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Linear Quadratic Optimal Control Based on Dynamic

Compensation for Rectangular Descriptor Systems
ZHANG Guo-Shan1 LIU Lei1

Abstract The linear-quadratic optimal control by dynamic compensation for rectangular descriptor system is considered in this
paper. First, a dynamic compensator with a proper dynamic order is given such that the closed-loop system is regular, impulse-free,
and stable (it is called admissible), and its associated matrix inequality and Lyapunov equation have a solution. Also, the quadratic
performance index is expressed in a simple form related to the solution and the initial value of the closed-loop system. In order to
solve the optimal control problem for the system, the proposed Lyapunov equation is transformed into a bilinear matrix inequality
(BMI), and a corresponding path-following algorithm to minimize the quadratic performance index is proposed in which an optimal
dynamic compensator can be obtained. Finally, a numerical example is provided to demonstrate the effectiveness and feasibility of
the proposed approach.
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The rectangular descriptor systems have been investi-
gated by many researchers for a few years[1−8]. Among
them, [1−2] have considered the issues of admissibility of
initial conditions and controls, and [3] has derived the nec-
essary and sufficient condition for a given definition of the
impulsive-mode controllability. Since rectangular descrip-
tor systems cannot be turned into square systems by static
feedback (state feedback or static output feedback), the
closed-loop systems based on the static feedback cannot
meet the requirement of regularity, impulse-freeness, and
stability. To solve this problem, a new approach called
dynamic compensation is adopted. For the rectangular de-
scriptor systems, dynamic compensator′s design was solved
in [2, 4−6]. In [2], with regard to dynamic compensation,
some new notions on regularizability, controllability, and
observability have been proposed and a necessary and suf-
ficient condition for the existence of a dynamic compen-
sator has also been derived. Reference [4] has studied
the problems of regularization, impulse-freeness, stability,
and pole-placement of the rectangular descriptor systems.
Reference [5] has designed a new feedback structure, dy-
namic compensator plus state feedback, while [6] has con-
sidered the constrained regulation problem based on dy-
namic compensation. In addition to dynamic compensa-
tion, proportional integral observers[7] and filters[8] have
been designed for the rectangular descriptor systems. For
the normal systems, [9] has given a survey of static output
feedback control and presented that the dynamic compen-
sator can be brought back to the static output feedback
case, and provided some useful methods for the research of
the rectangular descriptor systems.

The optimal control problems for rectangular descriptor
systems are not yet studied well. The topics of normal
systems[10−15] and square descriptor systems[16−19] have
been paid considerable attention for many years. Most of
the exiting results are focused on state feedback control[10]

and output feedback control[10−15]. For the square descrip-
tor systems, [16] has given the optimal state regulators such
that the closed-loop systems have robustness properties,
and [17] has designed the optimal state feedback in terms

of nonsingular transformation, and neural networks[18] and
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genetic programming[19] have also been used to solve the
optimal control problems. The singular linear quadratic
(LQ) problem for rectangular descriptor systems is investi-
gated in [20], and it has been transformed to non-singular
LQ problem for standard state space systems by using ele-
mentary linear algebra and the equivalence principle. The
authors of [21] have investigated the LQ suboptimal control
problem with disturbance rejection by means of restricted
equivalent transformation.

As we know, the LQ optimal control problem can
be transformed into a problem of solving Riccati equa-
tions/inequalities, and there have been some algorithms
to solve these nonlinear matrix equations/inequalities.
Reference [11] has given an algorithm, named Levine-
Athans algorithm, for solving algebraic Riccati equation.
Reference [22] has introduced some iterative algorithms for
solving matrix equations. Reference [23] has proposed a
simple matrix transformation for turning nonlinear ma-
trix inequality (NLMI) to linear matrix inequality (LMI).
But these algorithms cannot be applied directly to solve
the linear-quadratic optimal problem based on dynamic
compensation. References [24−26] have investigated how
to convert bilinear matrix inequality (BMI) problem into
an LMI iteratively solving algorithm. Among these algo-
rithms, path-following algorithm[26] is tested to be much
more effective since it linearizes the BMI using a first-order
perturbation approximation and then iteratively compute
a perturbation that “slightly” improves the controller per-
formance by solving a semidefinite program (SDP).

