
ar
X

iv
:1

01
1.

43
74

v1
  [

as
tr

o-
ph

.C
O

] 
 1

9 
N

ov
 2

01
0

CERN-PH-TH/2010-270

DFPD-2010-A-18

The Gauge-Invariant Bias of Dark Matter Haloes

with Primordial non-Gaussianity

Nicola Bartoloa,b, Sabino Matarresea,b and Antonio Riottob,c

a Dipartimento di Fisica “G. Galilei”, Università degli Studi di Padova,
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Abstract

The non-linear evolution of the halo population is followed by solving the continuity equation under

the hypothesis that haloes move by the action of gravity. An exact and general formula for the

Eulerian bias field of dark matter haloes in terms of the Lagrangian bias is expanded at second-

order including the presence of primordial non-Gaussianity. Particular attention is paid in defining a

gauge-invariant bias which is necessary when dealing with relativistic effects and measured quantities.

We show that scale-dependent effects in the Eulerian bias arise both at first- and second-order

independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian

bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation

with the angle of observation when sources with different biases are correlated.

1 Introduction

Cosmological inflation [1] has become the dominant paradigm to understand the initial conditions for

the Cosmic Microwave Background (CMB) anisotropies and Large Scale Structure (LSS) formation.

This picture has recently received further spectacular confirmation by the Wilkinson Microwave

Anisotropy Probe (WMAP) seven year set of data [2]. Present and future [3] data may be sensitive

to the non-linearities of the cosmological perturbations at the level of second- or higher-order per-

turbation theory. The detection of these non-linearities through the non-Gaussianity (NG) [4] has

become one of the primary experimental targets.

A possible source of NG could be primordial in origin, being specific to a particular mechanism

for the generation of the cosmological perturbations. This is what makes a positive detection of

NG so relevant: it might help in discriminating among competing scenarios which otherwise might
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be indistinguishable. Indeed, various models of inflation, firmly rooted in modern particle physics

theory, predict a significant amount of primordial NG generated either during or immediately after

inflation when the comoving curvature perturbation becomes constant on super-horizon scales [4].

While standard single-field [5] and two(multi)-field [6] models of inflation generically predict a tiny

level of NG, ‘curvaton-type models’ [7, 8, 9], in which a significant contribution to the curvature

perturbation is generated after the end of slow-roll inflation by the perturbation in a field which has a

negligible effect on inflation, may predict a high level of NG [10]. Alternatives to the curvaton model

are those models characterized by the curvature perturbation being generated by an inhomogeneity

in the decay rate [11, 12] of the inflaton field. Other opportunities for generating the curvature

perturbation occur at the end of inflation [13] and during preheating [14]. All these models generate

a level of NG which is local, since the NG part of the primordial curvature perturbation is a local

function of the Gaussian part generated on superhorizon scales. It has now become common to

parametrize the level of NG through a dimensionless quantity fNL which sets the magnitude of the

three-point correlation function [4]. In momentum space, the three point function (bispectrum),

arising from the local NG is dominated by the so-called “squeezed” configuration, where one of the

momenta is much smaller than the other two and it is parametrized by the non-linearity parameter

f locNL. Other models, such as DBI inflation [15] and ghost inflation [16], predict a different kind of

primordial NG, called “equilateral”, because the three-point function for this kind of NG is peaked

on equilateral configurations, in which the lengths of the three wave-vectors forming a triangle in

Fourier space are equal [17]. The equilateral NG is parametrized by an amplitude f equilNL [18]. Present

limits on NG are summarized by −10 < f locNL < 74 and −214 < f equilNL < 266 at 95% CL [2, 19, 20].

It is clear that detecting a significant amount of NG and its shape either from the CMB or from

the LSS offers the possibility of opening a window into the dynamics of the universe during the

very first stages of its evolution and to understand what mechanism gave rise to the cosmological

perturbations. Besides in the CMB anisotropies, NG is particularly relevant in the high-mass end

of of density perturbations, i.e. on the scale of galaxy clusters, since the effect of NG fluctuations

becomes especially visible on the tail of the probability distribution function [21]. Furthermore,

and more relevantly for us, primordial NG also alters the clustering of dark matter halos inducing

a scale-dependent bias on large scales [22]. According to the peak-background split theory [23]

the underlying idea behind the generation of a local bias is that galaxies tend to form in regions

where the dark matter density field is larger than some threshold value in Lagrangian space. The

collapse of objects on small scales is ascribed to the high frequency modes of the density fields, while

the action of large-scale structures of these non-linear condensations is due to a shift of the local

background density. As primordial NG generates a cross-talk between short and long wavelengths,

it alters significantly the local bias and introduces a strong scale dependence in it. As a result,

measuring the clustering properties of haloes is a sensitive probe of primordial NG which could be

detected or significantly constrained by the various planned large-scale galaxy surveys, both ground

based (such as DES, PanSTARRS and LSST) and in space (such as EUCLID and ADEPT) [24].

