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Nonlinear dynamics of a coupled micro-ring resonator chain
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C. Palencia3 and A. Durán3
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We study nonlinear wave phenomena in a coupled ring resonator optical waveguide in the tight coupling

regime. The discrete nonlinear Bloch modes of the structure are derived. The switching behavior of the

transmission system is addressed numerically and the results are explained in the light of this analytical result.

We also present a numerical study on the spontaneous generation of Bragg solitons from a continuous-wave

input.

Transmission media consisting of chains of coupled
micro-ring resonators find many applications in photon-
ics. They have been proposed for the implementation of
optical filters [1] or the realization of fast and slow wave
structures [2–4]. One particular benefit of slow-wave op-
tical systems is the associated enhancement of the non-
linear optical response [5,6]. In this letter, we study the
nonlinear dynamics of a coupled resonator optical waveg-
uide (CROW) built with micro-rings with a Kerr optical
response.
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Fig. 1. (a) Coupled ring resonator optical waveguide. (b)
Unit cell of the resonator chain. (c) Band structure (first
Brillouin zone) for a linear chain for θ = 0.5 (solid) and
θ = 0.8 (dashed).

The CROW geometry is displayed in Figure 1.a. We
will assume that the evanescent coupling between sec-
tions, with a phase jump of π/2 across the coupled
waveguides, is localized at a single point and is described
by the parameters θ and ρ, θ2 + ρ2 = 1, as illustrated
in Figure 1.b. We will neglect waveguide and material
dispersion, since dispersive effects with origin in the res-
onator structure itself will dominate the former. The unit

cell defined in Figure1.b provides a discretization scheme
for both space and time. The propagation length across
one section is L = πR, with R is the resonator radius,
and the sampling period is the corresponding propaga-
tion delay τ = L/v, where v is the group (and phase)
velocity in the optical waveguide sections. We consider a
continuous-wave input with frequency ω and will denote
with a superscript the time index, where instant k cor-
responds to tk = kτ . Thus, the complex field envelopes
for the forward and backward waves in the structure at
discrete position n and time k are Ak

n = An(tk) and
Bk

n = Bn(tk), respectively.
The signal transmission across the cell length L has as-

sociated a linear phase exp(−jΩ), with Ω = ωL/v = ωτ
and a linear loss factor a = exp(−αL) where we assume
a distributed loss with coefficient α. We will set a = 1 in
the lossless case. The effect of the nonlinear phase will be
computed along sections of length d = L/2. The nonlin-
ear phase shift is −Γ|E|2, where Γ = γdeff , γ is the non-
linear Kerr coefficient and deff = (1− exp (−αd)) /(2α).
The discrete spatio-temporal dynamics are then de-

scribed as
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Equations (1) can be written in time-explicit form sub-
stituting
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in the last exponential terms in Eqs. (1). Even though we
will restrict the analyses to the lossless case a = 1, these
structures typically exhibit a certain amount of intrinsic
radiation loss [7] dependent on the refractive index con-
trast of the guiding structures. Moreover, we have found
in the numerical simulations that propagation losses have
the expected result of stabilizing to some extent the sig-
nal transmission. The in-depth study of the effect of loss
will be the subject of a forthcoming publication.
The steady state response for a 1-ring CROWhas been

shown to exhibit transmission bistability [4] and multi-
stability has been reported for the N -ring system [9].
Even for an isolated resonator, the micro-ring will dis-
play a Ikeda-type instability [10] and behave as a chaotic
oscillator [11]. The CROW can be described as a coupled
array of such oscillators and, not surprisingly, the numer-
ical simulations often show a chaotic response when the
system is driven to highly nonlinear regimes. Therefore,
we will restrict our analyses to a tightly coupled micro-
ring chains, θ → 1, where signal transmission across res-
onator stages is large and, thus, stable (nonlinear) prop-
agation effects can be efficiently addressed. Regarding
the transverse instabilities of the type described in [12],
we have already assumed that the size of the micro-rings
is too small for these to be of any relevance when ne-
glecting material or waveguide dispersion.
Signal propagation in the CROW can be analyzed

drawing a discrete Floquet-Bloch theory for the CROW
model (1) analogue to that of continuous periodic sys-
tems [14]. For an infinite chain, we consider steady-state
solutions for the complex envelopes of the type

An = A exp (−jnQ) , Bn = B exp (−jnQ) , (3)

characterized by the mode wave-number Q. For the lin-
ear case, we set Γ = 0 in Eqs. (1) and obtain the linear
dispersion relation

cosQ = sinΩ/θ, (4)

which provides a relation between Q and Ω that is pe-
riodic in both variables. Figure 1.c shows the first Bril-
louin zone (Q ∈ [−π, π]) for two different values of θ.
The dispersion relation gives linear Bloch wave-numbers
Q which become imaginary in a range of Ω values de-
fined by the condition sinΩ/θ > 1. These regions, where
signal propagation is forbidden, define the bands that
are highlighted in Fig. 1.c. We will focus our analysis
on the second forbidden band in Fig. 1 at the edge of
the first Brillouin zone Q = π. The band-gap spans
the interval [Ω1,Ω2] with Ω1 = 2π − 2 arcsin(θ) and
Ω2 = 2π − arcsin(θ). Figure 1 also illustrates the nar-
rowing of the bands as θ increases, which results in a
very narrow gap when we approach the tightly-coupled
limit θ → 1.
We define P = |A|2 + |B|2 and the amplitude ratio

f = B/A. The mode amplitudes can be expressed as
|A| =

√

P/(1 + |f |2) and |B| = |f |
√

P/(1 + |f |2). Sub-
stitution of (1) into (3) gives the nonlinear dispersion

relation

cos (Q +∆Q) = sin (Ω + ΓP ) /θ, (5)

where ∆Q = ΓP (|f |2−1)/(|f |2+1). |f | can be obtained
as a solution of the implicit equation

|f | = ρ
(

1 + θ2 exp(−2qI)− 2θ exp(−qI) sin(qR +∆Q)
)

