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A NOTE ON DYNAMICAL SYSTEMS

DEFINING JACOBI’S ϑ-CONSTANTS

YURII V. BREZHNEV, SIMON L. LYAKHOVICH, ALEXEY A. SHARAPOV

Abstract. We propose a system of ordinary differential equations which defines Jacobi’s
theta-constant series. The relations of this system to the classical Darboux–Halphen
equations and equations introduced by Jacobi are studied. The systems admit a Hamil-
tonian formulation with a rich structure. We explicitly construct a pencil of nonlinear
Poisson brackets and a complete set of involutive integrals of motion.
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1. Introduction and motivation

In this work we propose the ordinary differential equations (ODEs) defining the classical ϑ-
constants and the Weierstrass η-function. By a certain variable change these equations are
transformed into a remarkable Jacoby system [14] which does not seem to have received
mention in the modern literature. Some other known differential systems, having an
extensive literature can be derived from this system by rational transformations. The
most known of such ODEs include the Darboux–Halphen system [9, 13], some its varieties
[18, 2], and the famous Chazy equation [8]. For equations defining the ϑ, η-series we work
out the Hamiltonian formulation and show that the systems admit a pencil of (compatible)
Poisson structures, in the sense of Magri [16].

The three Jacobi theta-constants are defined by the classical series

ϑ2(τ) = e
1

4
πiτ

∞∑

k=−∞

e
(k2+k)πiτ

, ϑ3(τ) =
∞∑

k=−∞

ek
2πiτ , ϑ4(τ) =

∞∑

k=−∞

(−1)kek
2πiτ

and the Weierstrass η-function is defined by the series

η(τ) = 2π2

{
1

24
−

∞∑

k=1

e2kπiτ

(1− e2kπiτ )2

}
.

Here, the ‘time’ τ is considered to be a complex variable belonging to the upper half-plane
H

+: ℑ(τ) > 0. These series appear in various problems of mathematical and theoretical
physics because of their numerous differential properties [2, 8]. Let us mention some of
them.

Three ϑ-constant series satisfy the following differential identities for logarithmic deriva-
tives of their ratios:

d

dτ
ln

ϑ2

ϑ3
=

π

4
iϑ4

4 ,
d

dτ
ln

ϑ3

ϑ4
=

π

4
iϑ4

2 ,
d

dτ
ln

ϑ2

ϑ4
=

π

4
iϑ4

3 .

If we introduce the following notation for logarithmic derivatives

(X,Y,Z) := 2

(
ϑ̇2

ϑ2
,
ϑ̇3

ϑ3
,
ϑ̇4

ϑ4

)

then the quantities (X,Y,Z) satisfy the 3rd order differential system

Ẋ = (Y + Z)X − Y Z, Ẏ = (X + Z)Y −XZ, Ż = (X + Y )Z −XY , (1)

which is widely known as the famous Darboux–Halphen system [9, p. 149], [13, I: p. 330–
331]. Its physical applications were initiated in the 1990’s by M. Ablowitz, J. Chakravarty
et all [6, 1] in connection with reductions of self-dual Yang–Mills equations. They usually
provide the main motivation for studying both the η, ϑ-series and allied objects (modular
forms). However, applications go beyond the Yang–Mills theory. In succeeding years the
system appeared in the vacuum cosmological Bianchi–IX model [8, p. 143, 147], [2, p. 577],
[1], theory of monopoles [4], and many other areas of mathematical physics. The system
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(1) has also varieties; not a lesser-known one is the Weierstrass–Halphen dynamical system
on Weierstrass’ invariants g2, g3, and η-series:

dg2
dτ

=
i

π

(
8g2η − 12g3

)
,

dg3
dτ

=
i

π

(
12g3η − 2

3
g22

)
,

dη

dτ
=

i

π

(
2η2 − 1

6
g2

)
. (2)

It is known that invariants g2, g3 are related to the ϑ-series by the polynomial formulae

g2(τ) =
π4

24

{
ϑ8
2(τ) + ϑ8

3(τ) + ϑ8
4(τ)

}
,

g3(τ) =
π6

432

{
ϑ4
2(τ) + ϑ4

3(τ)
}{

ϑ4
3(τ) + ϑ4

4(τ)
}{

ϑ4
4(τ)− ϑ4

2(τ)
}

(3)

and the series themselves satisfy the famous Jacobi identity

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ). (4)

In different notation and definition for series the system (2) is known as the Ramanujan
system of differential equations [7] for modular forms

E2(τ) ∼ η(τ), E4(τ) ∼ g2(τ), E6(τ) ∼ g3(τ), (5)

where E2k(τ) :=
∑

′(mτ +n)−2k. Ramanujan’s system is sometimes referred as the Eisen-
stein system of differential equations [7], though Eisenstein himself did not derive it [11].
Number theoretic and differential treatment of equations satisfied by the series E2k(τ) was
given by Ramanujan [18]. Additional discussion (and references) of the systems mentioned
above can be found in the cited works [1, 2, 3, 6, 8, 12].

