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This work faces the problem of the origin of the logarithmitaacter of the Gompertzian growth. We
show that the macroscopic, deterministic Gompertz equaksscribes the evolution from the initial state to the
final stationary value of the median of a log-normally diaiited, stochastic process. Moreover, by exploiting a
stochastic variational principle, we account for selfuleging feature of Gompertzian growths provided by self-
consistent feedback of relative density variations. Thedl defined conceptual framework shows its usefulness
by allowing a reliable control of the growth by external acs.

PACS numbers:

I. INTRODUCTION percentage of rich people (1%) Gompertz law is the fitting dis
tribution. Obviously so general applicability has devedd@m

The Gompertz model, in its original conception, was bornvery interesting debate regarding the origin of its lodamitc
as phenomenological one namely describing the observed agifucture. The arguments called down to this aim look at the
tables of human5[12]. In fact, B. Gompertz concluded his emMain aspects of the underlying systems i.e., biologicalesoc
pirical studies of tables introducing the distribution afthan ~ ©r/and economics.

ages for a given community, the now well known function General theory of dynamical systems, quiescence, cell ki-
netics theory, entropic and thermodynamical arguments hav

been advocated and illustrated by many authors in a variety o

P(1) = ae— T 1) interesting papers along many years introducing alsotsleita
generalizations and connections with other growth models a
wherea > 0, 8 < 0 andc are constant. logistic one. A good synthetic description with a large bibl
It is interesting to note that Gompertz posed at the core oPgraphy can be considered that of Bajzer et al (1997)[2].
his deduction the properties of geometrical progressidhis' We remark three main aspects of the delineated problem

law of geometrical progression pervades, in an approximatthat we consider relevant.
degree, large portions of different tables of mortality”"hel The first one; although, it can be significant to start attach-
relevance of the geometrical progression in the framewbrk oing the problem from specificity of a discipline, in fact tiean
the natural phenomena in a variety of experimental environenlighten nodal points, the arguments bringing to logarith
ments was pointed out at the end of nineteenth century in theehavior must be so general as well as is the applicability of
works of Galton[[10] and McAlistefl [17]. They showed that Gompertz law;
the geometrical mean (median) describes the behavior of a The second one; Gompertz curve cannot be other than a
large set of natural phenomena better than the arithmetic on“suitable” description of a mean behavior of systems under
We note that Gompertz law according to the Gompertz obsestudies that are all characterized by a basic stochasticity
vation emerges from the equilibrium between geometrical se  The third one; many of the considered systems reach the
ries associated to degradation and an arithmetical preigres limiting size exploiting self-controlled evolutions. Wake
ruling indefinite (Malthusian) growth having the experirtein  these considerations as starting points to recoveringehe f
observations to be made on suitable time intervals. The chatures, in particular logarithmic behavior, of Gompertz aqu
acteristics of simplicity of Gompertz law due to this gerera tion. Before to go into the details of our deduction it is wsef
and profound mathematical framework, attract the attentio ness to make some preliminary consideration and as first step
of nascent biological disciplines, where the growth stagie  to give a description of deterministic Gompertz equatisoal
back to the thirty years of last century. Since this distidou  to establish our notation.
has had so remarkable success in a variety of very different
situations that a lot of literature refers it simply as “lafv o
growth”. Il. GOMPERTZ EQUATION

The laws of growth of natural systems, and the deep ori-
gin of their characteristic scales of, e. g., length, mass, e The standard form of the deterministic Gompertz equation
ergy, or numerosity, are, now, intensively investigateahamy  is:
branches of science, such as biomediciné [8, 16], economy

], population dynamicd [18], astrophysics and cosmology d

. . _1dz

]. So, starting from 1930 the Gompertz equation has be- — =
came one of the most used tool to account for mechanisms of dt
growth in a variety of systems in many field$[124] 8, 18]. If wherez describes the “size” of some quantity characteriz-
we exclude, for example, from incomes distribution thédlitt ing the system3 anda denote two positive constants with the

