initial state to the
final stationary value of the median of a log-normally distributed, stochastic process. Moreover, by exploiting a
stochastic variational principle, we account for self-regulating feature of Gompertzian growths provided by self-
consistent feedback of relative density variations. This well defined conceptual framework shows its usefulness
by allowing a reliable control of the growth by external actions.

PACS numbers:

I. INTRODUCTION

The Gompertz model, in its original conception, was born
as phenomenological one namely describing the observed age
tables of humans [12]. In fact, B. Gompertz concluded his em-
pirical studies of tables introducing the distribution of human
ages for a given community, the now well known function

P (τ) = αe−ec−βτ

(1)

whereα > 0, β < 0 andc are constant.
It is interesting to note that Gompertz posed at the core of

his deduction the properties of geometrical progression; “This
law of geometrical progression pervades, in an approximate
degree, large portions of different tables of mortality”. The
relevance of the geometrical progression in the framework of
the natural phenomena in a variety of experimental environ-
ments was pointed out at the end of nineteenth century in the
works of Galton [10] and McAlister [17]. They showed that
the geometrical mean (median) describes the behavior of a
large set of natural phenomena better than the arithmetic one.
We note that Gompertz law according to the Gompertz obser-
vation emerges from the equilibrium between geometrical se-
ries associated to degradation and an arithmetical progression
ruling indefinite (Malthusian) growth having the experimental
observations to be made on suitable time intervals. The char-
acteristics of simplicity of Gompertz law due to this general
and profound mathematical framework, attract the attention
of nascent biological disciplines, where the growth studies go
back to the thirty years of last century. Since this distribution
has had so remarkable success in a variety of very different
situations that a lot of literature refers it simply as “law of
growth”.

The laws of growth of natural systems, and the deep ori-
gin of their characteristic scales of, e. g., length, mass, en-
ergy, or numerosity, are, now, intensively investigated inmany
branches of science, such as biomedicine [8, 16], economy
[9], population dynamics [18], astrophysics and cosmology
[7]. So, starting from 1930 the Gompertz equation has be-
came one of the most used tool to account for mechanisms of
growth in a variety of systems in many fields [1–4, 8, 18]. If
we exclude, for example, from incomes distribution the little

percentage of rich people (1%) Gompertz law is the fitting dis-
tribution. Obviously so general applicability has developed a
very interesting debate regarding the origin of its logarithmic
structure. The arguments called down to this aim look at the
main aspects of the underlying systems i.e., biological social
or/and economics.

General theory of dynamical systems, quiescence, cell ki-
netics theory, entropic and thermodynamical arguments have
been advocated and illustrated by many authors in a variety of
interesting papers along many years introducing also suitable
generalizations and connections with other growth models as
logistic one. A good synthetic description with a large bibli-
ography can be considered that of Bajzer et al (1997)[2].

We remark three main aspects of the delineated problem
that we consider relevant.

The first one; although, it can be significant to start attach-
ing the problem from specificity of a discipline, in fact thiscan
enlighten nodal points, the arguments bringing to logarithmic
behavior must be so general as well as is the applicability of
Gompertz law;

The second one; Gompertz curve cannot be other than a
“suitable” description of a mean behavior of systems under
studies that are all characterized by a basic stochasticity.

The third one; many of the considered systems reach the
limiting size exploiting self-controlled evolutions. We take
these considerations as starting points to recovering the fea-
tures, in particular logarithmic behavior, of Gompertz equa-
tion. Before to go into the details of our deduction it is useful-
ness to make some preliminary consideration and as first step
to give a description of deterministic Gompertz equation also
to establish our notation.

II. GOMPERTZ EQUATION

The standard form of the deterministic Gompertz equation
is:

z−1dz

dt
= β − α ln (

z

z̃
), (2)

wherez describes the “size” of some quantity characteriz-
ing the system,β andα denote two positive constants with the
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dimensions of the inverse of time, andz̃ is a constant which
the same dimensions ofz.
Eq. (2) can be recast as:

d(ln s)

dt
= −α ln s, (3)

wheres(t)
.
= z(t)/z∞, andz∞ = z̃ exp (β/α). The Gom-

pertz equation is then associated to four parameters (all depen-
dent on the specific system):α, β, z̃, and the initial condition
(“scale”)z(0) = z0. Its solution is:

z(t) = z∞ exp [(ln γ) · e−αt], (4)

whereγ
.
= z0/z∞. It is immediately verified that this solu-

tion always approaches monotonically in timez∞: depending
on the conditionsz0 < z∞ ≡ z̃ expβ/α (γ < 1), or
z0 > z∞ ≡ z̃ expβ/α (γ > 1), the system monotonically
grows or monotonically decreases, respectively, from the di-
mensionz0 to the dimensionz∞, approaching the asymptotic
valuez∞ with the characteristic timeα−1. It is worth notic-
ing that the solutions of the eq. (3) satisfy some, somewhat
simple and self evident properties, deriving by peculiar fea-
tures of logarithmic function. These properties justify why the
Gompertz equation plays a major role among all the equations
describing growth phenomena.

If we characterize a solutions(t) by the pair of values of its
parameters(γ, α), the properties are the following:

1. the products1(t) · s2(t) of two solutions with parame-
ters(γ1, α) and(γ2, α), respectively, is again a solution
with parameters(γ1 · γ2, α),

2. if s(t) is a solution with parameters(γ, α), thensa(t),
with a ∈ R is a solution as well, with parameters
(γa, α).

3. the constant functions(t) = 1 is a (trivial) solution.

Note that, fora = −1 we obtain that the inverse ofs(t),
s−1(t) is a solution associated to(γ−1, α). Then it is straight-
forward to verify that if for example the original solution
is obtained withz0 > z∞ (aggregation process)s−1(t) de-
scribes the time-reversed (fragmentation) process fromz∞ to
z0. Note also that this property, together with properties 1),
3) makes the set of solutions of the Gompertz equation an
Abelian group. Note finally that the property 3) implies that
any other quantityM(t) linked toz(t) by an allometric rela-
tion (M(t) = b · za(t)) satisfies the same Gompertz equation
with modified parameterγa

III. GOMPERTZ EQUATION AS EVOLUTION EQUATION
FOR THE MEDIAN OF GEOMETRICAL BROWNIAN

MOTION.

A. Lognormality as basic in a variety of natural systems

In 1947 H.R. Jones linked the problem of mortality to life
expectancy and ageing processes [14]. His germinal point of

view was that diseases and disfunctions accumulate slowly
along the time damagingmultiplicatively the human bodies.
The extensive analysis of Jones showed that Gompertz equa-
tion applies exactly to people that have not eliminated the
first cause of diseases, i.e. hygienic condition. A good mean
improvement of these last one, namely slight, modifies the
general behavior. Then, following Jones, at the basis of the
analysis of life expectancy, there is a stochastic process built
with independent random variables (diseases and/or socialand
economic condition) that add multiplicatively. Moreover at
the end of sixties years of the last century a detailed statis-
tical analysis performed by Sachs showed that physiological
parameters like blood pressure, tolerability of medicaments,
body size survival rate are lognormally distributed [21]. Fi-
nally it is worthwhile to note that the lognormal i.e. geo-
metric Brownian motion appears to be asymptotic to a vari-
ety of branching processes introduced to describe cell systems
growth [4, 5].

On the other hand it is well known that lognormal dis-
tribution arises in a variety of classification procedures and
in physical and biological systems when natural genesis in-
volves repeated breakages or aggregations. Very relevant,in
1941, Kolmogorov [15] has shown that when the frequency
of aggregation-disaggregation in a growth process is indepen-
dent of the size of the constituents, the asymptotic size dis-
tribution of the aggregate should tend to be lognormal. This
so general multiplicative behavior of basic randomness of un-
derlying processes has been indicated as a “Multiplicative
Gestaltungs-Principle of Nature”. It is also assumed as its
possible accounting a general property of “coherence” of nat-
ural systems [22]. The simple considerations outlined above,
at the light of the two first points of our introductory section
namely basic stochasticity of systems and large applicability
of the Gompertz model, bring us to postulate that the Gom-
pertz equation is the deterministic one emerging from geo-
metric Brownian motion, that is the general stochastic struc-
ture associated with a variety of systems. The necessary step
at this point is to give a simple mathematical procedure con-
necting stochastic structure with deterministic one.