When analyzing the impact of NG onto the bias of dark matter haloes various points should be

addressed. Being the effect computed at second-order in perturbation theory one should consistently

calculate how to go from the Lagrangian bias to the Eulerian bias at the same order in perturbation

theory. Furthermore, since the primordial NG manifests itself on large cosmological scales one should

treat carefully the relativistic effects. This automatically calls for a gauge-invariant formulation of the
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observables at hand. In this paper we address these points and show that a refined gauge-invariant

treatment of the Eulerian bias at second-order in perturbation theory leads to the prediction that

the bias is scale-dependent on large scales even in the absence of primordial NG and that the latter

generates an angular modulation if sources with different biases are cross-correlated.

The paper is organized as follows. In section 2 we describe how to obtain the Eulerian bias

description in terms of the Lagrangian bias description at the non-perturbative level. In section

3 we specificaly deal with the gauge-invariant formulation and in section 4 we proceed with the

computation of the gauge-invariant Eulerian bias at second-order in perturbation theory. Finally,

section 5 contains our conclusions.

2 Eulerian description of the bias from the local La-

grangian bias

In this section we describe how to obtain an expression for the Eulerian halo-to-mass bias starting

from the local Lagrangian bias. According to the local Lagrangian description, the sites of the galaxy

formation are identified with specific regions of the primordial density field. The primordial galaxy

density field measuring the (smoothed) overdensity of galaxies in fieri at the Lagrangian position q

at a given time τ ≪ 1 is biased with respect to the primordial (linear) matter CDM density at the

same location and at the same time. The Eulerian bias is obtained by integrating the continuity

equations for the mass and for the halo number density where galaxies are supposed to reside. The

procedure follows and generalizes the one provided in Ref. [25] for the Newtonian case. We consider

a spatially flat Universe filled with a cosmological constant Λ and a non-relativistic pressureless

fluid of Cold Dark Matter (CDM), whose energy-momentum tensor reads Tµν = ρuµuν where uµ

(uµu
µ = −1) is the comoving four-velocity.

Following the notations of Ref. [26], the perturbed line element around a spatially flat FRW

background reads

ds2 = a2(τ){−(1 + 2φ)dτ2 + 2ω̂idτdx
i + [(1 − 2ψ)δij + χ̂ij]dx

idxj} . (1)

where a(τ) is the scale factor as a function of conformal time τ . Here each perturbation quantity

can be expanded into a first-order (linear) part and a second-order contribution, as for example, the

gravitational potential φ = φ(1) + φ(2)/2. Up to now we have not choosen any particular gauge. We

can employ the standard split of the perturbations into the so-called scalar, vector and tensor parts,

according to their transformation properties with respect to the 3-dimensional space with metric

δij , where scalar parts are related to a scalar potential, vector parts to transverse (divergence-free)

vectors and tensor parts to transverse trace-free tensors. Thus φ and ψ, the gravitational potentials,

are scalar perturbations, and for instance, ω̂
(r)
i = ∂iω

(r)+ω
(r)
i , where ω(r) is the scalar part and ω

(r)
i

is a transverse vector, i.e. ∂iω
(r)
i = 0 ((r) = (1, 2) stand for the rth-order of the perturbations).

The symmetric traceless tensor χ̂ij generally contains a scalar, a vector and a tensor contribution,

namely χ̂ij = Dijχ + ∂iχj + ∂jχi + χij, where Dij ≡ ∂i∂j − (1/3)∇2δij , χi is a solenoidal vector

(∂iχi = 0) and χij represents a traceless and transverse (i.e. ∂iχij = 0) tensor mode1. The spatial

1In what follows, for our purposes we will neglect linear vector modes since they are not produced in
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projection tensor orthogonal to the fluid velocity uµ is defined by

hµν = gµν + uµuν , (hµνh
ν
σ = hµσ, hνµuν = 0). (2)

It is also useful to introduce the familiar decomposition

∇νuµ = σµν + ωµν +
1

3
Θhµν − aµuν , (3)

where we have defined the (symmetric) shear tensor σµν , the (antisymmetric) vorticity tensor ωµν ,

the volume expansion scalar Θ ≡ ∇µu
µ and the acceleration aµ ≡ uν∇νuµ. Notice that Θ reduces

to 3H (H being the Hubble rate in conformal time) in the homogeneous and isotropic FRW case.