B-al(3), (2)
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dimensions of the inverse of time, aAds a constant which
the same dimensions of
Eq. (2) can be recast as:

d(Ins)
dt

—alns,

= ®3)
wheres(t) = z(t)/z00, andzo, = Zexp (f/«). The Gom-
pertz equation is then associated to four parameters (adirde
dent on the specific systemy; 3, z, and the initial condition
(“scale”) z(0) = z. Its solution is:

1, (4)

wherey = zp/z.. Itis immediately verified that this solu-
tion always approaches monotonically in timg: depending
on the conditions:y < z. = Zexpf/a (y < 1), or
20 > 2Zoo = Zexpf/a (y > 1), the system monotonically

2(t) = zocexp [(In7) - e

view was that diseases and disfunctions accumulate slowly
along the time damaginguultiplicativelythe human bodies.
The extensive analysis of Jones showed that Gompertz equa-
tion applies exactly to people that have not eliminated the
first cause of diseases, i.e. hygienic condition. A good mean
improvement of these last one, namely slight, modifies the
general behavior. Then, following Jones, at the basis of the
analysis of life expectancy, there is a stochastic process b
with independentrandom variables (diseases and/or sowial
economic condition) that add multiplicatively. Moreovér a
the end of sixties years of the last century a detailed statis
tical analysis performed by Sachs showed that physiolbgica
parameters like blood pressure, tolerability of medicatsien
body size survival rate are lognormally distributed [21]- F
nally it is worthwhile to note that the lognormal i.e. geo-
metric Brownian motion appears to be asymptotic to a vari-
ety of branching processes introduced to describe ceksyst

grows or monotonically decreases, respectively, from the d 9"OWth [4]5].

mensionz to the dimension,, approaching the asymptotic
value z., with the characteristic time—!. It is worth notic-

On the other hand it is well known that lognormal dis-
tribution arises in a variety of classification procedurad a

ing that the solutions of the eq](3) satisfy some, somewhdh Physical and biological systems when natural genesis in-

simple and self evident properties, deriving by peculiar-fe
tures of logarithmic function. These properties justifywthe

volves repeated breakages or aggregations. Very relevant,
1941, Kolmogorov[[15] has shown that when the frequency

Gompertz equation plays a major role among all the equation@ @d9regation-disaggregation in a growth process is iedep

describing growth phenomena.
If we characterize a solutias(t) by the pair of values of its
parameter$y, o), the properties are the following:

1. the producs; (¢) - s2(t) of two solutions with parame-
ters(vy1, @) and(y2, «), respectively, is again a solution
with parametergy; - 2, «),

2. if s(t) is a solution with paramete(s, «), thens®(t),
with « € R is a solution as well, with parameters

(v, ).

3. the constant function(t) = 1 is a (trivial) solution.

Note that, fora = —1 we obtain that the inverse aft),
s~1(t) is a solution associated t9 !, o). Then it is straight-
forward to verify that if for example the original solution
is obtained withzy > 2., (aggregation process) !(¢) de-
scribes the time-reversed (fragmentation) process frQnbo

dent of the size of the constituents, the asymptotic size dis
tribution of the aggregate should tend to be lognormal. This
so general multiplicative behavior of basic randomnessef u
derlying processes has been indicated as a “Multiplicative
Gestaltungs-Principle of Nature”. It is also assumed as its
possible accounting a general property of “coherence” tf na
ural systemd [22]. The simple considerations outlined abov
at the light of the two first points of our introductory sectio
namely basic stochasticity of systems and large applitabil
of the Gompertz model, bring us to postulate that the Gom-
pertz equation is the deterministic one emerging from geo-
metric Brownian motion, that is the general stochasticcstru
ture associated with a variety of systems. The necessay ste
at this point is to give a simple mathematical procedure con-
necting stochastic structure with deterministic one.

B. Mathematical procedure

zp. Note also that this property, together with properties 1),

3) makes the set of solutions of the Gompertz equation an

The main feature of lognormal can be so summarized: a

Abelian group. Note finally that the property 3) implies that random variable X is said to have a lognormal distribution

any other quantity\/ (¢) linked to z(¢) by an allometric rela-

tion (M (t) = b- z%(t)) satisfies the same Gompertz equation

with modified parametey®

I11. GOMPERTZ EQUATION ASEVOLUTION EQUATION
FOR THE MEDIAN OF GEOMETRICAL BROWNIAN

MOTION.

