
 1 

Radially symmetric and azimuthally modulated vortex solitons 
supported by localized gain 

 
Valery E. Lobanov, Yaroslav V. Kartashov, Victor A. Vysloukh, and Lluis Torner 

ICFO-Institut de Ciencies Fotoniques, and Universitat Politecnica de Catalunya, Medi-
terranean Technology Park, 08860 Castelldefels (Barcelona), Spain 

 
We discover that a spatially localized gain supports stable vortex solitons in media with cu-
bic nonlinearity and two-photon absorption. The interplay between nonlinear losses and 
gain in amplifying rings results in suppression of otherwise ubiquitous azimuthal modulation 
instabilities of radially symmetric vortex solitons. We uncover that the topology of the gain 
profile imposes restrictions on the maximal possible charge of vortex solitons. Symmetry 
breaking occurs at high gain levels resulting in the formation of necklace vortex solitons 
composed of asymmetric bright spots 
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Vortex solitons are localized nonlinear excitations which carry screw phase dislocations 
and nonzero angular momentum [1]. In most of uniform media with local nonlinearity such 
states are prone to the azimuthal modulation instabilities. Various strategies have been de-
veloped to stabilize vortex solitons in conservative media, which include competing nonli-
nearities [2,3], optical lattices [4-6], and nonlocality of the nonlinear response [7]. Vortex so-
litons also appear in dissipative systems [8,9]. Stable dissipative vortex solitons were found 
in laser amplifiers [10] and in systems governed by the complex Ginzburg-Landau equation 
[11,12]. Optical lattices substantially enrich the properties of solitons in such settings [13]. 

The formation of dissipative solitons is strongly affected by a spatially modulated gain. 
In one-dimensional gain landscapes this phenomenon was studied in waveguides [14], optical 
lattices [15], and Bose-Einstein condensates [16]. In such systems solitons form in regions 
with locally increased gain and they can be stable because instability of zero background is 
suppressed [14-16]. The implications of such effect in two-dimensional geometries have never 
been addressed. 

In this Letter we study vortex solitons supported by localized gain landscapes and two-
photon absorption in media with cubic nonlinearity. We find that ring-shaped gain profiles 
support stable radially symmetric vortex solitons. The azimuthal gain modulation imposes 
restrictions on the maximal possible charge of the vortex solitons. Also, we show that suita-
ble gain landscapes support necklace-like vortex solitons featuring asymmetric bright spots. 

We consider the propagation of laser beam along the  -axis in a cubic nonlinear me-
dium with two-photon absorption and localized gain described by the equation: 
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Here ,   and   are the normalized transverse and longitudinal coordinates, respectively; 
the function ( , )    describes the transverse gain profile;   is the parameter of two-photon 
absorption. Eq. (1) can be used to describe the nonlinear response of semiconductor mate-
rials where soliton formation occurs for wavelengths below half the band-gap and the two-
photon absorption dominates [17]. Semiconductor materials are used for fabrication of opti-
cal amplifiers with high optical gain [18]. Note that ring-shaped gain profiles may be rea-
lized by using suitable pump beams or by shaping the concentration of active centers. 

First we address vortex solitons supported by an amplifying ring 
2 2

i c( ) exp[ ( ) / ]r p r r d    , where ip  is the gain parameter, 2 2 1/2( )r    , d  and cr  are 
the width and radius of amplifying ring, respectively. We set c 5.25r   and 1.75d  . We 
search for vortex solitons of the form ( , , ) ( , )exp( )exp( )q w im ib       , where b  is the 
propagation constant,   is the azimuthal angle and m  is the topological charge. A first im-
portant result of this Letter is that the system described by (1) with a ring gain profile sup-
ports stable radially symmetric vortex solitons. The competition between localized gain and 
nonlinear losses results in simultaneous suppression of collapse and azimuthal modulation 
instabilities. The profiles of such radially symmetric vortices can be obtained using direct 
propagation governed by Eq. (1) up to 2000   with the input 2