Dynamical variables for all the systems above are determined usually rationally through
the ϑ-variables. Therefore inverse transformations will always involve inversions by multi-
valued functions, as further examples show. Yet another example is more nontrivial and
comes from equations for modular forms on group Γ0(2). They define the Ramamani
system and were studied recently in work [3] (see also [15, 12]). In this case relation
between dynamical variables and the ϑ, η-variables is not obvious because it is given by
a duplication of the τ -argument in forms (5) (see formula (3.3) in [3]). If we make use,
however, the duplication rules1

η(2τ) =
1

2
η(τ) +

π2

48

{
ϑ4
3(τ) + ϑ4

4(τ)
}
, g2(2τ) =

1

8
g2(τ) +

π4

192

{
14ϑ4

4(τ)ϑ
4
3(τ)− ϑ8

2(τ)
}

we arrive again at substitutions of a rational type.
For the reasons given above it is essential to have an exhaustive description to differential

properties of the ϑ, η-series as such. In particular, we display here a version of differential
relations between the objects because we were not able to find it in closed and explicit
form in so comprehensive literature on theta-functions.

1Though these rules have not appeared in the standard texts known to us, these identities may be
established by standard techniques.
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Theorem 1. The canonical Jacobi’s ϑ-constant series satisfy the closed differential
identities upon adjoining the Weierstrass η-series:

dϑ2

dτ
=

i

π

{
η +

π2

12

(
ϑ4
3 + ϑ4

4

)}
ϑ2 ,

dϑ3

dτ
=

i

π

{
η +

π2

12

(
ϑ4
2 − ϑ4

4

)}
ϑ3 ,

dϑ4

dτ
=

i

π

{
η − π2

12

(
ϑ4
2 + ϑ4

3

)}
ϑ4 ,

dη

dτ
=

i

π

{
2η2 − π4

122
(
ϑ8
2 + ϑ8

3 + ϑ8
4

)}
.

(6)

The identities (6), once considered as dynamical system, have the only algebraic integral
being the rational function of ϑ’s:

U · ϑ4
2ϑ

4
3ϑ

4
4 =

(
ϑ4
3 − ϑ4

2 − ϑ4
4

)3
. (7)

This integral generalizes Jacobi’s identity (4) if U 6= 0.
Proof is given by a straightforward computation with use of Eqs. (2), (3), and (4). �

Varieties of the system (6) will be the main subject of our consideration. In particular,
it is of interest to propose a Hamiltonian formulation for the system and consider some
related topics. This would provide fresh insight into properties of the theta-constants.
This circle of questions, as applied to an equivalent of the system (2), is addressed in the
work [7] by D. Chudnovsky & G. Chudnovsky and, to the best of our knowledge, this is
the only paper2 where the question on Hamiltonian treatment for dynamical systems of
modular type has been raised. These authors proposed a 4th order differential system [7,
p. 111] and its reduction to the 3rd order equations. Although their Hamilton function
is ingenious enough and correct, proposed reduction to the system (2) is not preserved
by the constraint3 λ = 1 defining the reduction itself. In other words, this reduction is
satisfied only by a trivial solution.

1.1. A Jacobi dynamical system. Since the late 1850’s C. Borchardt, being the editor-
in-chief of Crelle’s Journal, began to edit and publish the manuscript material kept after
Jacobi’s death in 1851. In particular, in 1857 he published [14, p. 383–394] calculations
where Jacobi constructed power series developments for his θ(z|τ)-functions. The power
θ-series are of interest in their own rights but not a lesser remarkable fact is that they
produce the nice dynamical systems integrable in terms of ϑ-constants.

Using conventional notation for classical objects of Legendre’s ‘elliptic theory’

K(k) =

1∫

0

dλ√
(1− λ2)(1− k2λ2)

, K ′(k) =

1∫

k

dλ√
(1− λ2)(λ2 − k2)

, (8)

E(k) =

1∫

0

√
1− k2λ2

1− λ2
dλ, E′(k) =

1∫

0

√
1− (1 − k2)λ2

1− λ2
dλ, (9)

2See also important comments on pp. 5709–5710 in work [17] concerning the system (1) and its relation
to Euler’s equations and the Lotka–Volterra system.

3Notation as on p. 111 of [7].
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Jacobi introduces the four variables (we keep completely to Jacobi’s notation in [14, p. 386])

A =
2K

π
, B =

2E

π
− k′2

2K

π
, a = 4(1− 2k2), b = 2k2k′2 , (10)

where k2 + k′2 = 1, and shows that these satisfy the very elegant dynamical system




∂A

∂h
= 2A2B,

∂B

∂h
= bA3 ,

∂a

∂h
= −16bA2 ,

∂b

∂h
= abA2 ,

(11)

where h = 1
4 π iτ , and the following constraint

a2 = 16(1 − 2b) (12)

should be imposed. It is of course an equivalent to the Jacobi ϑ-identity (4). Halphen
does not mention system (11) and, to all appearances, it has not received mention in the
later literature in the context. Jacobi does not restrict his consideration to variables (10)
and exhibits what is called presently the canonical transformations, i.e. transformation
of dynamical variables preserving the shape of equations. Here are his versions of the
transformations [14, p. 387]:

A =
2kK

π
, B =

1

k
· 2E
π

, a = −4(1 + k′2)

k2
, b = −2k′2

k4
,

A =
2k′K

π
, B =

1

k′

(
2E

π
− 2K

π

)
, a =

4(1 + k2)

k′2
, b = −2k2

k′4

and complete set of differential relations between these and auxiliary variables {k, k′,K,E}
was written down by Jacobi earlier [14, p. 176–177]. As in the previous differential sys-
tems (1), (2), dynamical variables {A,B, a, b} are expressed through the η, ϑ-constants
rationally. For example, a simple computation for version (10) implies that

A = ϑ2
3 , B =

4

π2ϑ2
3

{
η +

π2

12

(
ϑ4
2 − ϑ4

4

)}
, a = 4− 8

ϑ4
2

ϑ4
3

, b = 2
ϑ4
2

ϑ4
3

ϑ4
4

ϑ4
3

. (13)

We also note that system (11) is notable for its homogenous monomial structure. Jacobi
exploits intensively this fact when deriving the power θ-series; the pages 388–391 of his
Werke [14] contain a lot of useful formulae along these lines. The system (11) is not the
only dynamical system that was derived by Jacobi in connection with θ-functions; see also
[14, p. 173–190] and [10]. He does not pose a question about integration of (11) as system
of ODEs4, however earlier, in 1847, he obtained a complete integral for his famous 3rd
order differential equation

C4(lnC3Cττ )
2
τ = 16C3Cττ − π2 , (14)

satisfied by any of the ϑ-constants: C = ϑ−2 (Jacobi’s notation [14, p. 179]). This equation
is of course a consequence of the system (6).

4Complete integral to the system (11) and some computational details will be given in appendix.
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2. ODEs determining ϑ-constants

2.1. Remarks concerning symmetrical system (6). As we mentioned above all the
varieties of dynamical systems under question are algebraically related each other. In
this respect equations (6) stand out because this system represents ϑ-constants by itself.
However point transformation between dynamical variables is not unique and resulting
ODEs for ϑ, η-variables may contain parameters. For example, if we drop out the fix
constraint (12) and consider (13) just as a point change in (11), we shall not arrive at
symmetrical equations (6). We may also insert into the change (13) some parameters and
yield the more symmetrical or simpler form to resulting ODEs, say,

a = 4−α
ϑ4
2

ϑ4
3

, b = β
ϑ4
2

ϑ4
3

ϑ4
4

ϑ4
3

, (15)

but we never get the system (6) in this way. Any of such ODEs will be integrable in terms of
ϑ, η-series since they were obtained from (11) by coordinate changes of dynamical variables.
These are generally algebraic, i.e. multi-valued in both directions. In this respect even
Jacobi’s system (11) is not a best choice because we would have

cumbrous K

(√
1

2
− 1

2

a√
a2 + 32b

)
instead of simple K(k)

(see theorem 7 in appendix). In other words, the choice of a representative for differential
system defining Jacobi–Weierstrass’ series is not a trivial question and we need to choose,
in some sense, ‘natural/optimal’ version for such a system (call it canonical one) reflecting
the principal property of the series, namely, the property of being uniformizing for other
algebraic versions like systems (1), (2), or (11).

For this purpose, however, symmetrical form (6) is apt to be not a good candidate
because it is not amenable to integration and we failed to find out its complete integral.
That such a strong distinction between systems is inherent in the nature of the case (6)
will be apparent from the consideration of their algebraic integrals as algebraic curves in
homogeneous coordinates ϑ2 :ϑ3 :ϑ4. The equation (30), under generalization (15), has
genus 9, whereas integral (7) is a curve of genus g = 19. The best we have succeed in
solution of the system (6) is its partial solution in terms of elliptic functions.

Indeed, let us rewrite integral (7) in the form of elliptic curve5

2U2xy = (y − x− 2)3 , x = 2
ϑ4
2

ϑ4
4

, y = 2
ϑ4
3

ϑ4
4

.

Hence it follows that the pair (x,y) is parametrized by Weierstrass’ (℘,℘′)-functions and
this curve can be transformed into the canonical Weierstrassian form

℘′(u)2 = 4℘3(u)− g2℘(u)− g3 .

5The analogous transformation to the fourth powers of ϑ’s in integrals like (30), (15) leads to a zero
genus curve. Equations are easily integrated and no elliptic functions appear in this case.
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The computation is rather simple and we obtain

x =
1

U
℘′(u)− ℘(u) +

U2

12
− 1, y =

1

U
℘′(u) + ℘(u)− U2

12
+ 1, (16)

where invariants g2, g3 are expressed through the integral U by the formulae

g2 =
U4

12
− 2U2 , g3 = − U6

216
+

U4

6
− U2 .

Therefore expressions (16) substituted into the system (6) must cause this system to
become a τ -evolution of uniformizer u = u(τ). Indeed, after some algebra we derive that

36U

π i
· 1
ϑ4
4

du

dτ
= 12℘(u)− U2

and therefore ∫
du

12℘(u) − U2
=

π i

36U

∫
ϑ4
4dτ + const.

Left hand side of this equation is easily integrated because

12U

12℘(u)− U2
= ζ(u− κ)− ζ(u+ κ) + 2ζ(κ),

where 12℘(κ) = U2, ℘′(κ) = ±U , and ζ(u), σ(u) are the standardWeierstrassian functions
associated to the basis ℘(u), ℘′(u). We get

3i

π
ln

σ(u+ κ)

σ(u− κ)
e2ζ(κ)u =

∫
ϑ4
4dτ + const,

but integral in the right hand side requires a further integration of the system. This step
is unknown.