A. Lognormality asbasicin avariety of natural systems

with suitable parameters associated to mean and variance if
In{(X(t))} is normally distributed. Consider then the diffu-
sion processX (¢) taking non negative values, and satisfying
the Ito differential equation:

X(t
{L%X(t) —aX(t)In [%]}dt-’-\/;X(t)dW(t),
®)
wherea andv are positive constantg has the same dimen-
sions of X (¢), anddWV (¢) denotes a Gaussian stochastic pro-
cess (Wiener process) with zero mean and variaitcélere

dX (t)

In 1947 H.R. Jones linked the problem of mortality to life X (¢) can describe any quantity. X(t) is a multiplicativy diffu-

expectancy and ageing proces

[14]. His germinal point cfive process (geometrical brownian motion) and its Ito equa
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tion can be recast as: we see that(¢), which has the same dimensionsXft), sat-
X (1) isfies the Gompertz equation, where the constéris iden-
dX(t) = —aX(t)In [==]dt + VvX(t)dW(t), (6) tified with z, i. e. with the asymptotic value of(t). But
K what about the meaning of¢)?. We nown provide a precise
where meaning toz(t). Let us suppose that the initial probability of
_ the procesd’(¢) is Gaussian (for example, the solution is the
K = Kez fundamental one with an initial delta function conditioB)y
Eq. (I0), the solution at any time is Gaussian:
We now prove that this process generates the deterministic 1 Ll ()2
Gompertz equation. Let us in fact associateXt@) a new ply,t)dy = 727”}_(75)6 z@ W gy, (16)
process’ (¢) defined by the relation
whereo (t) =< [V (t) — u(t)]? >, andu(t) =< Y (t) >. By
exploiting the relation[{]7), we can recast EG.1(17), obtaini

X(t "

7() =e'®), (7)  the probability of the procesk (¢) as
where Y (¢) is adimentional and takes values ranging on p(z, ¢)dx = ! e[*rﬂt)(ln(%)w(t)f]d_x' (17)
(—o0, +00) when X(t) takes values ord[cco ). By exploit- 2mo(t) x

ing Eq. [6) and definitiohl7, we can compuliexp Y (¢)): by

Ito’s lemma obtaining: where, by solving the first two branching equation (12)), mea

u(t) and variancer (t) are given by:
dY (t) = —aY (t)dt + VvdW (1), (8)

We see thal’(t) is anOrnstein-Uhlenbeck procesks prob- pu(t) = poe™", (18)
ability densityp(y,t;y0,0) = p(y,t), satisfies the Fokker-
Plank equation
1 o(t) = ope 2 4 L(l — 2oty (19)
Dp(y, 1) = adylyp(y, D] + 5 p(y, 1), (9) 20
We see that the proce&s(t)/ K is lognormally distributed.
and can be exactly computed for any initial conditior [11]:  But it is well known that in a lognormally distributed proses
the mean of the logarithm of the process is the logarithm of
o0 2 the medianof the process. Then, we can conclude that if the
/ due_iquO(ue_at)e[7%(1767%)], (10)  processY (t) is initially Gaussian, i.e. if the processt)/ K
—0 is initially lognormally distributed, this last processmains
lognormally distributed at any time, and the variab(e) / K
(which we denoted(t)/z) is the median of this process
In conclusion we have proved thahe deterministic Gom-
pertz equation is the macroscopic consequence of a lognor-

wherey,(u) is the characteristic function of the initial proba-
bility. The moments< Y™ (t) > of the procesd"(¢):

n . o n mally distributed, diffusion process X(t); the macroscapi
<Y > = /_OO dy y" p(y;t), (1) size z(t) whose evolution is ruled by the Gompertz equasion i
the median of procesk ().
satisfy the set obranching equations It follows that the multiplicative stochastic process (@nst
dard geometric brownian motion) that many times is intro-
d duced as “Gompertz stochastic tumor growth model” is not