0 exp( )mq r r im     . 
Note that stable propagation over such huge distances is also an indication of the stability 
of the vortex solitons. We found that vortex solitons with charges at least up to 6m   can 
be excited, although vortices with high charges require higher gain levels for their formation 
(this level decreases with growth of cr  and d ). Such solitons can be generated using a varie-
ty of ring-shaped input beams of very different widths with appropriate phase distribution, 
even if the initial phase dislocation is shifted by up to c0.2r  from the center of the amplify-
ing ring. Under suitable conditions, inputs beams shade radiation away, experience fast re-
shaping upon propagation, and asymptotically approach stationary vortex solitons. The 
winding number of the input phase distribution determines the topological charge of the ex-
cited vortex, while its radius is always close to that of the amplifying ring. Typical shapes of 
stable radially symmetric vortex solitons with 1,2,3m   are shown in Fig. 1. 

Since in dissipative systems solitons form when an exact balance between gain - losses 
and between diffraction - nonlinearity is achieved simultaneously [8,9], the propagation con-
stant (as well as all other soliton parameters) is determined by the gain and loss coefficients 

ip  and  . Therefore, further we set ip  as a control parameter. For fixed values of ip  and 
 , stable vortex solitons with different charges may coexist (Fig. 1). Vortex solitons with 
higher topological charges are somewhat broader. The dependencies of the energy flow 
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          on the gain parameter are shown in Fig. 2(a). 

Both U  and L  (for radially symmetric solitons one has L mU ) are monotonically grow-
ing functions of ip . At fixed ip  the energy flow only slightly increases with increase of topo-
logical charge. One finds that below a threshold ip  value radially symmetric vortex solitons 
become unstable [the dependencies i( )U p  and i( )L p  in Fig. 2(a) terminate in corresponding 
points]. These results are confirmed by linear stability analysis. The threshold value of gain 
coefficient increases with growth of  , at least for 1.5 , [Fig. 2(b)] and decreases with 
increase of the radius and width of the amplifying ring. Vortex solitons with higher topolog-
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ical charge require higher gain levels for their stabilization. The threshold gain required for 
the instability suppression of vortex with 3m   increases with   much faster than the 
threshold gain for vortex with 1m  . 

The available new phenomena become even richer if the gain landscape is azimuthally 
modulated. We set 2 2 2 2

i c c1
exp[ ( cos ) / ( sin ) / ]
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     , where 
2 ( 1)/k k n   . Such gain landscape consists of n  amplifying Gaussian channels of the 

width 1.0d   arranged into a necklace structure of the radius c 0.7r n . We found that 
this gain landscapes support stable vortex solitons which are strongly azimuthally mod-
ulated (typical shapes are depicted in Fig. 3). 

A second central result of this Letter is that an azimuthal modulation of the gain land-
scape imposes restrictions on the maximal charge of stable vortex solitons. This means that 
gain landscapes with a given discrete rotational symmetry affect the topology of the dissipa-
tive vortices somehow mimicking how optical lattices determine the topology of conservative 
vortex solitons [6]. The comprehensive simulations that we performed, using a variety of in-
puts, are consistent with the conclusion that an azimuthally modulated gain landscape with 
n  amplifying channels can support vortex solitons with topological charges 

int[( 1)/2]m n  , where the function int(...) stands for the integer part. Thus, landscapes 
with 3,4n   support vortex solitons with charge 1m  , landscapes with 5,6n   support 
vortex solitons with 1,2m  , while for 7,8n   one gets 1,2, 3m  , etc. The minimal num-
ber of amplifying channels that can support azimuthally modulated vortex solitons is 3n  . 
For low ip  values the azimuthally modulated vortex solitons are extended and the light 
field penetrates considerably into the absorbing domain. The bright spots in such low-
amplitude vortices are symmetric [see Figs. 3(a), 3(c), and 3(e)]. However, with increase of 