Our starting point is the conservation of the energy-momentum tensor of the CDM fluid,

∇µT
µ
ν = 0, (4)

which yields, after projecting along uν , the continuity equation valid at any order in perturbation

theory

ρ̇(x, τ) + Θ(x, τ)ρ(x, τ) = 0, (5)

where the dot indicates differentiation along uµ, that is ρ̇ = uµ∇µρ. If we now assume that a halo

population of mass M and formation time τf is conserved in time and evolves exclusively under the

influence of gravity with an unbiased velocity2, meaning that the CDM fluid and haloes are moving

with the same velocity, its number density ρh(x, τ) = ρh(x, τ |M, τf) has to satisfy the continuity

equation

ρ̇h(x, τ) + Θρh(x, τ) = 0. (6)

Notice that Eqs. (5) and (6) are non-perturbative and valid in any gauge. This is welcome as we want

to derive the Eulerian bias factor which, being a physical observable, must be a gauge-independent

quantity. While comparing the theoretical predictions (the matter power spectrum) with obervations

(the galaxy power spectrum) does not represent a problem on sub-horizon scales where the matter

density perturbations computed in the different gauges all coincide, it is a delicate operation on

scales comparable with the horizon where different gauges provide different results even at the linear

level (see, e.g., [28]). Truly gauge-independent perturbations must be exactly constant in the back-

ground spacetime. This apparently limits ones ability to make a gauge-invariant study of quantities

that evolve in the background spacetime, e.g. density perturbations in an expanding cosmology. In

practice one can construct gauge-invariant definitions of unambiguous, that is physically defined,

perturbations (see, e.g., the discussion of Ref. [29]). These are not unique gauge-independent per-

turbations, but are gauge-invariant in the sense commonly used by cosmologists to define a physical

perturbation. There is a distinction between quantities that are automatically gauge-independent,

i.e., those that have no gauge dependence (such as perturbations about a constant scalar field), and

quantities that are in general gauge-dependent (such as the curvature perturbation) but can have a

gauge-invariant definition once their gauge-dependence is fixed (such as the curvature perturbation

standard mechanisms for the generation of cosmological perturbations (as inflation), and we also neglect

tensor modes at linear order, since they give a negligible contribution to LSS formation.
2This approximation is accurate if one is interested, as we are, on the bias at large-scales [27].
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on uniform-density hypersurfaces). In other words, one can define gauge-invariant quantities which

are simply a coordinate independent definition of the perturbations in the given gauge. This can be

often achieved by defining unambiguously a specific slicing into spatial hypersurfaces. In this sense

it should be clear that one may define an infinite number of, e.g., gauge-invariant density contrasts.

Which one to use is a matter that can be decided only considering how the determination of a given

observable is performed. We will come back to this point later. For the time being it suffices to

say that, when expanded at a given order in perturbation theory, Eqs. (5) and (6) may be used

to find the evolution of the gauge-independent (in the sense just described) CDM and halo density

contrasts, δgi and δgih . These quantities evolve following the same dynamics. This means that their

density contrasts δgi and δgih at a given time will be related to their values at some initial time τin ≪ 1

through the relation

1 + δgih (x, τ)

1 + δgih (q)
=

1 + δgi(x, τ)

1 + δgi(q)
. (7)

In Eq. (7) by δgih (q) = δgih (q|M, τf) we mean the initial (Lagrangian) halo density fluctuation at

some primordial time when x(τ = τin) = q. Expanding Eq. (7) up to second-order and setting

δh = δ
(1)
h + 1

2δ
(2)
h , we find

δ
gi(1)
h (x, τ) ≃ δ

gi(1)
h (q) +

(

δgi(1)(x, τ) − δgi(1)(q)
)

, (8)

and

1

2
δ
gi(2)
h (x, τ) ≃

1

2
δ
gi(2)
h (q) +

1

2

(

δgi(2)(x, τ) − δgi(2)(q)
)

+
(

δ
gi(1)
h (q) − δgi(1)(q)

)(

δgi(1)(x, τ) − δgi(1)(q)
)

,

(9)

The expressions (8) and (9) are the key relations which permit to relate the Lagrangian bias to

the Eulerian one. Before continuing though, we come back to the issue of which gauge-invariant

contrasts we should take.

3 On the gauge-invariant formulation

As we pointed out before, there is an infinite number of ways to define gauge-invariant density

contrasts which differ by other gauge-invariant combinations. Since one observes galaxies rather

than the underlying matter distribution and the latter at the source galaxy position is related to

the mean matter density at the observed redshift z, a good choice to define gauge-invariant density

constrasts related to each other by a bias factor seems the one involving the observed redshift z [28].

At first order a coordinate transformation reads xµ → xµ−ξµ(1) where ξ
µ
(1) = (α(1), ξ(1)i). The matter

density contrast transforms as δ(1) → δ(1) + ˙̄ρ/ρ̄ α(1), where now dot stands for differentation with

respect to the conformal time and ρ̄ ∼ (1 + z)3 is the background matter energy density; similarly

the first-order perturbation of the observed redshift transforms as z(1) → z(1) + ż α(1) (here z is

the unperturbed redshift). Going to the uniform redshift gauge where the linear perturbation of
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redshift vanishes relates α(1) to the linear perturbation of redshift in the old gauge, α(1) = −z(1)/ż.