Through the above analysis, dynamic compensation
plays an irreplaceable role especially for rectangular de-
scriptor system. However, the optimal control problem for
the rectangular descriptor system based on dynamic com-
pensation which represents fruitful research areas is not
yet considered. So in this paper, we will present a dynamic
compensator with a proper dynamic order such that the
closed-loop system is regular, impulse-free, and stable (it
is called admissible) and its associated matrix inequality
and Lyapunov equation have a solution. Then, the given
quadratic performance index can be described in a simple
form related to the solution and the initial value of the
closed-loop system. In order to solve this problem numer-
ically, an algorithm is proposed in the light of the path-
following algorithm[26]. By applying this algorithm, an op-
timal dynamic compensator and the minimum value of the
quadratic performance index can be obtained. Finally, a
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numerical example is provided to demonstrate the effective-
ness and feasibility of the proposed approach.

1 Preliminaries and problem formula-
tion

Consider the following linear time-invariant (LTI) rect-
angular descriptor systems:





Eẋxx(t) = Axxx(t) + Buuu(t)

yyy(t) = Cxxx(t)

Exxx(0−) = Exxx0

(1)

where xxx(t) ∈ Rn is the state vector, uuu(t) ∈ Rq is the input
vector, yyy(t) ∈ Rp is the output vector, E, A ∈ Rm×n, B ∈
Rm×q, C ∈ Rp×n are constant matrices. Exxx(0−) = Exxx0

with xxx0 ∈ Rn stands for the initial condition. The rank
of matrix E is generally assumed as r, i.e., rank(E) = r,
with the range of 0 ≤ r ≤ min{m, n}. If m = n, system
(1) is said to be square, and more, if det(sE − A) is not
identically zero, system (1) is said to be regular, otherwise
singular. If m 6= n, system (1) is said to be rectangular.

In this paper, we assume that uuu(t) and Exxx0 are admis-
sible. Then, the following equation is satisfied:

rank
[
sE −A B Exxx0

]
= rank

[
sE −A B

]
(2)

Consider the following performance index with the linear
quadratic form:

J =
1

2

∫ ∞

0

[xxxT(t)Qxxx(t) + uuuT(t)Ruuu(t)]dt (3)

where Q ∈ Rn×n and R ∈ Rq×q are weight matrices which
are symmetric and positive-definite.

In practical applications, it is desired that the state of
the system has only one smooth solution, i.e., the system
should be regular and impulse-free. But it is clear that
any static feedback control for rectangular descriptor sys-
tem does not meet this requirement. To solve the problem,
the dynamic compensators for system (1) are given with
following form:





Ecẋxxc(t) = Acxxxc(t) + Bcyyy(t)

uuu(t) = Ccxxxc(t) + Dcyyy(t)

Ecxxxc(0−) = Ecxxxc0

(4)

where xxxc(t) ∈ Rnc is the state vector of dynamic com-
pensator. Ec, Ac ∈ Rmc×nc , Bc ∈ Rmc×p, Cc ∈ Rq×nc ,
Dc ∈ Rq×p are matrices of dynamic compensator which are
to be solved. Let rank(Ec) = rc, 0 ≤ rc ≤ min{mc, nc}.

Then, the resultant closed-loop system from system (1)
and its compensator (4) has the following form:





[
E 0
0 Ec

] [
ẋxx
ẋxxc

]
=

[
A + BDcC BCc

BcC Ac

] [
xxx
xxxc

]

yyy(t) =
[
C 0

] [
xxx
xxxc

] (5)

Let Ē =

[
E 0
0 Ec

]
, Ā =

[
A + BDcC BCc

BcC Ac

]
,

C̄ =
[
C 0

]
, and ξξξ(t) =

[
xxxT(t) xxxc

T(t)
]T

, then the closed-

loop system (5) can be rewritten as





Ēξ̇ξξ(t) = Āξξξ(t)

yyy(t) = C̄ξξξ(t)

Ēξξξ(0−) = Ēξξξ0

(6)

It is desirable that system (6) should be a square descrip-
tor system, hence the dimension mc×nc of the compensator
(4) is assumed to satisfy

n + nc = m + mc (7)

The following definitions and lemmas are useful for the
development of the results in this paper.

Definition 1[2]. 1) System (1) is said to be regulariz-
able if there exists a dynamic compensator (4) such that
the closed-loop system (6) is regular.

2) System (1) is said to be strongly stabilizable and
strongly detectable if there exists adynamic compensator
(4) such that the closed-loop system (6) is stable.

Definition 2[27]. System (6) is admissible if it is regular,
impulse-free, and stable.

