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ABSTRACT

Although our solar system features predominantly circular orbits, the exo-

planets discovered so far indicate that this is the exception rather than the rule.

This could have crucial consequences for exoplanet climates, both because eccen-

tric terrestrial exoplanets could have extreme seasonal variations, and because

giant planets on eccentric orbits could excite Milankovitch-like variations of a

potentially habitable terrestrial planets eccentricity, on timescales of thousands-

to-millions of years. A particularly interesting implication concerns the fact that

the Earth is thought to have gone through at least one globally frozen, “snow-

ball” state in the last billion years that it presumably exited after several million

years of buildup of greenhouse gases when the ice-cover shut off the carbonate-

silicate cycle. Water-rich extrasolar terrestrial planets with the capacity to host

life might be at risk of falling into similar snowball states. Here we show that if

a terrestrial planet has a giant companion on a sufficiently eccentric orbit, it can

undergo Milankovitch-like oscillations of eccentricity of great enough magnitude

to melt out of a snowball state.

Proceeding

Even very mild astronomical forcings can have dramatic influence on the Earth’s climate.

Although the orbital eccentricity varies between ∼0 and only ∼0.06, and the axial tilt, or

obliquity, between ∼22.1◦ and 24.5◦, these slight quasi-periodic changes are sufficient to help

drive the Earth into ice ages at regular intervals. Milankovitch articulated this possibility

in his astronomical theory of climate change. Specifically, Milankovitch posited a causal

connection between three astronomical cycles (precession – 23 kyr period, and variation of

both obliquity and eccentricity – 41-kyr and 100-kyr periods, respectively) and the onset of

glaciation/deglaciation. Though much remains to be discovered about these cycles, often in

the literature referred to as “Milankovitch cycles,”1 they are now generally acknowledged to

1Or as “Croll-Milankovitch cycles” (1; 2).
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have been the dominant factor governing the climate changes of the last several million years

(3; 4; 5; 6; 7).

The nonzero (but, at just 0.05, nearly zero) eccentricity of Jupiter’s orbit is the primary

driver of the Earth’s eccentricity Milankovitch cycle. Were Jupiter’s eccentricity greater, it

would drive larger amplitude variations of the Earth’s eccentricity. This same mechanism

might be operating in other solar systems. In the last 15 years, roughly ∼500 extrasolar

planets have been discovered around other stars, where an object is here defined as a “planet”

by the condition that it will not burn significant amounts of deuterium, which corresponds

approximately to 13 Jupiter masses (8). (This might not be the best way to define exoplanets,

but it is probably the most widely used.). Among these ∼500, there are many that have

masses comparable to Jupiter’s and that are on highly eccentric orbits; ∼20% of the known

exoplanets have eccentricities greater than 0.4, including such extreme values as 0.93 and

0.97 (HD 20782b; HD 80606). Furthermore, tantalizing evidence suggests that lower mass

terrestrial planets might be even more numerous than the giant planets that are easier

to detect. Therefore, it seems highly likely that many terrestrial planets in our galaxy

experience exaggerated versions of the Earth’s eccentricity Milankovitch cycle.

These kinds of cycles could have dramatic influence on life that requires liquid water.

Since the seminal work of Milankovitch several decades ago, a variety of theoretical investi-

gations have examined the possible climatic habitability of terrestrial exoplanets. Kasting

and collaborators emphasized that the habitability of an exoplanet depends on the properties

of the host star (9). Several authors have considered how a planet’s climatic habitability de-

pends on the properties of the planet, as well. In particular, two recent papers have focused

on the climatic effect of orbital eccentricity. Williams & Pollard used a general circulation

climate model to address the question of how the Earth’s climate would be affected by a

more eccentric orbit (10). Dressing et al. used an energy balance climate model (11) to

explore the combined influences of eccentricity and obliquity on the climates of terrestrial

exoplanets with generic surface geography (see also (12) and (13; 14) for further description

of the model). A more eccentric orbit both accentuates the difference between stellar irradi-

ation at periastron and at apoastron, and increases the annually averaged irradiation. Thus,

periodic oscillations of eccentricity will cause concomitant oscillations of both the degree of

seasonal extremes and of the total amount of starlight incident on the planet in each annual

cycle. Since these oscillations depend on gravitational perturbations from other companion

objects, the present paper can be thought of as examining how a terrestrial planet’s climatic

habitability depends not just on its star, not just on its own intrinsic properties, but also on

the properties of the planetary system in which it resides.

There is evidence that, at some point in the last billion years, Earth went through a

“Snowball Earth” state in which it was fully (or almost fully) covered with snow and ice.

The high albedo of ice gives rise to a positive feedback loop in which decreasing surface

temperatures lead to greater ice-cover and therefore to further net cooling. As a result, the

existence of a low-temperature equilibrium climate might be a generic feature of water-rich
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terrestrial planets, and such planets might have a tendency to enter snowball states. The ice-

albedo feedback makes it quite difficult for a planet to recover from such a state. In temperate

conditions, the Earth’s carbonate-silicate weathering cycle acts as a “chemical thermostat”

that tends to prevent surface temperatures from straying too far from the freezing point of

water. A snowball state would interrupt this cycle. The standard explanation of how the

Earth might have exited its snowball state is that this interruption of the weathering cycle

would have allowed carbon dioxide to build up to concentrations approaching ∼1 bar over a

million-to-10-million years, at which point the greenhouse effect would have been sufficient

to melt the ice-cover and restore temperate conditions.2

However, an exoplanet in a snowball state that is undergoing a large excitation of its

eccentricity might be able to melt out of its globally frozen state in significantly less time,

depending on the magnitude of the eccentricity variations and on other properties of the

planet. Exploring this possibility is the primary focus of (17), in which, using an energy

balance climate model, we searched for orbital configurations that would lead to an ice-

covered planet melting out of the snowball state. In brief, we found that orbital configurations

that are not unlikely could cause a snowball-Earth-analog to melt out by dint of increased

eccentricity.