2.2. An integrable version for the ϑ, η-constants. Returning to the question of
canonical representative for ODEs defining ϑ, η-series and using some heuristic reason-
ing6 we choose the following modification of equations (6):

dϑ2

dτ
=

i

π

{
η +

π2

12

(
ϑ4
3 + ϑ4

4

)}
ϑ2 ,

dϑ3

dτ
=

i

π

{
η +

π2

12

(
ϑ4
3 − 2ϑ4

4

)}
ϑ3 ,

dϑ4

dτ
=

i

π

{
η − π2

12

(
2ϑ4

3 − ϑ4
4

)}
ϑ4 ,

dη

dτ
=

i

π

{
2η2 − π4

72

(
ϑ8
3 − ϑ4

3ϑ
4
4 + ϑ8

4

)}
.

(17)

It is of interest to observe that all the previous dynamical systems reduce in fact to the
squares of ϑ-constants. For this reason, in the sequel it will be convenient to renormalize
variables ϑ, η and adopt the following notation:

x =

√
πi

6
ϑ2
2 , y =

√
πi

6
ϑ2
3 , z =

√
πi

6
ϑ2
4 , u =

2i

π
η.

6An exhaustive explanation as to why the ‘determining ϑ, η-equations’ should have the form (17) has
been detailed in work [5].
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The resulting equivalent of the system (17)

ẋ = (u+ y2 + z2)x,

ẏ = (u+ y2 − 2z2)y,

ż = (u− 2y2 + z2)z,

u̇ = u2 − y4 + y2z2 − z4
(18)

will be the main subject of further study. Apart from symmetry y ⇄ ±z and simplicity,
there are some additional properties justifying usefulness of canonical system (18).

First of all, the function u, independently of (x, y, z), satisfies the famous Chazy equation
...
u = 6(2uü− 3u̇2),

(proof is a direct calculation) which cannot be said of η-solution to symmetrical version
(6). For the latter, the function η (more precisely 2i

π
η) solves this equation only if the U -

integral (7) is equal to zero. Similarly, functions y and z also satisfy a third (not fourth)
order ODE. This is the very Jacobi C-equation (14):

C4(lnC3Cττ )
2
τ = 16C3Cττ + 36, C =

1

z
or

1

y
.

Algebraic integral for (18) is easily found because x is absent in three equations (18).
Elimination of u from these equations leads to that the function

πI2 =
y2 − z2

x2
(19)

is a constant on solutions of (18), that is integral. This integral is much simpler than those
we discussed in sect. 2.1. As for solutions to system (18), these have the most simple form
as against the other equations we consider. We shall give these solutions in the next
theorem. The last fact we should mention here is the point transformation which leads
to the system (18). Most simple form of such a transformation is realized through the
‘linearizing’ systems (34), (35) which can be thought of as intermediate equivalents for
Jacobi’s one (11) or (18). Explanation and details have been given in appendix. From
now on we change Jacobi’s h-notation and put

T :=
ατ + β

γτ + δ

with normalization αδ − βγ = 1.
Theorem 2. The transformations between Jacobi’s system (11) and canonical dynam-

ical system (18) defining ϑ, η-constants are given by the substitution

A =
1− i

2I
y, B =

1 + i

2

I

y
(u+ y2 − 2z2),

(20)

a =
12

π i

y2 − z2

x2
y2 − 2z2

y2
, b = −18

π2

z2

x4y4
(y2 − z2)3 .

The system (18) has the following general solution:

x = ε
ϑ2
2(T)

γτ + δ
, y =

√
πi

6

ϑ2
3(T)

γτ + δ
, z =

√
πi

6

ϑ2
4(T)

γτ + δ
, u =

2i

π

η(T)

(γτ + δ)2
− γ

γτ + δ
,
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where ε 6= 0 is the fourth free constant. Under ε = 0 the solution is degenerated into the
two parametric one

x = 0, y =
±1

γτ + δ
, z =

1

γτ + δ
, u = −γ2τ + γδ − 1

(γτ + δ)2
.

Proof is a straightforward calculation with use of (6). Derivation of the change (20)
follows from formulae (42)–(43). �

In other words, the change (20) is a quite non-obvious correction of the change (13) and
integral πI2x2 = y2 − z2 is a correct modification of complicated integral (7). The Jacobi
identity (4) is thus a surface of a constant level in the phase-space (x, y, z, u).

3. Integrals and Poisson structures

3.1. Function integrals. Lagrangians, Hamiltonians, and Poisson structures for dynam-
ical systems are known to be closely related to integrals of the systems. This being so, we
may use results of the previous sections in order to propose corresponding description of
both the system (11) and (18). At first, let us tabulate the complete set of integrals to
equations (18).

Proposition 1. The system (18) has the only algebraic integral (19) and the two
transcendental multi-valued ones

J1 =
1

y
(u−2y2+z2)K

(
z

y

)
+3yE

(
z

y

)
, J2 =

1

y
(u+y2+z2)K ′

(
z

y

)
−3yE′

(
z

y

)
, (21)

that is J̇1 = J̇2 ≡ 0. The integrals satisfy the identity

J1K
′

(
z

y

)
− J2K

(
z

y

)
=

3

2
πy.