B. Mathematical procedure

The main feature of lognormal can be so summarized: a
random variable X is said to have a lognormal distribution
with suitable parameters associated to mean and variance if
ln{(X(t))} is normally distributed. Consider then the diffu-
sion processX(t) taking non negative values, and satisfying
the Ito differential equation:

dX(t) = {⌊ν
2
X(t)−αX(t) ln

[X(t)

K

]

}dt+
√
νX(t)dW (t),

(5)
whereα andν are positive constants,K has the same dimen-
sions ofX(t), anddW (t) denotes a Gaussian stochastic pro-
cess (Wiener process) with zero mean and variancedt. Here
X(t) can describe any quantity. X(t) is a multiplicativy diffu-
sive process (geometrical brownian motion) and its Ito equa-
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tion can be recast as:

dX(t) = −αX(t) ln
[X(t)

K

]

dt+
√
νX(t)dW (t), (6)

where

K = K̃e
ν
2α

.
We now prove that this process generates the deterministic

Gompertz equation. Let us in fact associate toX(t) a new
processY (t) defined by the relation

X(t)

K
≡ eY (t), (7)

where Y (t) is adimentional and takes values ranging on
(−∞,+∞) when X(t) takes values on [0,∞ ). By exploit-
ing Eq. (6) and definition 7, we can computed(expY (t)): by
Ito’s lemma obtaining:

dY (t) = −αY (t)dt+
√
νdW (t), (8)

We see thatY (t) is anOrnstein-Uhlenbeck process. Its prob-
ability densityp(y, t; y0, 0) ≡ p(y, t), satisfies the Fokker-
Plank equation

∂tp(y, t) = α∂y [yp(y, t)] +
1

2
νr∂

2
yp(y, t), (9)

and can be exactly computed for any initial condition [11]:

∫

−∞

−∞

due−iuyχ0(ue
−αt)e

[

−
νru2

4α (1−e−αt)
]

, (10)

whereχ0(u) is the characteristic function of the initial proba-
bility. The moments< Y n(t) > of the processY (t):

< Y n(t) >
.
=

∫

−∞

−∞

dy yn p(y, t), (11)

satisfy the set ofbranching equations

d

dt
< Y n(t) >= −nα < Y n(t) > +

1

2
σrn(n−1)α < Y n−2(t) >,

(12)
which can be solved, iteratively at any finite order. We now
focus on the casen = 1:

d

dt
< Y (t) >= −α < Y (t) >, (13)

exploit the relation (7), and obtain

d

dt
< ln

[X(t)

K

]

>= −α < ln
[X(t)

K

]

> . (14)

If we define the time-dependent quantityz(t) by the relation

z(t)

K
= exp<ln

[

X(t)
K

]

>, (15)

we see thatz(t), which has the same dimensions ofX(t), sat-
isfies the Gompertz equation, where the constantK is iden-
tified with z∞, i. e. with the asymptotic value ofz(t). But
what about the meaning ofz(t)?. We nown provide a precise
meaning toz(t). Let us suppose that the initial probability of
the processY (t) is Gaussian (for example, the solution is the
fundamental one with an initial delta function condition).By
Eq. (10), the solution at any time is Gaussian:

p(y, t)dy =
1

√

2πσ(t)
e−

1
2σ(t) (y−µ(t))2dy, (16)

whereσ(t)
.
=< [Y (t) − µ(t)]2 >, andµ(t)

.
=< Y (t) >. By

exploiting the relation (7), we can recast Eq. (17), obtaining
the probability of the processX(t) as

p(x, t)dx =
1

√

2πσ(t)
e

[

−
1

2σ(t)

(

ln
(

x
K

)

−µ(t)
)2] dx

x
. (17)

where, by solving the first two branching equation (12)), mean
µ(t) and varianceσ(t) are given by:

µ(t) = µ0e
−αt, (18)

σ(t) = σ0e
−2αt +

ν

2α
(1− e−2αt). (19)

We see that the processX(t)/K is lognormally distributed.
But it is well known that in a lognormally distributed process
the mean of the logarithm of the process is the logarithm of
themedianof the process. Then, we can conclude that if the
processY (t) is initially Gaussian, i.e. if the processx(t)/K
is initially lognormally distributed, this last process remains
lognormally distributed at any time, and the variablez(t)/K
(which we denotedz(t)/z∞) is the median of this process.