g <Y"(t) >=—na <Y"(t) > +5om(n-1)a <Y *(t) >due to an extra noise disturbing the Gompertz growth, bat it i
(12) itself the origin of the deterministic growth.
which can be solved, iteratively at any finite order. We now To further support this conclusion we remark that deter-

focus on the case = 1: ministic Gompertz model was extracted by B. Gompertz,
d just looking to the properties of a geometric progressiat th
— <Y(@#)>=—-a<Y(t) >, (13) emerges from the mortality tables; i.e. the Gompertz func-
dt tion has its natural interpretation as median of a multgilic
exploit the relation[{[7), and obtain process.
d X (t) X(t)
a s ln[T] sEoos ln[T} = (14) C. Short remark on the observability of microscopic

. . . . parameters
If we define the time-dependent quantityt) by the relation

The underlying procesX (¢) is characterized by three pa-

Z(t) In| XM
o = = [ " ]> (15) rametersc, v, K. Their determination completely define the

K = exp s




process. As a first observation, we note that the Malthusian A. Dynamical updating of geometrical Brownian motion
parameters in the standard forni{2) of the Gompertz equa-
tion is provided, in a consistent way, by the diffusion param |, standard treatment the drift terms in a Fokker-Planck
eter: § = v/2. We remark also that the drift parameter  oqyation is a function given a priori; backward and forward
is clearly macroscopically observable by fitting the macro-g\o|ytions are described with two different equations. The
scopic size gro_wth of the selected systems. Theref_ore,ef ONgystems spontaneously approach a stationary state when bal
is ab[e to provide a method to extract by observational dat%ncing is reached between the stochastic term (Wiener pro-
the diffusion parameter, the whole procesX (i) can be re-  cagg)and deterministic (drift); consequently there is fast
constructed. To this end, we consider that the observed SiZ&ample, time reversal invariance. In order to have self-
(i. _e.,_t_hg median of the process) must displace a range Qfgntrg| (feedback) we must to add to Fokker-Planck equation
variability; in fact a dynamical equation updating the drift and allowing time re
versal behavior. The equation is the stochastic equivalent
F = ma, and it can be written also as the equation describing
Inz(t)/zc =nz(t)/K =<In X(1)/K >=<Y(t) > a suitable interfacé [20].
] ) ) ) ,(20) We remark, that, being our systems self-controlled the dy-
is the mean of a Gaussian process wntj variance (With)  namical update must contain self coupling non linearity. We
And, in particular, when the last stage= = is reached, the ;5e 5 stochastic variational principle theory. We reca# th
width (i.e variability of the size) becomes thatof the stRéiry  heory briefly: deterministic dynamic evolutions are char-
distribution (see Eq.L(19)). If one performs a statistic$h&  cterized by two independent principles, the first kinemati
observed sizes, one could find that the sizes of a system at thgs second dynamic. The kinematic principle is provided by
last stage range from a minimum oag:. toamaximumone  giandard differential rules, and the dynamic one by a varia-
Zmaz, With the following relations: tional principle, i.e. the Lagrangian principle. The theor
of stochastic variational principle assumes Ito’s equadis a

“oo = VAmin * Zmax; (21)  kinematic rule and the Lagrangian variational principlegs
_ _ namic rule. The variation is made by considering conditiona
(just geometric mean), expectation. As a consequence: the configuration of our sys-
. ) tems is described, in general, by a vectorial Markov process
Zmin = —=, Zmaz = Zo0 ' Ty T = €24, (22)  £(t) taking values i3, This process is characterized by a
" probability densityp(r, ¢) and a transition probability density
and p(r,t[r’,t"), and its components satisfy an Itd stochastic dif-
ferential equation of the form
v = aln 2mez, (23)
Zmin dfj (t) = U(4)j (E(t), t) dt + d’l]j (t), (24)