Proof and derivation use computations outlined in sect. 4.2 of appendix. �

It should be emphasized here that integrability of any modular systems is always re-
lated to the linear ODEs of Fuchsian class. By this means the appearance of transcenden-
tally multi-valued objects like K,K ′, E,E′ is inevitable point. Transition between such
a ‘k-linear’ and ‘modularly nonlinear’ τ -representation has been detailed in sect. 4.1 of
appendix.

3.2. Action and Lagrangians. Let us denote coordinates of the phase-space XT := (A,
B, a, b) for system (11) or XT := (x, y, z, u) for (18). We can use the standard relations
between action functional

S =

∫
L(X, Ẋ)dτ , (22)

Legendre transformation from the Lagrange function

L(X, Ẋ) = ̺k(X)Ẋk −H(X) (23)

to Hamiltonian H(X), and Poisson brackets. Variation of action δS = 0 entails equations

of motion (dynamical system) and their Hamiltonian form Ẋ = Ω∇H:

Ẋn = Ωnk (X)
∂H
∂Xk

⇔ Ωkn(X)Ẋn =
∂H
∂Xk

⇔ (11), (18),
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where

Ωkn =
∂̺n(X)

∂Xk
− ∂̺k(X)

∂Xn

and Ω, Ω are mutually inverse matrices: Ω = Ω−1. These equations do not depend on
choice of the Lagrangian L but bi-vector Ωnk defining Poisson bracket does, even though
the Hamilton function H = H(X) and coordinates X have been fixed. We thus have to
choose, apart from choice of H(X), any two independent integrals Ij = Ij(X) in invariant
form to Lagrangian density (23)

L(X, Ẋ) = H(Ṅ − 1) + I1 İ2

and to find the quantity N = N (X) with normalization Ṅ ≡ 1. Clearly, it is a linear
function of τ , i.e. N (X) = τ+const(H, I1, I2), and we have built such objects in appendix.
A computation, based on (44) followed by use of (41), (34), and (37), shows that

N = −2
K(k)

AJ1
⇒ dN

dh
≡ 1.

The quantity N (X) thus becomes

N (X) = −
K
(
z
y

)

yJ1
=

−K
(
z
y

)

(u− 2y2 + z2)K
(
z
y

)
+ 3y2E

(
z
y

) (Ṅ ≡ 1).

The Lagrangian density is defined up to a perfect τ -derivative and therefore its choice
always contains some heuristic arguments (simplicity of Lagrangians, brackets, etc.) The
most compact Lagrange function we have found is given by the following statement.

Proposition 2. The equations (11), (18), and (34) are lagrangian for action (22) with
the following expression for Lagrangian density L:

L = J2
1

(
Ṅ − 1

)
+ J2 İ − 8

d

dτ

(
B

A
K2

)
=

= 4
J1K

A2
·Ȧ− 2

{
kIK2 +

J2
1 − 16B2K2

k(k2 − 1)IA2

}
·k̇ +

{
J2 +

2K

AI
(J1 − 4BK)

}
·İ − J2

1 , (24)

where we omit indication of argument in Legendre’s integral K(k) and expressions for
J1,2(A,B, k, I) are taken from theorem 7 of appendix. Transitions between variables are
given by substitutions (42)–(43) and (20).

3.3. Poisson structures. The following property characterizes some non-triviality of
dynamical systems under consideration.

Theorem 3. Whatever the Hamilton function H(X) may be (single- or multi-valued
analytic function), none of the systems (6), (11), or (17), (18) does admit a constant
non-degenerated Poisson bracket Ω.

Proof. Let X denotes a phase-space coordinate vector for any of the systems above:
Ẋk = V k(X). Assuming the availability of the form ΩẊ = ∇H(X) with constant matrix

Ω we apply integrability condition to equations ∇H = ΩẊ , once considered as equations
for the Hamiltonian H:

∇kH = Ωkj V
j ⇒ ∇n(Ωkj V

j) = ∇k(Ωnj V
j) ⇒ Ωkj∇nV

j = Ωnj ∇kV
j . (25)
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It follows that Ω·∂XV is a symmetric matrix ∀X. Straightforward computations show
that this property is compatible with vector fields V ’s determining the systems (6), (11),
and (17)–(18) if and only if Ω ≡ 0. �

This proof gives in fact a criteria for availability of a canonical symplectic form (given
coordinates) and absence of such a bracket suggests to look for non-canonical one. Inso-
much as (19) is the only single-valued function integral we have to take it (or function of
it) as a Hamiltonian. Again, choosing L in order that bracket Ω be simplest, we put

L = H(Ṅ − 1) + (λJ1)
−1J̇2 , (26)

where λ is an arbitrary constant, and derive the bracket by formulae from the previous
section. The computational rule thus acquires the following form:

Ω = M −M T , Mkn = ∇kH · ∇nN + ∇kI1 · ∇nI2 .

We insert here I1 = (λJ1)
−1 and I2 = J2 and use proposition 3 of appendix.