In conclusion we have proved that:the deterministic Gom-
pertz equation is the macroscopic consequence of a lognor-
mally distributed, diffusion process X(t); the macroscopical
size z(t) whose evolution is ruled by the Gompertz equation is
the median of processX(t).

It follows that the multiplicative stochastic process (a stan-
dard geometric brownian motion) that many times is intro-
duced as “Gompertz stochastic tumor growth model” is not
due to an extra noise disturbing the Gompertz growth, but it is
itself the origin of the deterministic growth.

To further support this conclusion we remark that deter-
ministic Gompertz model was extracted by B. Gompertz,
just looking to the properties of a geometric progression that
emerges from the mortality tables; i.e. the Gompertz func-
tion has its natural interpretation as median of a multiplicative
process.

C. Short remark on the observability of microscopic
parameters

The underlying processX(t) is characterized by three pa-
rameters:α, ν,K. Their determination completely define the
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process. As a first observation, we note that the Malthusian
parameterβ in the standard form (2) of the Gompertz equa-
tion is provided, in a consistent way, by the diffusion param-
eter: β = ν/2. We remark also that the drift parameterα
is clearly macroscopically observable by fitting the macro-
scopic size growth of the selected systems. Therefore, if one
is able to provide a method to extract by observational data
the diffusion parameterν, the whole processX(t) can be re-
constructed. To this end, we consider that the observed size
(i. e., the median of the process) must displace a range of
variability; in fact

ln z(t)/z∞ ≡ ln z(t)/K ≡< lnX(t)/K >≡< Y (t) >
(20)

is the mean of a Gaussian process with variance (width)σ(t).
And, in particular, when the last stageK ≡ z∞ is reached, the
width (i.e variability of the size) becomes that of the stationary
distribution (see Eq. (19)). If one performs a statistics ofthe
observed sizes, one could find that the sizes of a system at the
last stage range from a minimum onezmin to a maximum one
zmax, with the following relations:

z∞ =
√
zmin · zmax, (21)

(just geometric mean),

zmin =
z∞
r
, zmax = z∞ · r, r = e

ν
2α , (22)

and

ν = α ln
zmax

zmin
. (23)

Summing up:α, zmax, zmin can be extracted by observational
data, and, in principle, their values provide an estimate ofall
the other parameters of the underlying process; in particular,
of the order of magnitude of the diffusion parameterν.

IV. CHARACTERIZING THE GOMPERTZIAN GROWTH
PROCESS

The conclusions reached in the previous section ascribe the
Gompertz equation within the framework of “Multiplicative
Gestaltung-Principle of Nature”, i.e. to the ubiquitous na-
ture of lognormal distribution, which characterizes a variety
of natural system, i.e. those in which emerge characteris-
tic scales of “coherence”. The “actual” Gompertz equation
is then the stochastic one. The stochastic description how-
ever does not exhaust all the aspects of Gompertzian model,
namely stochasticity allows spontaneous growth until a final
size if and when systems undergo to a stationary state. The
Gompertzian growth is characterized, on the contrary, as re-
marked in the third point of introductory section, by a self-
controlled evolution ruled by variation of density. Now we
incorporate in our description this relevant behavior of grow-
ing systems.

A. Dynamical updating of geometrical Brownian motion

In standard treatment the drift terms in a Fokker-Planck
equation is a function given a priori; backward and forward
evolutions are described with two different equations. The
systems spontaneously approach a stationary state when bal-
ancing is reached between the stochastic term (Wiener pro-
cess) and deterministic (drift); consequently there is not, for
example, time reversal invariance. In order to have self-
control (feedback) we must to add to Fokker-Planck equation
a dynamical equation updating the drift and allowing time re-
versal behavior. The equation is the stochastic equivalentof
F = ma, and it can be written also as the equation describing
a suitable interface [20].