Therefore the gauge invariant definition of the matter density contrast (and similarly for the halo

one) is [28]

δgi(1) = δ(1) − 3
z(1)

1 + z
. (10)

At second-order the procedure is more involved, but straightforward. The coordinate transforma-

tion reads xµ → xµ + ξµ(1) +
1
2

(

ξµ(1),νξ
ν
(1) + ξµ(2)

)

where ξµ(2) = (α(2), ξ(2)i). Under this coordinate

transformation the density matter contrast and the redshift perturbation transform as

δ(2) → δ(2) +
˙̄ρ

ρ̄
α(2) + α(1)

(

¨̄ρ

ρ̄
α(1) +

˙̄ρ

ρ̄
α̇(1) + 2

δ(1)ρ̇

ρ̄

)

+ ξi(1)

(

˙̄ρ

ρ̄
∂iα

(1) + 2
∂iδ

(1)ρ

ρ̄

)

,

z(2) → z(2) + żα(2) + α(1)
(

z̈α(1) + żα̇(1) + 2ż(1)
)

+ ξi(1)

(

ż∂iα
(1) + 2∂iz

(1)
)

. (11)

Going to the uniform redshift gauge where second-order perturbation of the redshift vanishes gives

α(2) = −
z(2)

ż
+
z(1)ż(1)

ż2
−
ξi(1)

ż
∂iz

(1). (12)

To completely solve the uniform redshift gauge at second-order we must also specify the first-order

spatial gauge shift ξi(1). A natural choice is to pick worldlines comoving with the fluid. The (scalar)

velocity transforms as v
(1)
i → v

(1)
i − ξ

(1)′

i . Thus from an arbitrary spatial gauge we can transform to

the comoving gauge by the spatial gauge transformation ξ
(1)
i =

∫

v
(1)
i dτ . Such a choice leads to the

second-order gauge invariant matter density constrast (and similarly for the halo one)

1

2
δgi(2) =

1

2

(

δ(2) − 3
z(2)

1 + z

)

+ 3
z(1)ż(1)

ż(1 + z)
+ 3

(

z(1)
)2

(1 + z)2
−
z(1)

ż
δ̇(1)

− 3
z(1)δ(1)

1 + z
+

(

∂iδ
(1) − 3

∂iz
(1)

1 + z

)

∫

dτv
(1)
i . (13)

The next step amounts to determing the expression of the redshift perturbation in terms of the

perturbations of the metric (1) and other quantities. Photons suffer a redshift z during their travel

from the emitter E to the observer O; the emitted frequency ωE and the observed one ωO are related

by ωO = ωE/(1+z). Here ω = −gµνu
µkν , where uµ is the four-velocity of the observer or emitter and

kν = dxν/dλ is the wave vector of the photon in the conformal metric, tangent to the null geodesic

xν(λ) (λ is the affine parameter) followed by the photon from the emission to the observation point.

We do not report the full calculation of the redshift perturbation which basically amounts to solving

for the photon trajectory. The computation can be found in Ref. [30]. Expanding the frequency as

ω = ω̄(1 + ω(1) + 1
2ω

(2)), at first-order one obtains
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z(1)

1 + z
= ω

(1)
E − ω

(1)
O = φ

(1)
O − φ

(1)
E + v

(1)i
E ei − v

(1)i
O ei + I1(λE ),

I1(λE) =

∫ λE

λO

dλ Ȧ(1),

A(1) = ψ(1) + φ(1) + ω̂
(1)
i ei −

1

2
χ
(1)
ij e

iej , (14)

where ei indicates the zero-th order three-dimensional vector indicating the photon direction from

which they arrive at the observer O. In the expression above one recognizes the Sachs-Wolfe effect

due to the change in the gravitational potential at the source’ and observer’s points, the Doppler

contribution due to the peculiar velocities of the emitter and the observer and the integrated Sachs-

Wolfe effect along the photon trajectory.

At second-order expressions are more involved and the perturbation of the redshift may be

written as [30]

1

2

z(2)

1 + z
=

1

2

[

ω
(2)
E − ω

(2)
O − 2ω

(1)
E ω

(1)
O + 2

(

ω
(1)
O

)2
]

=
1

2
φ
(2)
O −

1

2
φ
(2)
E +

1

2
v
(2)i
E ei −

1

2
v
(2)i
O ei +

3

2
(φ

(1)
E )2 −

1

2
(φ

(1)
O )2 − φ

(1)
O φ

(1)
E + I2(λE) + v

(1)i
E eiφ

(1)
E

−
(

I1(λE ) + v
(1)i
E ei

)

(

2φ
(1)
O − ψ

(1)
O +

1

2
χ
(1)ij
O eiej − v

(1)i
O ei − φ

(1)
E + v

(1)i
E ei + I1(λE)