ip  the symmetry breaking takes place, with individual bright spots in the vortex profile be-
coming asymmetric. This occurs because at high ip  even in a single gain channel a branch 
of asymmetric solitons bifurcates from the branch of symmetric states making them unsta-
ble to perturbations with azimuthal index 1. In this case the maxima of bright spots shift 
from the centers of the amplifying rings, while the spots experience considerable reorienta-
tion with respect to the axes connecting the centers of the amplifying channels and the 
point , 0    [see Figs. 3(b), 3(d), and 3(f)]. Therefore, another important prediction of this 
Letter is that azimuthally modulated gain landscapes can support stable vortex solitons 
with nonconventional shapes composed of highly asymmetric bright fragments. The asym-
metry becomes more and more pronounced with increasing gain. Notice that in dissipative 
systems the solitons are characterized by the internal energy flows, a property that may re-
sult in the interesting effect when due to the symmetry breaking and bright spot reorienta-
tion a nonzero angular momentum can appear at high ip  values even on multipole solitons. 
This effect occurs for even n  (i.e. 6, 8n  ). 

Not all vortex solitons whose charges are given by the above mentioned charge rule are 
stable. Propagating them up to 2000   we found that vortices with highest charges can be 
stable, while vortices with lowest charges are usually unstable. Thus, for 3,4n   the only 
existing vortex with 1m   can be stable. For 5,6n   the vortex with 2m   can be stable, 
but vortex with 1m   was unstable for all parameters that we considered. The typical de-
pendencies i( )U p  and i( )L p  are shown in Figs. 4(a) and 4(c). The dependence i( )U p  [as well 
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as the dependence ( )U b  shown in Fig. 4(b)] may be nonmonotonic, as it occurs for 5n  , 
2m  . In this case the entire soliton family was found to be stable, while for 6n  , 2m   

the i( )U p  curve stops at the point where soliton becomes unstable. Thus, in contrast to 
conservative systems, the branches of dissipative solitons where / 0dU db   (and also 

i/ 0dU dp  ) can be stable. Such result was found to hold also in one-dimensional settings, 
e.g. in [15]. Interestingly, for 6n   the angular momentum that monotonically decreases 
with decrease of ip  may change its sign. This occurs due to the symmetry breaking, when 
the local energy flows inside asymmetric bright spots start contributing to the global angu-
lar momentum. Stable azimuthally modulated vortex solitons exist above the threshold gain 
level [Fig. 4(d)]. The minimal gain required for the existence of stable vortex soliton rapidly 
increases with growth of nonlinear losses. 

Summarizing, we showed that radially symmetric or azimuthally modulated gain land-
scapes imprinted in cubic media with two-photon absorption support rich families of stable 
vortex solitons. With radially symmetric gain profiles the azimuthal modulation instabilities 
can be suppressed for solitons with topological charges at least up to 6m  , while azimu-
thally modulated gain landscapes impose severe restrictions on the stability and topological 
charges of vortex solitons. 
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Figure captions 
 
Figure 1. Field modulus (top) and phase distribution (bottom) for vortex solitons with 

(a) 1m  , (b) 2m  , and (c) 3m   at 2  , i 3p  . White circles stand 
for the maxima of ring with gain. 

 
Figure 2. (a) Energy flow and angular momentum of 2m   vortex soliton versus gain 

parameter at 2  . (b) Minimal gain required for existence of stable vortex 
solitons with 1m   and 3m   versus  . 

 
Figure 3. Field modulus (top) and phase distribution (bottom) for vortex solitons with 

(a),(b) 3n  , 1m  , (c),(d) 5n  , 2m  , and (e),(f) 6n  , 2m  . Panels 
(a),(c),(e) correspond to i 3.2p  , while panels (b),(d),(f) correspond to 

i 5.5p  . In all cases 2  . 
 
Figure 4. Energy flow of 2m   vortex solitons versus gain parameter (a) and versus 

propagation constant (b) at 2  . (c) Angular momentum of 2m   vortex 
solitons versus gain parameter at 2  . (d) Minimal gain required for exis-
tence of stable 2m   vortex solitons versus  . 
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