We remark, that, being our systems self-controlled the dy-
namical update must contain self coupling non linearity. We
use a stochastic variational principle theory. We recall this
theory briefly: deterministic dynamic evolutions are char-
acterized by two independent principles, the first kinematic
the second dynamic. The kinematic principle is provided by
standard differential rules, and the dynamic one by a varia-
tional principle, i.e. the Lagrangian principle. The theory
of stochastic variational principle assumes Ito’s equation as a
kinematic rule and the Lagrangian variational principle asdy-
namic rule. The variation is made by considering conditional
expectation. As a consequence: the configuration of our sys-
tems is described, in general, by a vectorial Markov process
ξ(t) taking values inℜ3. This process is characterized by a
probability densityρ(r, t) and a transition probability density
p(r, t| r′, t′), and its components satisfy an Itô stochastic dif-
ferential equation of the form

dξj(t) = v(+)j

(

ξ(t), t
)

dt+ dηj(t), (24)

wherev(+)j are the components of the forward velocity field.
As already observed here the fieldsv(+)j must not be given a
priori, but play the role of dynamical variables and are con-
sequently determined by imposing a specific dynamics. The
noiseη(t) is a standard Wiener process,D is the diffusion
coefficient. We indicate byEt the conditional expectations
with respect toξ(t). In what follows, for sake of notational
simplicity, we will limit ourselves to the case of one dimen-
sional trajectories, but the results that will be obtained can be
immediately generalized to any number of dimensions. We
will suppose for the time being that the forces will be defined
by means of purely configurational, possibly time-dependent
V (x, t), potentials, this includes also a non linear potential
functional of the density of the process. A suitable definition
of the Lagrangian and of the stochastic action functional for
the system described by the dynamical variablesρ andv(+)

allows to select, the processes which reproduce the correct
dynamics [6, 13, 19]. In fact, while the probability density
ρ(x, t) satisfies, as usual, the forward Fokker-Planck equation
associated to the stochastic differential equation

∂tρ = D∂2xρ− ∂x(v(+)ρ) = ∂x(D∂xρ− v(+)ρ) (25)

the following choice for the Lagrangian field
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L(x, t) =
m

2
v2(+)(x, t) +mD∂xv(+)(x, t)− V (x, t) (26)

enables to define a stochastic action functional

A =

∫ t1

t0

Et[L(ξ(t), t)]dt (27)

which leads, through the stationarity conditionδA = 0, to the
equation

∂tS +
(∂xS)

2

2m
+ V − 2mD2 ∂

2
x

√
ρ

√
ρ

= 0 . (28)

The fieldS(x, t) is defined as

S(x, t) = −
∫ t1

t

E
[

L
(

ξ(s), s
) ∣

∣ ξ(t) = x
]

ds+

+E
[

S1

(

ξ(t1)
) ∣

∣ ξ(t) = x
]

(29)

whereS1( · ) = S( · , t1) is an arbitrary final condition.
This equation is the well know equation of interfaces theory
where the term depending on densityρ represents the con-
tribute due to surface tension.

By introducing the functionR(x, t) ≡
√

ρ(x, t) and the de
Broglie ansatz

ψ(x, t) = R(x, t) eiS(x,t)/2mD (30)

equation (28) takes the form

∂tS +
(∂xS)

2

2m
+ V − 2mD2 ∂

2
xR

R
= 0 (31)

and the pair of real equations (25) and (31) are equivalent to
the single linear equation forψ

i(2mD)∂tψ = − 2mD2 ∂2xψ + V ψ, (32)

This connects our dynamic equations with an ordinary
eigenvalue problem on Hilbert space.

Note that the observables are the densityρ, which here rep-
resents just the (mass) density of the system, and the drift
mean velocity of the systemv; where the connection with
the pairψ, v is provided, at every point and at every time,
by ρ = |ψ|2, andv = ∂xS/m. Note also that

mv(+) = ∂xS +mD
∂xR

R
. (33)

If we choose the potential in the form ofV (x) = f(ρ), where
f(ρ)) is a nonlinear functional of density (e.g.ln(ρ)), we
obtain a dynamic system that provides self-regulation by the
self consistent feedback action of relative density variations
typically associated to osmotic phenomena across interfaces.
So well this very general model contains the third of relevant
aspects considered to describe growing systems, in particular
cells proliferation in solid tumor. Lognormal stochastic back-
ground, self-control and interface theory are the constitutive

elements of this model, which leads to the deterministic Gom-
pertz equation as equation for the median. This approach, be-
ing conceptually well-founded, allows to face, in principle,
the growth problems as a controlled one namely it is possible
to intervene with outdoor control. For example our method
poses the reduction of tumoral mass from a new and interest-
ing point of view as we describe in the next section.