)

− x
(1)0
E Ȧ

(1)
E − (x

(1)j
E + x

(1)0
E ej)

(

φ
(1)
,j − v

(1)
i,j e

i
)

E
− v

(1)i
O

(

1

2
v
(1)
Oi − 2ψ

(1)
O ei + χ

(1)
Oije

j

)

+
1

2
v
(1)
Ei v

(1)i
E + v

(1)i
O ei

(

φ
(1)
O − ψ

(1)
O +

1

2
χ
(1)kj
O ekej − φ

(1)
E

)

− v
(1)
Ei

(

−ω̂
(1)i
E + ω̂

(1)i
O + 2ψ

(1)
O ei − χ

(1)ij
O ej − Ii1(λE)

)

+
(

v
(1)i
E ei − v

(1)i
O ei + I1(λE)

)2
+ 2

(

φ
(1)
O − φ

(1)
E

)(

v
(1)i
E ei − v

(1)i
O ei + I1(λE )

)

, (15)

where

Ii1(λE ) =

∫ λE

λO

dλA(1),i,

I2(λE ) =

∫ λE

λO

dλ

[

1

2
Ȧ(2) − ( ˙̂ω

(1)
i − χ̇

(1)
ij e

j)(k(1)i + eik(1)0) + 2k(1)0Ȧ(1)

+ 2ψ̇(1)A(1) + x(1)0Ä(1) + x(1)iȦ
(1)
,i

]

,

A(2) = ψ(2) + φ(2) + ω̂
(2)
i ei −

1

2
χ
(2)
ij e

iej (16)
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and

k(1)0(λE ) = φ
(1)
O − ψ

(1)
O +

1

2
χ
(1)ij
O eiej − 2φ

(1)
E − ω̂

(1)i
E ei + I1(λE ),

k(1)i(λE ) = 2ψ
(1)
O ei + ω̂

(1)i
O − χ

(1)ij
O ej − 2ψ

(1)
E ei − ω̂

(1)i
E + χ

(1)ij
E ej − Ii1(λE),

x(1)0(λE ) = (λE − λO)

[

φ
(1)
O − ψ

(1)
O +

1

2
χ
(1)ij
O eiej

]

+

∫ λE

λO

dλ
[

−2φ(1) − ω̂
(1)
i ei + (λE − λ)Ȧ(1)

]

,

x(1)i(λE ) = (λE − λO)
[

2ψ
(1)
O ei + ω̂

(1)i
O − χ

(1)ij
O ej

]

−

∫ λE

λO

dλ
[

2ψ(1)ei + ω̂(1)i − χ(1)ijej + (λE − λ)A(1),i
]

. (17)

These long expressions allow the determination of the gauge-independent density contrasts. In

practice, one evaluates them adopting the most appropriate gauge. One possible convenient choice

for the determination of the Eulerian bias from the local Lagrangian bias is represented by the

comoving-orthogonal gauge as we will explain in the following. Let us stress that the gauge-invariant

expressions found in this subsection would be also useful if, instead of computing the Eulerian bias

derived from the local Lagrangian bias, one adopts the bias model described in Ref. [31]. In this

approach the (smoothed) galaxy number density field at a given position x and time τ is assumed

to be a local function of the (smoothed) underlying CDM mass density at the same location and

instant, δgih = bE1 δ
gi + 1

2b
E
2

(

δgi
)2

+ · · · . This approach is essentially phenomenological and it is a

priori devoid of any insight about the dynamics of the clustering.

4 The computation of the gauge-invariant Eulerian bias

In this section we proceed with the computation of the Eulerian bias adopting the gauge-invariant

formulation of the matter density perturbation described previously. It is convenient to perform such

a computation collapsing to the comoving-orthogonal gauge. Indeed, as we restrict ourselves to the

case of irrotational dust plus Λ, the comoving-orthogonal gauge is also synchronous. Indeed, the fluid

four-velocity field can be written as uµ = (1/a, 0, 0, 0), so that q represents the comoving Lagrangian

coordinate for the fluid element. The possibility of making the synchronous, time-orthogonal gauge

choice and comoving gauge choice simultaneously is a peculiarity of fluids with vanishing spatial

pressure gradients, i.e. vanishing acceleration, which holds at any time, i.e. also beyond the linear

regime.

The choice of the comoving-orthogonal gauge to evaluate the gauge-invariant Eulerian bias is

motivated by various reasons. A simple analytic model for the gravitational clustering of dark

matter haloes to understand how their spatial distribution is biased relative to that of the mass was

developed in Ref. [32]. The statistical distribution of dark haloes within the initial density field

(assumed Gaussian) is determined by an extension of the Press-Schechter formalism and is done

therefore at the Lagrangian level. One then expects that the gauge-invariant Eulerian description

to be therefore simpler to formulate through the synchronous gauge. Furthermore, the non-linear

spherical collapse description necessary to compute the halo mass function through the (extended)

Press-Schechter approach, requires the choice of the comoving-orthogonal gauge.