Lemma 1[2]. There exists a dynamic compensator (4)
such that the closed-loop system (6) is admissible, if and
only if system (1) is regularizable, strongly stabilizable, and
strongly detectable.

In order to be more intuitive, we change the above
Lemma 1 to the expression with restriction of rank.

Lemma 2[4]. There exists a dynamic compensator (4)
such that the closed-loop system (6) is admissible, if and
only if

1) rank
[
sE −A B

]
= m, rank

[
sET −AT CT

]
= n,

for any s ∈ C+;

2) rank

[
0 E 0
E A B

]
= m+r and rank




0 E
E A
0 C


 = n+r.

Moreover, the order rc of the compensator (4) satisfies

fB + fC + rc ≥ n + m + r + 1, where fB = rank

[
E 0
A B

]
,

fC = rank

[
E A
0 C

]
.

Lemma 3[28]. The pair (Ē, Ā) is admissible if and only
if there exists a matrix P such that

ĒTP = PTĒ ≥ 0 (8)

ĀTP + PTĀ < 0 (9)

The aim of this paper is to design dynamic compen-
sator (4) with proper dynamic order rc for system (1) such
that the closed-loop system (6) is admissible and the linear
quadratic performance index (3) is minimized.

2 Main results

2.1 Optimal control based on dynamic compensa-
tion

Consider the closed-loop system (6) if we let Â =[
A 0
0 0

]
, B̂ =

[
B 0
0 I

]
, Ĉ =

[
C 0
0 I

]
, K =

[
Dc Cc

Bc Ac

]
, and Ā = Â + B̂KĈ, then the case where

a dynamic compensator with order rc is brought back to
the static output feedback controller case.
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Here, the quadratic performance index (3) is described
by

J =
1

2

∫ ∞

0

[ξξξT(t)Q̄ξξξ(t)]dt (10)

where Q̄ = Q̂ + ĈTKTR̂KĈ, Q̂ =

[
Q 0
0 0

]
, and R̂ =

[
R 0
0 0

]
.

Remark 1. Applying Q̂, R̂, K, and Ĉ to Q̄, we obtain

Q̄ =

[
Q + CTDT

c RDcC CTDT
c RCc

CT
c RDcC CT

c RCc

]

Since Q and R are symmetric and positive-definite, we
assume that for controller gain K, Q̄ is symmetric and
positive-definite.

Theorem 1. Assume that the LTI rectangular descrip-
tor system (1) is regularizable, strongly stabilizable, and
strongly detectable. If there exists a dynamic compensator
(4) with dynamic order rc such that the closed-loop system
(6) is admissible and Q̄ > 0, then (8) and the following
Lyapunov equation

ĀTP + PTĀ + Q̄ = 0 (11)

have the solution P , and the performance index J =
1
2
ξξξT(0)ĒTPξξξ(0) or J = 1

2
ξξξT(0)PTĒξξξ(0).

Proof. From Lemma 1, we know that if the rectangular
descriptor systems (1) is regularizable, strongly stabiliz-
able, and strongly detectable, then there exists a dynamic
compensator (4) with order rc which can make the closed-
loop system (6) admissible. Then there exists a matrix P
such that (8), (9), and

ĀTP + PTĀ = −Q̄ < 0 (12)

hold. Therefore, we choose a Lyapunov function as

V (ξξξ, t) = ξξξT(t)ĒTPξξξ(t) ≥ 0 (13)

Then, the time-derivative of V (ξξξ, t) along the solution of
(6) is given by

d

dt
[ξξξT(t)ĒTPξξξ(t)] = ξξξT(t)(ĀTP + PTĀ)ξξξ(t) =

−ξξξT(t)Q̄ξξξ(t) < 0 (14)

Substituting (14) into (10)

J =
1

2

∫ ∞

0

ξξξT(t)Q̄ξξξ(t)dt = −1

2
ξξξT(t)ĒTPξξξ(t)

∣∣∣∣
∞

0

=

−1

2
ξξξT(∞)ĒTPξξξ(∞) +

1

2
ξξξT(0)ĒTPξξξ(0) (15)

Because the finite poles of the closed system are in the open
left-half-plane, and ξξξ(∞) → 0, the following equation can
be obtained:

J =
1

2
ξξξT(0)ĒTPξξξ(0) (16)

The matrix P is the solution of the Lyapunov equation
(12), i.e., (11). ¤

In order to obtain the optimal performance index, we
should solve the minimization problem described by

min J =
1

2
ξξξT
0 ĒTPξξξ0

s.t.