B. Controlled growth

In this section we move on to implement the controlled evo-
lution. In fact we exploit the transition probabilities of the
Gompertz self-controlled evolution to model controlled evo-
lutions from a given initial state to arbitrarily assigned final
states. We start by observing that to every solutionψ(x, t)
of the Fokker-Planck equation (25), with a givenv(+)(x, t)
and constant diffusion coefficientD, we can always associate
a ”wavefunction” descriptions of eq.(32), of a dynamical sys-
tem. To this aim, it is sufficient to introduce a suitable time-
dependent potentialVc(x, t), by exploiting the wave equation
(32) as a control equation[6].

Here we quickly recall those elements of the controlling
procedure which are needed for our aim, referring to Cufaro
et al. 1999 [6] for further details. Let us consider a solution
ρ(x, t) of the Fokker–Planck equation, with a givenv(+)(x, t)
and a constant diffusion coefficientD; let us introduce the
functionsR(x, t) andW (x, t) defined by

ρ(x, t) = R2(x, t) , v(+)(x, t) = ∂xW (x, t), (34)

and remind that the relation

mv(+) = ∂xS +mD
∂xR

R

≡ ∂xS +mD/2
∂xρ

ρ
= ∂x (S +mD/2 ln ρ̃) (35)

must hold, wherẽρ is an adimensional function (argument of
a logarithm) obtained from the probability densityρ by means
of a suitable and arbitrary dimensional multiplicative constant.
If we now impose that the functionS(x, t) must be the phase
of a wave function, we immediately obtain from the Eqs. (34)
and (35).

S(x, t) = mW (x, t)− mD

2
ln −̃θ(t), (36)

which allows to determineS from ρ andv(+) (namelyW ) up
to an additive arbitrary function of timeθ(t). However, we
must ensure that the wave function (34) withR andS given
above, is a solution of the wave equation (32). SinceS andR
are now fixed, equation (32) must be considered as a relation
(constraint) defining the controlling potentialVc, which, after
straightforward calculations, yields

Vc(x, t) = mD2 ∂2x ln ρ̃+mD(∂t ln ρ̃

+v(+)∂x ln ρ̃)−
mv2(+)

2
−m∂tW + θ̇. (37)
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Of course, if we start with a wave functionψ(x, t) associ-
ated to a given time–independent potentialV (x), the self-
consistency is ensured, and this formula always yields back
the given potential, as it should.

We now leave the general way, and focus on the very in-
teresting case, useful for our goal, of simple controlling po-
tentials able to produce a evolution which can vary, and in
particular reverse, the growth trend. We start by observing
that, to our purposes, it is expedient to handle the Gaussian
Ornstein-Uhlenbeck processY (t), Eq. (8), because this is a
simple task, and it is equivalent to modify the underlying non
Gaussian processX(t). In fact, being< Y (t) >= µ(t) =<
ln (X(t)/K) >= lnz(t), wherez(t) is the median describ-
ing the macroscopic size, the monotonicity of the logarithmic
function ensures that a reduction ofµ(t) leads to a correspond-
ing (multiplicative) reduction of the size. The probability dis-
tribution for Y (t) is the Gaussian (17), characterized by the
two time-dependent parameters (µ(t), σ(t)). Let us suppose
now that the time evolution at some instantt̄ has led to the
pair of valuesµ(t̄) ≡ µ0, σ(t̄) ≡ σ0, and that we aim to re-
duce this values in such a way that, after some characteristic
time τ , they becomesµ1 < µ0, σ1 < σ0. As proved in
Cufaro et al.[6], in this Gaussian instance the controllingpo-
tential to be applied is harmonic, and has the form:

Vc(x, t) =
m

2

[

ω2(t)x2 − 2a(t)x+ c(t)
]

. (38)