Theorem 4. Let XT := (x, y, z, u). Dynamical system (18) admits a Hamiltonian form

Ẋ = ω∇H, H =
1

2

y2 − z2

x2

with the degenerated rational (single-valued) Poisson bracket

ω =
x

2H




0 (u+ y2 − 2z2)y (u− 2y2 + z2)z u2 − y4 + y2z2 − z4

−(u+ y2 − 2z2)y 0 0 0

−(u− 2y2 + z2)z 0 0 0

−u2 + y4 − y2z2 + z4 0 0 0




.

Non-degenerated but transcendental multi-valued extension of ω is given by the bracket
Ω = ω + λω̃ (detΩ = 4π−2λ2x6y2z2J4

1 ), where

ω̃ =
2

π
K2




0
x

y
z2 xz xM1

−x

y
z2 0

z

y
(y2 − z2)

1

y
M2

−xz
z

y
(z2 − y2) 0 zM3

−xM1 −1

y
M2 −zM3 0




(det ω̃ = 0)

and
M1 := 3y2(EK−1 − 1)2 − z2 , M3 := y2(3E2K−2 − 1) + z2 ,

M2 := 3y4(EK−1 − 1)2 + y2z2(6EK−1 − 5) + 2z4 .

Brackets ω, ω̃ are self-consistent and therefore have the following Casimir’s functions:

ω∇J1 = ω∇J2 ≡ 0, ω̃∇H = ω̃∇N ≡ 0.

The system is thus bi-Hamiltonian in the sense of Magri [16].
Incidentally it should be observed that degenerated but well-defined rational bracket ω

is obtained from non-degenerated but multi-valued bracket Ω by a passage to the limit
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λ → 0 in transcendental part of the Ω and this procedure can be interpreted as a formal
separability of canonically conjugated pairs (H,N ) and (J1,J2) in Lagrangian (26). Their
commutation relations (algebra of integrals) are standard:

{
H, J1

}
Ω
=
{
H, J2

}
Ω
= 0,

{
J2, (λJ1)

−1
}
Ω
= 1.

Remark. An explicit analog of theorem 4 for Jacobi’s system (11) is obtained with avail

of transformation law for tensor Ω(x, y, z, u) 7→ Ω̃(A,B, a, b) under the coordinate change
XT := (x, y, z, u) 7→ (A,B, a, b) =: Y T. The explicit form of the transformations reads

Ω̃jp(Y ) =
∂Y j

∂Xn

∂Y p

∂Xm
Ωnm(X) ⇒ Ω̃ = T ΩT T , T kn :=

∂Y k

∂Xn

and implies equations

Ẏ j = Ω̃jp(Y )
∂H
∂Y p

⇔ (11).

We do not display the formulae here since they are not quite compact.
We conclude the section with general remarks concerning other non-constant brackets.

All of them are obtainable by re-normalization of the objects

N 7→ N+F1(H,J1,J2), H 7→ F2(H,J1,J2), J2 7→ F3(H,J1,J2), J2 7→ F4(H,J1,J2) (27)

entering into Lagrangian (26). This defines a function freedom of the three variables
(α, β, γ) = (H,J1,J2). On the other hand, all the dependencies Ω(X), including possible
change of the Hamilton function H, are determined by the following modification of the
line (25):

∇n(Ωkj V
j) = ∇k(Ωnj V

j) ⇒ (∇nΩkj −∇kΩnj )V
j = Ωnj W

j
k −ΩkjW

j
n , (28)

where tensor field

W
j
k
:=

∂V j

∂Xk

can be thought of as given. Equations (28) are a set of partial DE’s for Ω(X)’s but,
thanks to function freedom mentioned above, we may pass from old set of variables, say
(x, y, z, u), to the new one (N,α, β, γ) and thereby turn these equations into ordinary
differential equations in variable N .

Theorem 5. Denote Ω(N ;α, β, γ) :=Ω(x, y, z, u) and matrix W = W (N ;α, β, γ):

Wjk :=
∂V j

∂Xk

∣∣∣∣
X=X(N ;α,β,γ)

,

where (α, β, γ) are seen as parameters. Then all the brackets Ω(X) = Ω(N) satisfy the
following dynamical system

dΩ

dN
= WΩ + ΩW T (29)

supplemented with arbitrary initial condition (bracket) Ω(0) = Λ(α, β, γ).
Proof. With use of antisymmetry Ωkj = −Ωjk and Jacobi’s identity ∇nΩkj + ∇kΩjn +

∇jΩnk = 0 equations (28) can be rewritten as V j∇jΩnk = ΩkjW
j
n − Ωnj W

j
k . Hence

Ω̇ = −ΩW −W TΩ and, subsequently, (29) since α̇ = β̇ = γ̇ = 0 and ΩΩ̇ = −Ω̇Ω . �
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To put it differently, function freedom (27) with three functions of three variables α =
H(X), β = J1(X), γ = J2(X) is converted into coefficients of dynamical system (29)
(matrix W ) and its initial condition Λ(α, β, γ). As the latter one may take any particular
bracket, say, the bracket Ω of theorem 4.