In the synchronous and comoving gauge the line element reads

ds2 = a2(τ)
[

−d2τ + hij(x, τ)dx
idxj

]

. (18)
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Working in the synchronous comoving gauge, the spatial coordinate does not evolve with time,

x(τ) = x(τ = τin) ≡ q. From Eqs. (8) and (9) evaluated now in the comoving-orthogonal gauge,

we may deduce the gauge-invariant Eulerian bias parameters. To simplify our expressions we limit

ourselves to the case of a pure CDM-dominated universe. One can easily check that the gauge-

invariant matter density contrast (10) expressed in the comoving-orthogonal gauge is given by3

δgi(1)(q, τ) =
2

3H2Ωm
∇2ϕ(q) + ϕ(q) + τeiϕ,i(q), (19)

where ϕ(q) is the peculiar scalar gravitational potential and we have got rid of the terms defined at

the observer’s point which may be absorbed in the monopole term. Notice that in Fourier space the

time evolution of the gauge-invariant density contrast as

δgi(1)(k, τ) = fgi(k, τ)δ
(1)
c (k, τ),

fgi(k, τ) = 1−
6

k2τ2
− 6i

k̂ · n

kτ
, (20)

where δ
(1)
c (k, τ) = −k2τ2

6 ϕ(k) is the matter density contrast in the synchronous gauge. The key

point is now to calculate the halo field δgih (q). The approach to the clustering evolution is based on

a generalization of the so-called peak-background split, first proposed in Ref. [23] which basically

consists in splitting the mass perturbations in a fine-grained (peak) component δgipk filtered on a scale

R and a coarse-grained (background) component δgibg filtered on a scale R0 ≫ R. The underlying

idea is to ascribe the collapse of objects on small scales to the high frequency modes of the density

fields, while the action of large-scale structures of these non-linear condensations is due to a shift of

the local background density. By definition, the Lagrangian distribution of nascent haloes of mass

M and formation time τf is given by

δgih (q|M, τf) ≡ lim
τ→τin

bE(q, τ |M, τf)δ
gi
bg(q, τ) ≡ bL0 (q|M, τf)δ

gi
0 (q), (21)

where bL0 (q|M, τf) is the Lagrangian halo bias and δgi0 (q) is the mass density fluctuation linearly

extrapolated to the present time τ0 (where a(τ0) = 1) and filtered on the background scale R0; in

Fourier space, δgi0 (k) = (fgi(k, τ0)/fgi(k, τin)a(τin)) δ
gi(1)(k, τin). One has to recall that the second

equality in the latter equation does not mean that δgih (q) is proportional to δgi0 (q). Indeed, the

Lagrangian bias is in general a functional of the background density field. To understand the above

equation, one has to recall that, at sufficiently early times, the expression for the Eulerian bias

field obtained in linear perturbation theory becomes exact (as the linear theory gets more and more

accurate) and, going to Fourier space,

δgi(k, τ) ≃ δgibg(k, τ) =
fgi(k, τ)

fgi(k, τ0)
a(τ)δgi0 (k) (22)

when τ ≃ τin ≪ 1. Notice that the perturbative expansion of the matter density contrast is valid

at sufficiently early times and/or large scales, while the validity of the expansion of the halo density

3To solve for the integral appearing in Eq. (14) one can use, e.g., the results contained in the Appendix of

Ref. [33]. One can also readily check that the same expression is obtained, e.g., in the Poisson gauge.
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contrast in powers of δgi0 is based on assuming a suitably large smoothing radius R0. Assuming these

assumptions to hold and expanding δgih (q) in powers of δgi0 (q)

δgih (q) =
∑

ℓ≥1

bL0ℓ(M, τf)

ℓ!

(

δgi0 (q)
)ℓ

, (23)

from Eq. (8) we deduce that at first-order and in at space

δ
gi(1)
h (k, τ) ≡ bE1 (k, τ)δ

gi(1)(k, τ) ≃ (1 + bL1 (k, τ))δ
gi(1)(k, τ), (24)

bL1 (k, τ) ≃
fgi(k, τ0)

fgi(k, τ)

bL01(M, τf)

a(τ)
. (25)

To derive Eq. (24) we have used the fact that δgi(1)(q) can be neglected in Eq. (8). We see that the

use of a gauge-invariant mass density contrast valid at all scales introduces a scale dependence in the

Eulerian bias bE1 due to the relativistic effects which is not present if gauge-dependent density con-

trasts are used. Of course in the Newtonian limit kτ ≫ 1 one recovers the standard scale-independent

Eulerian bias prediction from the Lagrangian approach, bE1 ≃ (1 + bL1 ) = (1 + bL01(M, τf)/a(τ)).

