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Abstract

Perturbative quantum gravity is used to compute the lowest order corrections to the classical

spatially flat cosmological FLRW solution (for the radiation). The presented approach is analogous

to the approach used to compute quantum corrections to the Coulomb potential in electrodynamics,

or rather to the approach used to compute quantum corrections to the Schwarzschild solution in

gravity. In the framework of the standard perturbative quantum gravity, it is shown that the

corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization

(self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not

negligible in the very early Universe. The repulsive “quantum forces” resemble those known from

loop quantum cosmology.
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Introduction. The aim of our work it to explicitly show “repulsive forces” of quantum

origin in the very early Universe. As fundamental guiding references to our work we would

like to point out the publications perturbatively calculating quantum corrections to classi-

cal electromagnetic (the Uehling potential) and gravitational fields. We would mean, for

example, the papers calculating one-loop quantum corrections to the Coulomb potential in

electrodynamics (see, e.g. § 114 in [1]), or rather the lowest order quantum corrections to

the Schwarzschild solution in gravity (see, [2], and also, e.g. [3]). Actually, we apply the

method successfully used in the case of the Schwarzschild solution in [2] to the spatially flat

Friedmann–Lemaître–Robertson–Walker (FLRW) solution (for the radiation). Fortunately,

it appears that the cosmological FLRW case is only a little bit more complicated than the

Schwarzschildean one, and our results conform the present knowledge. Namely, the lowest

order quantum corrections coming from the fluctuating graviton vacuum yield “repulsive

forces” resembling the well-known situation in loop quantum cosmology. The phenomenon

is negligible in our epoch, but it is not in the very early Universe. Moreover, it appears, the

result is UV cutoff free, despite the fact that the cutoff has been primarily imposed (see, [3]).

One should stress that our derivation is a lowest order approximation—the graviton vacuum

polarization (self-energy) is taken in one-loop approximation, and the approach assumes the

validity of the weak-field regime.

Quantum corrections. Our starting point is a general spatially flat FLRW metric

ds2 = gµνdx
µdxν = dt2 − a2(t)dr2, (1)

with the cosmic scale factor a(t). To satisfy the condition of the weakness of the (perturba-

tive) gravitational field κhµν near our reference time t = t0 in the expansion

gµν = ηµν + κhµν , (2)

(κ =
√
32πGN , with GN—the Newton gravitational constant), the metric is rescaled such a

way that it is exactly Minkowskian for t = t0, i.e.

a2(t) = 1− κh(t), h(t0) = 0. (3)

Then

hµν(t, r) = h(t)Iµν and Iµν ≡




0 0

0 δij



 . (4)
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In view of the harmonic gauge condition (see, the second eq. in (8)) to be imposed in a

moment, we perform the following gauge transformation:

κhµν → κh
′

µν = κhµν + ∂µξν + ∂νξµ with ξµ (t) =

(

−3κ

2

ˆ t

0

h(t′) dt′, 0, 0, 0

)

. (5)

Skipping the prime for simplicity, we have now got, after the gauge transformation,

hµν(t, r) = h(t)




−3 0

0 δij



 and hλ
λ(t) = −6h(t). (6)

Switching from hµν to standard (“better”) perturbative gravitational variables, namely to

the “barred” field h̄µν defined by

h̄µν ≡ hµν − 1

2
ηµνh

λ
λ, (7)

we get

h̄µν(t, r) = −2h(t)Iµν with ∂µh̄µν = 0. (8)

Its Fourier transform is given by

˜̄hµν(p) = −2h̃(E) (2π)3 δ3(p)Iµν . (9)

The lowest order quantum corrections ˜̄hq
µν to the classical gravitational field ˜̄hc

µν are

given, in the momentum representation, by the formula (see, e.g. [2], or § 114 in [1] for an

electrodynamic version—the Uehling potential)

˜̄hq
µν(p) =

(

DΠ ˜̄hc
)

µν
(p), (10)

where

Dαβ
µν (p) =

i

p2
D

αβ
µν (11)

is the free graviton propagator in the harmonic gauge with the auxiliary (constant) tensor

D defined in Eq.(12) below, and Παβ
µν (p) is the (one-loop) graviton vacuum polarization

(self-energy) tensor operator. Now, we are defining the following useful auxiliary tensors:

D ≡ E− 2P, where E
αβ
µν ≡ 1

2

(
δαµδ

β
ν + δαν δ

β
µ

)
and P

αβ
µν ≡ 1

4
ηαβηµν ; (12)

which satisfy the following obvious identities:

E
2 = E, P

2 = P, EP = PE = P and D
2 = E. (13)
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By virtue of the definition (7), we observe that

h̄µν = (Dh)µν . (14)

Multiplying Eq.(10) from the left by D, we obtain (using (11), (14), and the last identity in

the series (13))

h̃q
µν(p) =

i

p2

(

Π ˜̄hc
)

µν
(p). (15)

Actually, a simplification takes place, namely,

h̃q
µν(p) =

i

p2

(

Π′ ˜̄hc
)

µν
(p), (16)

where Π′(p) is an “essential” part of the full (in one-loop approximation) graviton polarization

operator Π(p). The “essential” part Π′ of the full graviton vacuum polarization Π is obtained

from Π by simply skipping all the terms with the momenta p with free indices (e.g. α, β,