4. Appendix: computational details

4.1. Solutions. The general integral of system (11) is found without difficulties because
all the objects of the theory are completely at hand. From (11) it follows that a∂a = −16∂b
and this yields an algebraic integral generalizing Jacobi’s restriction (12)

I2 = a2 + 32b ⇒ İ ≡ 0. (30)

Therefore b is expressed through the variable a and a itself satisfies a simple differential
consequence of (11), namely the 3rd order equation

ahhh
a3h

− 3

2

a2hh
a4h

= −1

2

a2 + 3I2

(a2 − I2)2
.

This is a variety of the standard differential equation for Legendre’s modulus λ := k2(τ):

λτττ

λ3
τ

− 3

2

λ2
ττ

λ4
τ

= −1

2

λ2 − λ+ 1

λ2(λ− 1)2
. (31)

It immediately follows that there is bound to be a linear fractional change between a and
λ transforming these equations into each other. This simple computation gives that

λ =
I − a

2I
and with use of well-known ϑ-constant representation to the function λ we get

a = I − 2I
ϑ4
2

ϑ4
3

(
αh+ β

γh+ δ

)
, (32)

where, as usual, {α, β, γ, δ} are free constants and αδ 6= βγ. The further integration for
variables A and B can be continued in two ways. Having rules for differential computations
(17) of the ϑ-series we can find, by differentiating formulae for a(h) and b(h), expressions
for A(h), B(h). The second way is to linearize the system because any Schwarz’s equation
is known to be related to a certain linear ODE. We shall give solutions both in h- and
k-representations.

4.1.1. The k-representation. Using (32) we have the obvious transformations between
pairs (a, b) and (k, I):

a = I − 2I k2 , 8b = I2k2(1− k2). (33)

and therefore the following variety of the system (11):

Ȧ = 2A2B, Ḃ =
1

8
I2k2(1− k2)A3 , k̇ =

1

2
I k(1− k2)A2 , İ = 0, (34)

where we let the dot above a symbol denote an h-derivative. We shall use this system
as an intermediate equivalent of Jacobi’s one (11) because of its relation to linear ODEs
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is elementary. Indeed, as it follows from (34), the quantities A and B, as functions of k,
satisfy the two linear equations

dA

dk
=

4

I

1

(1− k2)k
B,

dB

dk
=

I

4
kA (35)

and their consequences

k(k2 − 1)Akk + (3k2 − 1)Ak + kA = 0, k(k2 − 1)Bkk − (k2 − 1)Bk + kB = 0. (36)

Since k is Legendre’s modulus, it is naturally to expect that these ODEs are integrable in
terms of integrals (8)–(9).

Proposition 3. Canonical Legendre’s elliptic integrals (8)–(9) are differentially closed :

dK

dk
= −K

k
− E

(k2 − 1)k
,

dE

dk
= −K

k
+

E

k
,

dK ′

dk
=

kK ′

1− k2
+

E′

(k2 − 1)k
,

dE′

dk
=

kK ′

1− k2
+

kE′

k2 − 1
.

(37)

This system, once considered as a dynamical one, has the following general solution

K = αK(k)− βK ′(k),

E = αE(k) + β
[
E′(k)−K ′(k)

]
,

K ′ = γK(k) + δK ′(k),

E′ = δE′(k) + γ
[
K(k)− E(k)

]
,

where {α,β,γ, δ} are free constants.
Of course, one should bear in mind that canonical functions (8)–(9) themselves are not

independent but satisfy the Legendre identity

K(k)E′(k) +K ′(k)E(k) −K(k)K ′(k) =
π

2
∀k.

The second order differential consequences of system (37) are as follows. The quantities
K, K ′ satisfy the one equation

k(k2 − 1)
d2Ψ

dk2
+ (3k2 − 1)

dΨ

dk
+ kΨ = 0 ⇒ Ψ =

{
K(k),K ′(k)

}

and common equation for E and E′ reads as

k(k2 − 1)
d2Ψ

dk2
+ (k2 − 1)

dΨ

dk
− kΨ = 0 ⇒ Ψ =

{
E(k), E′(k)

}
.

The search for solution to the system (35) is thus just a technical task. Indeed, in
addition to solution pair (33), we derive that

A = 4αK(k) + 4γK ′(k),

IB = α
[
E(k) + (k2 − 1)K(k)

]
− γ

[
E′(k)− k2K ′(k)

] (38)

with some free constants α, γ. We can now combine the ‘k-formulae’ (38) and h-time
dynamics to obtain a complete integral of system (11).
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4.1.2. The modular h-representation. Let us denote

T :=
αh+ β

γh+ δ
(39)

and therefore, by virtue of (31),

αh+ β

γh+ δ
= i

K ′(k)

K(k)
⇔ k =

ϑ2
2(T)

ϑ2
3(T)

. (40)

Make use of representation to integrals (8)–(9) through Jacobi’s η, ϑ-constants. Canonical
formulae for K and K ′ are known:

K(k) =
π

2
ϑ2
3(h), K ′(k) =

π

2i
hϑ2

3(h), k =
ϑ2
2(h)

ϑ2
3(h)

.

One can also show that second pair {E, E′} has the following modular h-representation:

E(k) =
2

π

1

ϑ2
3(h)

{
η(h) +

π2

12

[
ϑ4
3(h) + ϑ4

4(h)
]}

,

E′(k) =
2

π

i

ϑ2
3(h)

{
hη(h) − π2

12

[
ϑ4
2(h) + ϑ4

3(h)
]
h− π

2
i

}
.