Summing Upw, Zmaz, 2min CAN be extracted by observational
data, and, in principle, their values provide an estimatellof
the other parameters of the underlying process; in paaticul
of the order of magnitude of the diffusion parameter

wherev(,); are the components of the forward velocity field.
As already observed here the fields); must not be given a
priori, but play the role of dynamical variables and are con-
sequently determined by imposing a specific dynamics. The
noiser(t) is a standard Wiener procesb, is the diffusion
coefficient. We indicate byZ, the conditional expectations
IV. CHARACTERIZING THE GOMPERTZIAN GROWTH with respect tc¢(¢). In what follows, for sake of notational
PROCESS simplicity, we will limit ourselves to the case of one dimen-
sional trajectories, but the results that will be obtainad be
The conclusions reached in the previous section ascribe tHgnmediately generalized to any number of dimensions. We
Gompertz equation within the framework of “Multiplicative Will suppose for the time being that the forces will be defined
Gestaltung-Principle of Nature”, i.e. to the ubiquitous na by means of purely configurational, possibly time-dependen
ture of lognormal distribution, which characterizes aetyri V' (z,1), potentials, this includes also a non linear potential
of natural system, i.e. those in which emerge characteriunctional of the density of the process. A suitable defomiti
tic scales of “coherence”. The “actual” Gompertz equationof the Lagrangian and of the stochastic action functional fo
is then the stochastic one. The stochastic description howthe system described by the dynamical variablesd v
ever does not exhaust all the aspects of Gompertzian moddlllows to select, the processes which reproduce the correct
namely stochasticity allows spontaneous growth until a finadynamics [/ 13 19]. In fact, while the probability density
size if and when systems undergo to a stationary state. The(z,t) satisfies, as usual, the forward Fokker-Planck equation
Gompertzian growth is characterized, on the contrary, as reassociated to the stochastic differential equation
marked in the third point of introductory section, by a self-
controlled evolution ruled by variation of density. Now we — 9;p = D02p — 8z (v(1)p) = 0x(Ddup — v(4yp)  (25)
incorporate in our description this relevant behavior avgr
ing systems. the following choice for the Lagrangian field
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elements of this model, which leads to the deterministic Gom
m pertz equation as equation for the median. This approaeh, be
L(z,t) = EU(QJF)(% t) + mDOyv(y)(x,t) — V(z,t) (26)  ing conceptually well-founded, allows to face, in prineipl
the growth problems as a controlled one namely it is possible

enables to define a stochastic action functional to intervene with outdoor control. For example our method
t poses the reduction of tumoral mass from a new and interest-
A= Ey[L(&(t),t)]dt (27)  ing point of view as we describe in the next section.

to

which leads, through the stationarity conditi&d = 0, to the

. B. Controlled growth
equation

(8,9)2 , 02,/ In this section we move on to implement the controlled evo-
0SS + o T V —2mD Jp =0. (28)  |ution. In fact we exploit the transition probabilities dfet
Gompertz self-controlled evolution to model controllesev
The fieldS(x, ) is defined as lutions from a given initial state to arbitrarily assignendi
states. We start by observing that to every solutidm;, t)
t1 of the Fokker-Planck equation {25), with a givept)(z,t)
Sa,t) = _/t E[L(&(s),5) |€(t) = 2] ds + and constant diffusion coefficie@?, we can always associate
B a "wavefunction” descriptions of ef.(32), of a dynamicad-sy
+E[S1(6t) [£0) =] (29) tem. To this aim, it is sufficient to introduce a suitable time

where S;(-) = S(-,t1) is an arbitrary final condition. dependent potenti&l;(a:.,t , by exploiting the wave equation
This equation is the well know equation of interfaces theoryﬁz) as a control equation[6]. .
where the term depending on densityepresents the con- Here we quickly recall those elements of the controlling

tribute due to surface tension. procedure which are needed for our aim, referring to Cufaro
By introducing the functiom(z, ¢) = \/m andthede ©tal 1999[[B] for further details. Let us consider a solutio
Broglie ansatz ’ ’ p(z,t) of the Fokker—Planck equation, with a given (z, t)
and a constant diffusion coefficie?; let us introduce the
W(x,t) = R(x,t) eS@H/2mD (30) functionsR(z,t) andW (z,t) defined by
equation[(ZB) takes the form pla,t) = R*(x,1), v (T, t) = 0. W (z,t), (34)
2 2 and remind that the relation
atS+M+V—2mD28I—R:o (31)
2m R 5. n 0. R
= £ +
and the pair of real equatiorls{25) ahdl(31) are equivalent to o )
the single linear equation far = 9,5 +mD/2 Oup _ 9, (S +mD/21n j) (35)
P
i(2mD)0yh = — 2mD?* 9% + Vb, (32) must hold, where is an adimensional function (argument of