µ, or ν). Such simplifying possibility follows from the gauge freedom the h̃q
µν enjoys, and

from the harmonic gauge condition the ˜̄hc
αβ fulfills. In other words (see, e.g. [4], for details),

Π(p) = Π′(p)
︸ ︷︷ ︸

2 terms

+ · · · p · · ·
︸ ︷︷ ︸

3 skipped terms

, (17)

where since the momenta p in the ellipses posses free indices, they can be ignored, and only

the terms with dummy indices (p2) survive in Π′(p). Thus,

Π′(p) = κ2p4I(p2)(2α1E+ 4α2P), (18)

where the numerical values of the coefficients α1 and α2 depend on the kind of the virtual

field circulating in the loop, and the (scalar) loop integral I(p2) with the UV cutoff M is

asymptotically of the form (see, e.g., Chapt. 9.4.2 in [5])

I(p2) = − i

(4π)2
log

(

− p2

M2

)

+ · · · , (19)

where the dots mean terms O (p2/M2). Finally, we obtain

h̃q
µν(p) =

i

p2
κ2p4

[

− i

(4π)2
log

(

− p2

M2

)] [

−2h̃c(E) (2π)3 δ3(p)
]

[(2α1E+ 4α2P)I]µν

= −2πκ2E2 log

∣
∣
∣
∣

E

M

∣
∣
∣
∣
h̃c(E)δ3(p)




−3α2 0

0 (2α1 + 3α2) δij



 . (20)

The unnecessary modulus sign in Eq.(20) is only to remind the fact that there is also an

imaginary contribution to the metric due to creation processes which are ignored in our

further analysis.
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Radiation source. Now, we should specify our input classical metric. For definiteness,

we choose the radiation as a source (the early Universe), but it is not crucial, and assume

a2(t) = θ(t)

(
t

t0

)

. (21)

Then

κhc(t0) = 0, κḣc(t0) = − 1

t0
and κḧc(t0) = 0. (22)

By virtue of the definition of the deceleration parameter q, expressed by

q(t0) ≡ − aä

(ȧ)2
(t0) = 1 + 2 [1− κh(t0)]

κḧ(t0)
(

κḣ(t0)
)2

, (23)

we immediately get the classical result

qc(t0) = 1. (24)

According to (3) and (21) the Fourier transform of hc(t) is

h̃c(E) =
1

κt0

(
1

E2
+ · · ·

)

, (25)

where the dots mean terms (vanishing in the next formula) proportional to the Dirac delta

and its first derivative. Hence

h̃q
µν(p) = −2πακ

t0
log

∣
∣
∣
∣

E

M

∣
∣
∣
∣
δ3(p)Iµν , (26)

where α ≡ 2α1 + 3α2, and performing the gauge transformation in the spirit of (5), we

have removed the purely time component of hq
µν , i.e. hq

00 → hq′
00 = 0. The inverse Fourier

transform yields

hq
µν(t) =

2π2ακ

(2π)4 t0

(
|t|−1 + · · ·

)
Iµν , (27)

where this time the dots mean a term (vanishing for t > 0) proportional to the Dirac delta.

Therefore, for t > 0 we have

κhq(t) =
ακ2

8π2t0
t−1 = − G

4πt0
t−1, (28)

where according to Table I only the graviton field contributes with α = − 1

16
. Now,

κhq(t0) = − G

4πt20
, κḣq(t0) =

G

4πt30
and κḧq(t0) = − G

2πt40
. (29)
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spin α1 α2 α

0 1
480

− 1
720

0

1
2

1
160

− 1
240

0

1 1
40

− 1
60

0

2 27
80

- 59
240

- 1
16

Table I: Coefficients α1 and α2 entering the one-loop graviton vacuum polarization (self-energy)

tensor operator (18) (taken from [4, 6–9]); α ≡ 2α1 + 3α2.

The total graviton field κh = κhc + κhq, and its derivatives at the time t0, expressed in the

dimensionless (Planck’s) time unit

τ ≡ 1√
G
t0, (30)

are

κh(τ) = − 1

4πτ 2
, κḣ(τ) = − 1

t0

(

1− 1

4πτ 2

)

and κḧ(τ) = − 1

t20

(
1

2πτ 2

)

. (31)

Finally, by virtue of (23), we obtain the total deceleration parameter of the form

q(τ) = 1− 1

πτ 2
+O

(
τ−4

)
. (32)

Final remarks. In the framework of the standard (one-loop) perturbative quantum grav-

ity, we have derived the formula (32) expressing the value of the total (effective) deceleration

parameter q(τ). The quantum contribution, δq(τ) = q (τ) − qc (τ) ≈ − 1

πτ2
, is negligible in

our epoch, but certainly it could play a role in a very early evolution of the Universe. Per-

turbative nature of the approach imposes bounds on the applicability of the result, but

nevertheless one can observe its distinctive features: actually, it is an independent perturba-

tive confirmation of the existence of strong repulsive (singularity resolving) forces typically

being attributed to the realm of loop quantum cosmology (cosmological bounce); inputs and

outputs are consequently given in terms of the metric tensor; only pure gravity contributes

to our result (see α in Table I); and finally, no trace of the UV cutoff is present anywhere.
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