Figure 1 shows the temperature evolution of two cold-start planet models, one of which (on

the right) has a crude approximation of a carbonate-silicate cycle incorporated in the infrared

cooling term, and the other (on the left) does not. Both model planets have orbital semimajor

axis 1 AU, and are initialized to very cold temperatures. The high orbital eccentricity of

these models (0.8) causes them to intercept more stellar irradiation over the annual cycle than

would a model on a circular orbit. They therefore heat rapidly and, with a crude accounting

of the latent heat of melting/freezing water (17), are eventually able to melt through the ice

layer. Figure 2 shows two different compressed Milankovitch-like cycles. In each, a cycle that

might take 10,000 – 400,000 years is compressed to 25 years, for computational feasibility

and visualization purposes. In one (the top row), the planet is at semimajor axis 1 AU

and has eccentricity varying sinusoidally between 0 and 0.83. In the other (bottom row),

the planet is at semimajor axis 0.8 AU and has eccentricity varying between 0.1 and 0.33.

In each case, after several years, a “catastrophic event” dramatically increases the albedo

for several years, so as to plunge the model planet into a snowball state. The increasing

eccentricity, then, eventually leads the planet to melt out of the snowball state. Finally, see

Figures 3 and 4 of (17) for exemples of the magnitudes and frequencies of Milankovitch-like

eccentricity oscillations that can result from gravitational interactions between an eccentric

2Even an ice-encrusted planet in the habitable zone will eventually melt, due to the post-main sequence

red-giant evolution of a Sun-like star, as the star grows larger and brighter. The planet will not enjoy

temperate conditions for long, however, as the continued growth in size and luminosity of the giant will

eventually sterilize it of any water-based surface life. Whether the Earth will be engulfed by the Sun in its

giant phase (either by direct expansion or by tidal decay of its orbit), or will survive through the planetary

nebula phase, remains an open question (15; 16).
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giant planet and a terrestrial planet. Though these kinds of oscillations might be rare, they

are not impossible. Entirely prosaic planetary system architectures can lead to less dramatic,

but still highly important, variations of a terrestrial planet’s eccentricity.

In the coming years, as new observatories such as the James Webb Space Telescope come

online, exploring the atmospheres and atmospheric dynamics of exoplanets will become an

increasingly tractable research problem. Already, planets of the hot Jupiter class have been

amenable to investigation with the Spitzer Space Telescope, Kepler, and various ground-

based observatories (see, e.g., (18; 19; 20; 21; 22; 23; 24), and more). It might even be

possible to probe the atmospheric composition of even extremely distant exoplanets, in the

Galactic bulge (25). Increasingly, it is possible to learn about the properties of Neptune-

mass exoplanets (26; 27; 28). Discerning the spectral signatures of habitability and of life

on terrestrial planets will be the next frontier (29). As the field of exoplanets matures, it

will be important to keep in mind that the long-term climatic habitability of a planet might

depend not just on the intrinsic properties of the host star and of the planet itself, but also

on the detailed architecture of the planetary system in which the planet resides.
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Fig. 1.— Temperature evolution maps for cold-start models at 1 AU. Both models have

orbital eccentricity of 0.8 along with Earth-like 23.5◦ polar obliquity and 1 bar surface pres-

sure. Temperature is initialized to 100 K, and quickly rises to near 273 K. The melting

of the ice-cover is handled in accordance with the prescription of (17). Left: CO2 partial

pressure is held constant at 0.01 bars. In this model, once the equatorial region melts, the

region of surface that has melted ice-cover grows steadily until the entire planet has melted,

and temperatures eventually grow to more than 400 K over much of the planet (not shown).

Right: CO2 partial pressure varies with temperature, in a crude simulation of a “chemical

thermostat”. In this model, the climate reaches a stable state with equatorial melt regions

and polar ice-cover.
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Fig. 2.— Compressed Milankovitch-like evolution of eccentricity and temperature at 1 AU

and at 0.8 AU. Planets are initialized with warm equator and cold poles, similar to present-

day Earth. In the top row (1 AU), the model planets are the same as in Fig. 1, except

the eccentricity varies sinusoidally between 0 and 0.83 with a 25-year period, to simulate

a time-acceleration (by a factor of ∼102 to ∼104) of a Milankovitch-like cycle. When the

eccentricity falls below 0.05, the planet’s albedo spikes to 0.8, simulating a catastrophic event

that plunges the planet into a snowball state, with the latent heat prescription of (17). In

the bottom row (0.8 AU), the eccentricity varies between 0.1 and 0.33, also with a 25-year

period. Left: CO2 partial pressure is held fixed at 0.01 bars. As in the left panel of Fig. 1,

these planets do not establish a temperate equilibrium. Right: CO2 partial pressure varies

with temperature. Here, temperature increases are muted by reduced greenhouse effect once

the ice-cover has melted somewhere.