ĒTP = PTĒ ≥ 0

ĀTP + PTĀ + Q̄ = 0

Q̄ > 0

(17)

Up to now, no effective algorithm for solving problem
(17) is found, and the existing algorithms for solving the
optimal control problem of the static output feedback seem
unfit to solve this problem. In the next subsection, we will
give a new algorithm based on the path-following method
to solve the problem.

2.2 Solving the minimization problem

In order to solve Lyapunov equation (11) conveniently,
we should add a small positive slack factor ε1 > 0 to trans-
form (11) into the following inequality:

|ĀTP + PTĀ + Q̄| < ε1I (18)

where I is an identity matrix, which has the same dimen-
sion as that of Ā, and |X| < ε1I is defined as −ε1I < X <
ε1I.

Equation (18) represents

ĀTP + PTĀ + Q̄ = M

where |M | < ε1I. That is

ĀTP + PTĀ + Q̄−M = 0

Set Q̄approx = Q̄ −M , then Q̄ = Q̄approx + M . Therefore,
the corresponding performance index is

J =

∫ ∞

0

ξξξT(t)(Q̄approx + M)ξξξ(t)dt =

ξξξT(0)(Papprox + M)ξξξ(0) ≈ ξξξT(0)Papproxξξξ(0)

So, by adding a small positive slack factor ε1 > 0 to trans-
form equation (11) into inequality (18), it is clear that the
performance index is approximately obtained. If ε1 is small
enough, then the approximation is the performance index
to be expected.

In order to solve the matrix P in (8), we introduce some
new variables to obtain the parameterized expression of P .
Select a matrix U ∈ R(n+nc)×l such that ĒTU = 0 and
rank(U) = l = (n + nc)− (r + rc). Then,

P = (ĒTX + Y UT)T (19)

where X ∈ R(n+nc)×(n+nc), Y ∈ R(n+nc)×l, and X is sym-
metric and positive-definite. Since

ĒTP = ĒT(ĒTX + Y UT)T = ĒTXĒ

PTĒ = (ĒTX + Y UT)Ē = ĒTXĒ

if follows that

ĒTP = PTĒ = ĒTXĒ ≥ 0

Therefore, if P is expressed in (19), then (8) holds.
As K in Ā and P are both unknown matrix variables, the

inequality (18) is actually BMI, which cannot be solved di-
rectly by LMI. In the following, we present a path-following
method for solving BMI (18). In fact, BMI (18) is lin-
earized by using a perturbation approximation, and then it
becomes an LMI. The detailed algorithm is as follows.

Algorithm 1.
Step 1. Check if the system (1) meets the conditions

1) and 2) in Lemma 2. If it does not meet one of them,
there does not exist adynamic compensator such that the
closed-loop system is admissible. Otherwise, determine the
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order of the dynamic compensator rc, which satisfies the
conditions in Lemma 2, so does Ec. Then, go to Step 2.

Step 2. Let j = 1. Select an initial feedback gain Kj

such that the closed-loop system is admissible and Q̄ > 0.
Step 3. Solve the following LMI problem:

min Jj = ξξξT
0 ĒTXjĒξξξ0

s.t.





|(Â + B̂KjĈ)T(ĒTXj + YjU
T)T+

(ĒTXj + YjU
T)(Â + B̂KjĈ)+

Q̂ + ĈTKT
j R̂KjĈ| < ε1I

Xj > 0

(20)

We obtain Xj , Yj and Pj which can be computed by (19).
If this LMI optimal problem has a solution, go to Step 4.
Otherwise, go to Step 2.

Step 4. Substituting Pj = Pj + δP , Kj = Kj + δK into
(20). It is reasonable to assume that δP and δK are small
and therefore by neglecting the second order terms, we can
obtain the following optimization problem:

|ÂTPj + PT
j Â + PT

j B̂KjĈ+

ĈTKT
j B̂TPj + PjB̂δKĈ+

ĈTδKTB̂TPT
j + δPTÂ + ÂTδP+

δPTB̂KjĈ + ĈTKT
j B̂TδP + Q̂+

ĈTKT
j R̂KjĈ + ĈTKT

j R̂δKĈ+

ĈTδKTR̂KjĈ| < ε2I

(21)

Note that the constraints of δP and δK are

|δP | < I, |δK| < I (22)

Suppose that ε2 is a small positive scalar, then we obtain
δP and δK. If this LMI problem has a solution, go to
Step 5. Otherwise, go to Step 2.