_ _ _ _ _ a logarithm) obtained from the probability densitpy means
“This connects our dynamic equations with an ordinaryof a suitable and arbitrary dimensional multiplicative stamt.
eigenvalue problem on Hilbert space. If we now impose that the functiofi(x, t) must be the phase

Note that the observables are the dengityhich here rep-  of a wave function, we immediately obtain from the E@s] (34)
resents just the (mass) density of the system, and the dri§nd [35).

mean velocity of the system; where the connection with
the pairiy, v is provided, at every point and at every time,

by p = ||, andv = 9,.S/m. Note also that S(xz,t) = mW(x,t) — mTD In =6(t), (36)
muyy = 05 +mD 82}%' (33)  which allows to determing from p andv(, (hamelyiW) up

to an additive arbitrary function of time(¢). However, we
If we choose the potential in the form bf(z) = f(p), where ~ must ensure that the wave functidnl(34) withand S given
f(p)) is a nonlinear functional of density (e.gn(p)), we  above, is a solution of the wave equatibnl(32). Sifi@ndR
obtain a dynamic system that provides self-regulation ley th are now fixed, equatiofi (B2) must be considered as a relation
self consistent feedback action of relative density vamet  (constraint) defining the controlling potentidl, which, after
typically associated to osmotic phenomena across intesfac straightforward calculations, yields
So well this very general model contains the third of relévan 9 o1 - ~
aspects considered to describe growing systems, in plarticu Ve(z,t) =mD” 03 Inp+mD(0; Inp
cells proliferation in solid tumor. Lognormal stochastarck- mv(2+)

ground, self-control and interface theory are the cortstiu +0(4+)0: In p) — — moW +0. (37)
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Of course, if we start with a wave functiop(z, t) associ- withc+d=1+b; d=b-(0o/01). Another possible choice

ated to a given time—independent potentiglx), the self- can be found in_[6]. The important point is that the choice of

consistency is ensured, and this formula always yields bacthis functions, together with that of the further free fuant

the given potential, as it should. of time, must be made in such a way to define a controlling
We now leave the general way, and focus on the very inpotentialV,(z, t) which can be effectively engineered and ap-

teresting case, useful for our goal, of simple controllimg p plied to the system. It is also evident that, from the point of

tentials able to produce a evolution which can vary, and irview of practical implementations, one can resort to sulétab

particular reverse, the growth trend. We start by observin@pproximations which can anyhow realize the goal within a

that, to our purposes, it is expedient to handle the Gaussigmermissible error.

Ornstein-Uhlenbeck proceds(t), Eq. [8), because this is a

simple task, and it is equivalent to modify the underlyingino

Gaussian procesk (¢). In fact, being< Y () >= pu(t) =< V. CONCLUSION

In(X(t)/K) >= Inz(t), wherez(t) is the median describ-

ing the macroscopic size, the monotonicity of the logarithm

function ensures that a reductionigf) leads to a correspond-

ing (multiplicative) reduction of the size. The probalyildis-

tribution for Y'(¢) is the Gaussiarf (17), characterized by the

two time-dependent parameteys((), o(t)). Let us suppose ubiquity of this equation and its logarithmic regulatioe #ine

now that the time evolution at some instarias led to the macroscopic expression of the ubiguity of the log-normsd di

pair of \_/aluesu@ = po, o(f) = oo, and that we aim to '€ tribution. In fact, we have proved that Gompertzian growths
duce this values in such a way that, after some characteristi

time 7, they becomesi, < o, o1 < 0. As proved in are generated by a log-normally distributed stochastic pro