At second order one first write the matter density contrast in Fourier space as

1

2
δgi(2)(k, τ) =

∫

d3k1d
3k2

(2π)3
Kgi

δ (k1,k2; τ)δ
gi(1)(k1, τ)δ

gi(1)(k2, τ)δD(k1 + k2 − k). (26)

With this position one finds

1

2
δ
gi(2)
h (k, τ) =

∫

d3k1d
3k2

(2π)3
bE2 (k1,k2; τ)δ

gi(1)(k1, τ)δ
gi(1)(k2, τ)δD(k1 + k2 − k), (27)

bE2 (k1,k2; τ) =
bL1 (k1, τ)

2
+
bL1 (k2, τ)

2
+

1

2
bL2 (k1,k2, τ)

+
1

2
bL1 (k1, τ)

fgi(k2, τ0)

fgi(k2, τ)a(τ)

(k1 · k2)

fgi(k1, τ0)k21
+

1

2
bL1 (k2, τ)

fgi(k1, τ0)

fgi(k1, τ)a(τ)

(k1 · k2)

fgi(k2, τ0)k22
+ Kδ(k1,k2; τ),

(28)

bL2 (k1,k2, τ) ≃
fgi(k1, τ0)

fgi(k1, τ)

fgi(k2, τ0)

fgi(k2, τ)

bL02(M, τf)

a2(τ)
. (29)

Again, the Eulerian bias bE2 gets a scale-dependence due to relativistic effects which arises once a

gauge-invariant definition of the density contrasts are adopted. Furthermore, in the second line of

Eq. (28) there appears non-local terms proportional to the first-order bias parameter; they arise

from the first-order density field evaluated at the Lagrangian point q when expressed in terms of

the Eulerian position x [25]. The kernel Kgi
δ is conveniently computed in the Poisson gauge (rather

than in the synchronous gauge). In the presence of large local non-Gaussianities, we can introduce

a gravitational potential which, at some initial epoch and deep in matter domination, reads

φin = φ
(1)
in + f locNL(φ

(1)2
in − 〈φ

(1)2
in 〉) , (30)

with the dimensionless non-linearity parameter f locNL setting the level of quadratic local NG. In the

case of large local non-Gaussianities, f locNL ≫ 1, one finds [34, 35]
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1

2
δ(2) =

τ4

252

[

5
(

∇2ϕ
)2

+ 2ϕ,ijϕ,ij + 7ϕ,i∇2ϕ,i

]

− f locNL

τ2

6
∇2ϕ,

1

2
v(2)i =

τ3

18

(

−ϕ,ijϕ,j +
6

7
Ψ,i

)

+ f locNL

τ

3
∂iϕ2, (31)

where ∇2Ψ ≡ −1
2 [(∇

2ϕ)2 − ϕ,ikϕ
,ik]. Inserting these expressions into Eq. (13), we obtain

Kgi
δ (k1,k2; τ) =

5

7
+

2

7

(k1 · k2)
2

k21k
2
2

−
18i

7

1

k2τ
[(k1 · n) + (k2 · n)]

[

1−
(k1 · k2)

2

k21k
2
2

]

+ 6i

[

(k1 · n)

k21τ
+

(k2 · n)

k22τ

]

[

8

21
+

2

7

(k1 · k2)
2

k21k
2
2

]

+ 6f locNL

k2

k21k
2
2τ

2

− 18if locNL

[(k1 · n) + (k2 · n)]

k21k
2
2τ

3
, (32)

where k = |k1 + k2| and we have performed an expansion in (kiτ)
−1 ≪ 1 (i = 1, 2). Notice that

in the kernel the primordial non-Gaussian piece coming from the second-order density contrast is

post-Newtonian and is damped by two powers of (kiτ) with respect to the Newtonian leading terms.

The Newtonian part of the kernel does not coincide with the one of the matter density contrast

in the Poisson gauge which can be found in Ref. [34]. Indeed, it gets a correction arising from

the last term of the expression (13). Furthermore, there are terms which are damped by only one

power of (kiτ); they originate from the velocity contributions in gauge-invariant definition of the

matter density contrast and they are absent if a gauge-dependent definition of the matter density

contrast is adopted. The same holds for the last contribution, damped by three powers of (kiτ).

This term comes from the primordial NG term in v(2) (which gives the dominant contribution to

the second-order redshift perturbation (15)). All other relativistic effects have been neglected.