1

2

(6)
with Q = qR − iqI ; qR and qI are real. In the nonlinear
case, Q is real out of the forbidden bands and has non-
zero real and imaginary parts otherwise (except for |f | =
1). In this regime, qR = −∆Q and

qI = cosh−1 (sin(Ω + ΓP )/θ) . (7)

Thus, nonlinearity has the effect of shifting the dis-
persion relation and the whole band structure in the
ΩQ plane. An input signal with a frequency inside a
forbidden band will experience a transmission attenua-
tion dependent on the propagation nonlinearity as the
imaginary part of Q is modified according to (7). This
mechanism explains the switching behavior of this type
of structures [13], where a change in the attenuation
constant of the propagating signal will produce a corre-
sponding variation of the transmitted signal amplitude.
We have addressed the switching effect numerically by

placing a unit amplitude input signal |A1| = 1 with a fre-
quency Ω = 3π/2 (in the middle of the second forbidden
band) for different values of Γ. This is fully equivalent
to keeping Γ constant and changing the input amplitude
accordingly. We have also checked that identical dynam-
ics are produced when the input frequency is tuned to
the middle of the first band Ω = π/2. The numerical so-
lutions are obtained with a computer code designed for
more general propagation conditions [3, 4] which allows
for signal fluctuations at a scale smaller than τ , but com-
prises any result from the model equations (1) whenever
the dynamics are kept within the time scale τ , which will
be always the case for the results presented in this work.
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Fig. 2. (a) Nonlinear switching in a N = 10 CROW
with θ = 0.99 as obtained numerically (points) and fit-
ted prediction from the nonlinear dispersion relation (7)
assuming the absence of boundary effects (dashed). (b)
Transient output response for five values of Γ.

There are two effects that have not been accounted
for in the derivation of the exact nonlinear Bloch modes

2



but are present in the actual system dynamics. For fi-
nite length structures, boundary effects will result in
the excitation of backward propagating (A−

n , B
−

n ) =
(A−, B−) exp(jnQ) Bloch modes. Furthermore, the pres-
ence of a counter-propagating wave has not been consid-
ered in the derivation of the exact Bloch mode solution,
but will modify the propagation properties.
In our numerical experiments, we are imposing the

boundary conditions Ak
1 = exp(−jΩk) and Bk

N+1
= 0.

The condition at N + 1 is expected to produce an ideal
reflection of the Bloch wave at the end of the structure,
whereas the input condition at n = 1 effectively fixes the
forward wave in the steady state since the contributions
of subsequent reflections will be largely attenuated.
In Figure 2.a the numerical results of the transmission

switching are displayed with points. In order to illus-
trate the qualitative switching behavior predicted by the
analytical model, the results for a forward propagating
Bloch mode AN+1 = A1 exp (−jQN) are shown with a
dashed line. Q is obtained from Equation 7 fitted with a
particular value of P . Even though the analytical model
does not encompass the full complexity of the nonlin-
ear problem in the presence of reflected nonlinear Bloch
waves, it still provides a good qualitative description of
the switching behavior. The numerical results in Figure
2.a show that for very low nonlinearity, the total out-
put amplitude is very close to the double of the value
of |AN+1| that would result from a perfect reflection of
the attenuated linear mode. Figure 2.b shows the output
transient for various values of Γ.
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Fig. 3. (a) Spontaneously generated pulse trains for
θ = 0.993 and Γ = 0.047 (dashed-dotted), Γ = 0.050
(dashed) and Γ = 0.055 (solid). Pulse repetition period
for varying Γ and four values of θ.

Inside the forbidden band, close the band edge, the
dynamics are known to be well-described by a nonlinear
Schrödinger equation [15, 16]. It is anticipated that the
nonlinear Bloch soliton solutions are modulationally un-
stable for sufficiently high nonlinearity and that Bragg
solitons [17, 18] arise as attractors of the nonlinear dy-
namics. We address numerically this effect for a chain
with N = 50 cells in the tight-coupling regime θ → 1
by tuning the input frequency to a ten percent of the to-
tal frequency gap inside the forbidden band in each case.
Figure 3.a illustrates typical pulse sequences obtained af-
ter the onset of the instability. For these simulations, the
intra-cavity field displays the expected generation and

subsequent propagation of a soliton inside the CROW.
Also, one can observe in Figure 3.a how the pulse spac-
ing decreases as the nonlinearity increases. This effect is
illustrated in Figure 3.b for four different values of θ and
values of Γ in the range between 0.048 and 0.054.
In summary, we have presented a study of the non-

linear wave propagation phenomena displayed by a non-
linear CROW. A model for the system dynamics has
been introduced and its exact nonlinear Bloch modes
have been derived. Also, we have numerically studied
the generation of Bragg solitons in the structure. Fur-
ther analyses for the system behavior in the presence
of propagation loss and the linear stability analysis to
analytically predict the instability threshold will be ad-
dressed in future publications.
This work has been supported by the Spanish Minis-
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