Modifying these formulae for the ratio (39) we obtain

K(k) =
π

2
ϑ2
3(T) ⇒ αK(k)− iγK ′(k) =

K(k)

γh+ δ
=

π

2

ϑ2
3(T)

γh+ δ
.

Adjust free integration constants in (38) with those of (39) and (40). We then may write

A = ±
√

4i

πI

{
αK(k)− iγK ′(k)

}
(41)

and therefore

B = ±
√

i

4πI3

{
α
[
E(k) + (k2 − 1)K(k)

]
− iγ

[
E′(k)− k2K ′(k)

]}
.

Passing to the ϑ, η-representation we arrive at a final form of the sought solution.
Theorem 6. General solution to the dynamical system of Jacobi (11) has the form:

a = I − 2I
ϑ4
2(T)

ϑ4
3(T)

, b =
I2

8

ϑ4
2(T)ϑ

4
4(T)

ϑ8
3(T)

, A = ±
√

πi

I

ϑ2
3(T)

γh+ δ
,

B = ±
√

iI

π3

1

(γh+ δ)ϑ2
3(T)

{
π2

12

[
ϑ4
2(T)− ϑ4

4(T)
]
+ η(T) +

π

2
iγ (γh+ δ)

}
,

where {I, α, β, γ, δ} are free constants supplemented with normalization αδ − βγ = 1.
These formulae are in effect the hidden correction of change (13). As a references source,

we give here also the explicit transformation {A,B, k, I} → {x, y, z, u} (I := 12iI2):

x =
1+i√
π
kA, y = (1+i)IA, z2 = 2iI2(1−k2)A2 , u = 2A

{
B−iI2(2k2−1)A

}
. (42)
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This change turns (18) exactly into the system (34). Inverting this change we obtain

A =
1−i

2I
y, B =

1+i

2

I

y
(u+ y2 − 2z2), I2 =

1

π

y2 − z2

x2
, k2 = 1− z2

y2
(43)

and thereby derive theorem 2.

4.2. Function integrals. In order to integrate system (11) we made use its first integral
(30). Having a complete solution we can find the remaining two function integrals and
the fourth ‘integral’ corresponds to a time shift h 7→ h + ε. The simplest way to derive
the integrals is to use the linear fractional formula (40). Indeed, the h-derivative of this
formula produces

(γh+ δ)2 =

(
d

dh

αh+ β

γh+ δ

)
−1

=

(
i
d

dh

K ′(k)

K(k)

)
−1

= · · ·

and therefore expression

· · · =
(
I

2
k(1− k2)A2 · i d

dk

K ′(k)

K(k)

)
−1

is a perfect square. Upon rooting we get a linear function γh + δ of dynamical vari-
ables {A,B, k, I}⇔{A,B, a, b}. Its h-derivative yields an h-independent constant γ, i.e.
integral J1(A,B, a, b) ∼= γ. Doing the same for

(αh+ β)2 =

(
d

dh

γh+ δ

αh+ β

)
−1

=

(
−i

d

dh

K(k)

K ′(k)

)
−1

= · · ·

we get one more integral J2(A,B, a, b) ∼= α. Both of these integrals are independent of each
other since {α, γ} are independent constants. All the calculus with objects K, k, . . . has
been described in previous section and computations are somewhat lengthy but routine.
We therefore omit them entirely.

Theorem 7. The Jacobi system (11) has the only algebraic integral I2 = a2 + 32b and
the two functionally independent transcendental integrals

J1 = 4K(k) ·B −
{
E(k) + (k2 − 1)K(k)

}
·AI ,

J2 = 4K ′(k)·B +
{
E′(k) − k2K ′(k)

}
·AI ,

(44)

where {I, k}, if required, can be expressed via {a, b} by the inversion of formulae (33):

I =
√

a2 + 32b , k2 =
1

2
− 1

2

a√
a2 + 32b

.

The integrals J1, J2 are multi-valued transcendental functions of dynamical variables {a, b}
and linear ones of {A,B}.

Another way of derivation of integrals rests on linear equations (35)–(36) and the well-
known Wronskian relation for 2nd order linear ODEs. For example, the A-equation in
(36) has K(k) as its particular solution. Therefore

{
K(k) · dA

dk
− dK(k)

dk
·A
}
(k2 − 1)k = const.
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Replacing here Ak through B by (35) and using rules (37) we arrive again at integral J1.
Choice of K ′(k) for particular solution produces the second integral J2 in (44).
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[8] Conte, R. (Ed.) The Painlevé property. One century later. CRM Series in Mathematical Physics
(1999). Springer–Verlag: New York (1999). R. Conte. The Painlevé Approach to Nonlinear Ordinary
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Systems. Max Planck Institute: Preprint (2007), 87.
[13] Halphen, G.-H. Traité des Fonctions Elliptiques et de Leurs Applications. I–III. Gauthier–Villars:

Paris (1886–1891).
[14] Jacobi, C. Gesammelte Werke. II. Verlag von G. Reimer: Berlin (1882).
[15] Maier, R. S. Nonlinear differential equations satisfied by certain classical modular forms.Manuscripta

Mathematica (2011), 134(1/2), 1–42.
[16] Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. (1978), 19(5),

1156–1162.
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