The Lagrangian bias factors bL01(τ |M, τf) and bL02(τ |M, τf) are those computed in Refs. [32]

(see also Eqs. (16) and (17) of Ref. [25]) through the extended Press-Schechter approach and the

peak-background split method (of course one can use refinements of the Press-Schechter halo mass

function like the one in Ref. [36]). There are two key points in the Press-Schechter theory. On one

side, the comoving number density of collapsed haloes is computed from the statistical properties

of the linear density field, assumed to be Gaussian. On the other side, a patch of fluid is part

of a collapsed region of radius R if the smoothed linear density contrast on that scale exceeds a

suitable threshold value δf computed at the formation time τf . In our gauge-invariant formulation

the first point remains of course true; the second point requires though some comments. Indeed,

the threshold value for the matter density contrast is computed according to the spherical collapse

model. As we have commented, the latter requires to work in the comoving-orthogonal gauge and

therefore δf ≡ δc (τf) ≃ 1.68/a(τf ) corresponds to the threshold matter density contrast in that

gauge. This does not coincide with the gauge-invariant threshold density contrast. However, it is

easy to convince oneself that the gauge-invariant threshold value obtainable through the relation

(10) differs from the one in the comoving-orthogonal gauge by a factor 10−4 even for very massive

haloes, M ∼ 1015M⊙ (see also the discussion in Ref. [37]).

Adopting a gauge-invariant expression for the density contrast brings two new and interesting

features in Eq. (28) for the Eulerian bias bE2 . First a new scale dependence parametrized by fgi(ki, τ),
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accompanied by a characteristic kernel Kgi
δ . Second, the primordial NG introduces a dependence

on the line of sight n which comes from terms like (v · n), which are necessary to realize the gauge-

invariant definition of the matter density contrast. Therefore in the Eulerian bias there appears

scale-dependent contributions which get also modulated. Notice that such v ·n contributions do not

represent the usual redshift-space distortion effects, but rather they appear as effective corrections

to the Eulerian bias Obviously, when computing the power spectrum of two objects with the same

bias on large scales, this modulation disappears being the power specturm real. Nevertheless, this

does not happen when computing the power spectrum of two objects with different bias. In such

a case, the resulting bias in the presence of some primordial NG is not only scale-dependent [22],

but also depending on the angles cos θ = k̂ · n̂ between the vector k and the vector indicating the

line-of-sight. A computation similar to the one leading the a scale-dependent bias when some large

local NG is included leads to a correction to the bias on large scales for two objects with different

bias bE1a(k) and b
E
1b(k)

∆bE1 (k,R1, R2) = 9if locNLδc(z)
ΩmH

2
0

k2T (k)

H(z)f(Ωm)

(1 + z)k

(

bE1a(k,R1)
k2σ2v(R1)

σ2(R1)
− bE1b(k,R2)

k2σ2v(R2)

σ2(R2)

)

cos θ ,

(33)

where we have generalized our computation to a ΛCDM model, Ωm is the dark matter critical

density, T (k) is the linear transfer function, f(Ωm) ≃ Ω0.6
m and σ2(R) and σ2v(R) are the variance of

the density contrast and of the velocity at a radius R, respectively.

5 Conclusions

In this paper we have described the computation of the Eulerian bias at second-order in perturbation

theory. Paying attention to the gauge-invariant issues which necessarily arise when dealing with

relativistic effects on large scales and with real observables, we have shown that some interesting

effects show up. First of all, the Eulerian bias acquires a scale-dependence on large scales even if the

primordial NG is totally negligible. Secondly, the primordial non-Gaussianity induces in the bias a

modulation with the line of observation when sources with different biases are observed. Of course,

we are well aware of the fact that our results are not complete in the sense that not all effects have

been included. In this paper we have restricted ourselves to that part of the observed galaxy density

contrast which is directly proportional to the dark matter density contrast through the bias. On

the contrary, we have not discussed, for instance, the redshift-space distortion and the magnification

effects. We leave it for future work.
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[31] J.N. Fry and E. Gaztanãga, Astrophys. Journ. 461, L65 (1996).

[32] H. J. Mo and S.D.M. White S. D. M., Mon. Not. R. Astron. Soc. 282, 347 (1996); H. J. Mo H.

J., Y. P. Jing and S. D. M. White, Mon. Not. R. Astron. Soc. 282, 1096 (1996).

[33] E. Barausse, S. Matarrese and A. Riotto, Phys. Rev. D 71, 063537 (2005)

[34] N. Bartolo, S. Matarrese and A. Riotto, JCAP 0510, 010 (2005) [arXiv:astro-ph/0501614].

[35] N. Bartolo, S. Matarrese, O. Pantano and A. Riotto, Class. Quant. Grav. 27, 124009 (2010)

[36] R.K. Sheth and G. Tormen, Mon. Not. Roy. Astron. Soc. 308, 119 (1999); R. K. Sheth, H. J. Mo

and G. Tormen, Mon. Not. Roy. Astron. Soc. 323, 1 (2001)

[37] D. Wands and A. Slosar, Phys. Rev. D 79, 123507 (2009) [arXiv:0902.1084 [astro-ph.CO]].

14