Cufaro et al([B], in this Gaussian instance the controlfing cess, being the macroscopic Gompertz equation the evolu-
; . - ) tion in time of the median of the process. The median then
tential to be applied is harmonic, and has the form:

describes the macroscopic size of the growing system. We
remark, therefore, that the growth is not, as often supposed
disturbedby a stochastic noise, but that the stochastic pro-

) ) o ) cess is itorigin, and itsguidanceat any time. This scheme
Th|§ harmonic potentlal. is completely determined by theagrees with the claim of Galtoh [10] and McAlister [17] who
choice of mean and variancg,(t), oc(t) , of the Gaussian gt the end of the nineteenth century have shown that many
process self consistently generated by the controlling hamatyral systems are well described by log-normality; their
monic potentiall(38). In fact, the time-dependent coeffitie 15| hehavior is then described by the median rather than the
w?(t), a(t), c(t) are all functions ofu.(t), oc(t) and of their  mean  thus implying that the basic geometric series plays a
time derivatives, but a further free function of time that @@ ey role in describing relevant natural phenomena as ajread
exploited to simplify the expression of the potential orledét  yierred by GompertZ [12]. In other words, the root causes
phase. Being we here merely interested to outline the generggy not add but multiply among them in many systems, in-
conceptual frame allowing control, we avoid burdening this¢|ding economic and social ones. Our analysis accounts for
subsection with the explicit expressions of the time-defe@t e stochastic origin of ubiquity of Gompertzian growthsys
coefficients, which can be found in Cufaro et al. [6]. We only gesting also a method to determine the order of magnitude of
sum up again the procedure. One chooses the form of the cothe microscopic stochastic parameters, and in partictitiieo
trolling mean and variance.(t), o(t), which in the charac-  iffusion parameter, by the statistical observation of rac
teristic timer go to the final reduced valugs, o1; then one  gcgpic sizes.

inserts their expressions, and a suitably chosen form of the gy systems, as for example cell aggregates, develop by
further free function of time, in the time dependent param-, »pirth-death” process, i. e. more general by the competiti
etersw?(), a(t), c(t), so obtaining an harmonic controlling peyeen aggregation and disaggregation. For this system, t
potential that, applied to the system, drives it towardsréhe  paqjc process is then a branching process leading in a luitab
duced mean and variance. \We comment here on an importafihit 1o 5 log-normal behavior. Some of these aggregates are
aspect: one can choose many functign§), o.(t) leading  characterized by self-regulation: an example is that ofaum

to the reduced mean and variance. If we/at) = 10/ (), cells forced to grow in three dimensions, which cannot go be-
ando.(t) = aog(t), the functionsf(¢), ¢(t) must satisfy the 5 5 critical diameter regardless of how often new medium
constraints: is provided or how much open space is made available. These
growths cannot thus be described by a stochastic background
where the parameters are a priori defined and one must resort
to a dynamical setting. In the last section of this work we
then propose a dynamical conceptual framework that include
self regulation mechanisms. We exploit a stochastic varia-
tional principle, whose canonical structure generateswrab
1+bexp(t/T) equation ruling the dynamical update of the forward velocit
c+dexp(t/T)’ Self regulation is then implemented by choosing the poten-

The ubiquity of the Gompertz equation, raises a very in-
teresting question in the framework of growth phenomena,
namely the key presence of the logarithmic function ruling
the nonlinear growth. In this work, we have shown that the

Vi(z,t) = % [W2(t)2® — 2a(t)z +c(t)] . (38)

f(0)=1, f(oo) = po/p1 5 g(0) =1, g(oo) = a9/01.

A possible form forg(t), for example, could be:



tial function as a (nonlinear) functional of the density bt teristic time scales, the density profile of the system. Gare ¢
system, so introducing a self consistent feedback of tlee rel thus effectively develop practical methods to reverse tbhevg

tive density variations. This conceptual framework opérs t ing trend, reducing, for example, a cancer size. The general
way to a reliable control of the growing system by externalscheme here outlined will be applied and tested in forthcom-
actions which, for example, suitably modify, on some characing papers, focusing on the behavior of specific systems.
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