This harmonic potential is completely determined by the
choice of mean and variance,µc(t), σc(t) , of the Gaussian
process self consistently generated by the controlling har-
monic potential (38). In fact, the time-dependent coefficients
ω2(t), a(t), c(t) are all functions ofµc(t), σc(t) and of their
time derivatives, but a further free function of time that can be
exploited to simplify the expression of the potential or of the
phase. Being we here merely interested to outline the general
conceptual frame allowing control, we avoid burdening this
subsection with the explicit expressions of the time-dependent
coefficients, which can be found in Cufaro et al. [6]. We only
sum up again the procedure. One chooses the form of the con-
trolling mean and varianceµc(t), σc(t), which in the charac-
teristic timeτ go to the final reduced valuesµ1, σ1; then one
inserts their expressions, and a suitably chosen form of the
further free function of time, in the time dependent param-
etersω2(t), a(t), c(t), so obtaining an harmonic controlling
potential that, applied to the system, drives it towards there-
duced mean and variance. We comment here on an important
aspect: one can choose many functionsµc(t), σc(t) leading
to the reduced mean and variance. If we setµc(t) = µ0f(t),
andσc(t) = σ0g(t), the functionsf(t), g(t) must satisfy the
constraints:

f(0) = 1, f(∞) = µ0/µ1 ; g(0) = 1, g(∞) = σ0/σ1.

A possible form forg(t), for example, could be:

1 + b exp (t/τ )

c+ d exp (t/τ )
,

with c+d = 1+ b; d = b · (σ0/σ1). Another possible choice
can be found in [6]. The important point is that the choice of
this functions, together with that of the further free function
of time, must be made in such a way to define a controlling
potentialVc(x, t) which can be effectively engineered and ap-
plied to the system. It is also evident that, from the point of
view of practical implementations, one can resort to suitable
approximations which can anyhow realize the goal within a
permissible error.

V. CONCLUSION

The ubiquity of the Gompertz equation, raises a very in-
teresting question in the framework of growth phenomena,
namely the key presence of the logarithmic function ruling
the nonlinear growth. In this work, we have shown that the
ubiquity of this equation and its logarithmic regulation are the
macroscopic expression of the ubiquity of the log-normal dis-
tribution. In fact, we have proved that Gompertzian growths
are generated by a log-normally distributed stochastic pro-
cess, being the macroscopic Gompertz equation the evolu-
tion in time of the median of the process. The median then
describes the macroscopic size of the growing system. We
remark, therefore, that the growth is not, as often supposed,
disturbedby a stochastic noise, but that the stochastic pro-
cess is itsorigin, and itsguidanceat any time. This scheme
agrees with the claim of Galton [10] and McAlister [17] who
at the end of the nineteenth century have shown that many
natural systems are well described by log-normality; theirac-
tual behavior is then described by the median rather than the
mean, thus implying that the basic geometric series plays a
key role in describing relevant natural phenomena as already
inferred by Gompertz [12]. In other words, the root causes
do not add but multiply among them in many systems, in-
cluding economic and social ones. Our analysis accounts for
the stochastic origin of ubiquity of Gompertzian growths, sug-
gesting also a method to determine the order of magnitude of
the microscopic stochastic parameters, and in particular of the
diffusion parameter, by the statistical observation of macro-
scopic sizes.

Some systems, as for example cell aggregates, develop by
a ”birth-death” process, i. e. more general by the competition
between aggregation and disaggregation. For this system, the
basic process is then a branching process leading in a suitable
limit to a log-normal behavior. Some of these aggregates are
characterized by self-regulation: an example is that of tumor
cells forced to grow in three dimensions, which cannot go be-
yond a critical diameter regardless of how often new medium
is provided or how much open space is made available. These
growths cannot thus be described by a stochastic background
where the parameters are a priori defined and one must resort
to a dynamical setting. In the last section of this work we
then propose a dynamical conceptual framework that include
self regulation mechanisms. We exploit a stochastic varia-
tional principle, whose canonical structure generates a control
equation ruling the dynamical update of the forward velocity.
Self regulation is then implemented by choosing the poten-
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tial function as a (nonlinear) functional of the density of the
system, so introducing a self consistent feedback of the rela-
tive density variations. This conceptual framework opens the
way to a reliable control of the growing system by external
actions which, for example, suitably modify, on some charac-

teristic time scales, the density profile of the system. One can
thus effectively develop practical methods to reverse the grow-
ing trend, reducing, for example, a cancer size. The general
scheme here outlined will be applied and tested in forthcom-
ing papers, focusing on the behavior of specific systems.
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