Step 5. Let j = j+1, Pj = Pj−1+δP , Kj = Kj−1+δK,

compute Jj = 1
2
ξξξT
0 ĒTP (j)ξξξ0.

If Jj < Jj−1, Jj−1 − Jj > ε3, and j < N (ε3 is a given
small positive scalar, N is the upper bound for the iteration
number), then go back to Step 3. Otherwise, stop. Then,
the optimal performance index is obtained.

This algorithm ends until a desired performance is
achieved, or the performance cannot be improved further.
Although there is no convergence analysis to guarantee an
acceptable solution, the choice of initial values of K is im-
portant for convergence to an acceptable solution[26]. As
long as Kj is close enough to the optimal values, we con-
clude that Kj can be adjusted iteratively using the free
variable δK. Then, the optimal performance index J can
be obtained accordingly.

The algorithm above can also be applied to solve the
problem of optimal control based on static output feedback
by solving BMI. Compared with the existing literatures, the
proposed method is more general. A numerical example in
next section demonstrates the effectiveness of the proposed
approach.

3 Numerical example

Since the performance index is related to the initial value
of the closed-loop system, we set Ecxxxc0 = 0 in the following
example so as to obtain the minimal index for convenient
comparisons.

Example 1. Consider the rectangular descriptor sys-
tem (1) and its quadratic performance index (3) with the

parameters as follows: E =
[

1 0
]
, A =

[ −1 1
]
,

B =
[

1
]
, C =

[
1 0
0 1

]
, Q =

[
1 0
0 1

]
, R = 1 and the

admissible initial value of the state vectors Exxx0 = 1.
From the given parameters above, we get m = 1, n = 2,

q = 1, and p = 2. According to Lemma 2, there exists a
dynamic compensator such that the closed-loop system is
admissible, and the dynamic order rc ≥ 0.

1) Set rc = 1, then mc = 2, nc = 1 based on (7).

Let Ec =

[
0
1

]
and U =




0
1
0


. Take K1 =



−2 0 −1
2 −1 1
2 −2 1


.

Now, the trajectories of the state vector are shown in Fig. 1.

Fig. 1 State curves of the closed-loop system

Using Algorithm 1, we can obtain the optimal controller

gain K =



−2.2663 −0.1846 −1.1819
3.5680 −1.7486 2.0306
0.9945 −1.8985 0.4228


 and minimal

performance index J∗ = 1.0806. Now the trajectories of
the state vector are shown in Fig. 2.

Fig. 2 Optimal state curves of the closed-loop system

By observing these figures and results, we can find that
the closed-loop system by optimization can achieve better
trajectory performance (the settling time is 4 s which is
shorter than that without optimization).

2) Set rc = 2, then mc = 3, nc = 2 based on (7).
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Let Ec =




1 0
0 1
0 0


 and U =




0
0
0
1


. Take K1 =




−1 0 0 −2
0 −0.5 −5 −2
0 2 −0.2 −1
0 1 −10 8


. Now, the trajectories of the

state vector are shown in Fig. 3.
Using Algorithm 1, we can obtain the optimal controller

gain K =




−1.0674 −1.5258 0.7321 −1.0471
−0.2457 −4.9039 −3.1287 0.0140
−0.1607 1.6523 −2.6331 −7.5731
0.0791 2.4347 −10.0928 7.2891


 and

minimal performance index J∗ = 0.2375. Now the trajec-
tories of the state vector are shown in Fig. 4.

Fig. 3 State curves of the closed-loop system

Fig. 4 Optimal state curves of the closed-loop system

From these figures and results, we can see that the per-
formance of closed-loop system can become better with the
increase of the dynamic order rc.

4 Conclusion

In this paper, we have considered the optimal control
problem for rectangular descriptor system based on dy-
namic compensation. It is shown that if there exists a dy-
namic compensator with proper dynamic order such that
the closed-loop system is admissible, then associated ma-
trix inequality and Lyapunov equation have a solution and

the given quadratic performance index can be expressed in
a simple form. In order to acquire the optimal index for the
system, we have transformed this Lyapunov equation into
a BMI and a new algorithm has been proposed in terms
of path-following algorithm. Then, the optimal dynamic
compensator and the minimum value of the quadratic per-
formance index have been obtained by Matlab LMI Tool-
box. Finally, a numerical example is given to show that the
optimized closed-loop system has better transient charac-
teristics and a comparison is given by the help of curves
of with and without optimization. Simulation results also
show that dynamic compensators with higher order rc can
achieve better performance.
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