刁桂苓,王晓山,高国英等.以震源机制类型划分汶川、玉树地震构造块体归属.地球物理学报,2010,53(8):1778~1783,DOI: 10.3969/j.issn.0001-5733.2010.08.003

Diao G L, Wang X S, Gao G Y, et al. Tectonic block attribution of Wenchuan and Yushu earthquakes distinguished by focal mechanism type. *Chinese J*. *Geophys.* (in Chinese), 2010, **53**(8):1778~1783, DOI:10.3969/j.issn.0001-5733.2010.08.003

以震源机制类型划分汶川、玉树地震构造块体归属

刁桂苓1,王晓山1,高国英2,聂晓红2,冯向东1

1 河北省地震局,石家庄 050021
 2 新疆维吾尔自治区地震局,乌鲁木齐 830011

摘 要 2001年11月14日昆仑山口7.8级地震、2008年3月21日于田7.1级和5月12日的汶川7.9级地震, 全部发生在青藏高原中部,构成新的地震活动组.昆仑山口和汶川地震分别位于巴颜喀拉活动地块的北部和东部 边界,于田地震发生在该地块的西端.GPS的观测资料分析表明该块体整体向东运动.发生在块体不同部位的昆仑 山口、于田和汶川3次大地震震源机制类型体现了巴颜喀拉块体活动力学的一致性.汶川主震和强余震发生之前, 出现于田序列余震的强度和频度显著增高,进一步证实同一活动地块地震之间的内在联系.2010年4月14日玉树 发生 6.9级地震,连同 1996年11月19日的喀喇昆仑山口 6.9级地震和 1997年11月18日玛尼 7.5级地震,都发 生在巴颜喀拉活动地块的南部边界上,震源机制表现为一致的左旋走向滑动,证实它们属于羌塘块体向东运动的 结果.事实表明活动块体具有整体运动的性质,而整体运动也是两组各自 3次大地震成组活动的原因.

关键词 汶川地震,玉树地震,震源机制,构造块体归属,成组活动,块体整体活动

DOI:10.3969/j.issn.0001-5733.2010.08.003 中图分类号 P315 收稿日期 2010-04-30,2010-07-16 收修定稿

Tectonic block attribution of Wenchuan and Yushu earthquakes distinguished by focal mechanism type

DIAO Gui-Ling¹, WANG Xiao-Shan¹, GAO Guo-Ying², NIE Xiao-Hong², FENG Xiang-Dong¹ 1 Earthquake Administration of Hebei Province, Shijiazhuang 050021, China 2 Earthquake Administration of Xinjiang Uygur Autonomous Region, Urumqi 830011, China

Abstract The November 14, 2001 $M_w7.8$ Kunlun Mountain Pass earthquake, the March 21, 2008 $M_w7.1$ Yutian earthquake and the May 12, 2008 $M_w7.9$ Wenchuan earthquake all occurred in the middle of Tibet Plateau and formed a new seismicity group. The epicenter of Kunlun Mountain Pass Earthquake and Wenchuan Earthquake was located at the northern and eastern boundary of Bayankala Block respectively and the Yutian earthquake on the western end of it. GPS observational data indicate that this block moves to east. The rupture characteristics of the three large earthquakes in different parts of the block suggest the mechanical consistency of the Bayankala block motion. The intensity and frequency of Yutian aftershocks significantly increased before the main shock and the stronger aftershock of Wenchuan earthquake, which proves that there is an internal relation between the three large earthquakes. The April 14, 2010 $M_w6.9$ Yushu earthquake, the November 19, 1996 $M_w6.9$ Karakorum mountain earthquake and the November 18, 1997 $M_w7.5$ Mani earthquake all occurred on the southern boundary of Bayankala block, and their focal mechanisms are consistently left-lateral strike slip, which were caused by

基金项目 地震动力学国家重点实验室(LE-09-05)项目资助.

作者简介 刁桂苓,男,研究员,主要从事地震学方面的研究. E-mail:dgl@eq-he.ac. cn

the eastward motion of Qiangtang block and formed a new strong earthquake group. The results show that the block has the character of rigid body motion which is the common origin of the two large earthquake groups.

Keywords Wenchuan earthquake, Yushu earthquake, Focal mechanism, Tectonic block attribution, Group activity, Rigid body motion

1 引 言

华北地区自公元前 780 年至 1978 年发生的 6 级以上地震存在时间相近、地点集中、成组发生的现 象,成组地震占全部地震的比例达到 73%^[1].同样, 中国大陆西部自公元前 193 年至 1991 年的 7 级以 上地震,以成组活动的概率也达到 70%[2]. 青藏高 原的变形和构造活动是当今地学研究的热点之一, 大地震则是构造最新活动的表现.自 2001年11月 14 日昆仑山口 7.8 级地震起,2008 年 3 月 21 日于 田 7.1 级和 5 月 12 日的汶川 7.9 级地震,全部发生 在青藏高原中部.根据中国大陆形成于晚新生代、晚 第四纪至现今强烈活动的构造带所分割和围限、具 有相对统一运动的地质单元划分出活动地块[3],青 藏高原是一级活动地块,进一步将青藏高原由南向 北分别划分为6个二级活动地块:喜玛拉雅、拉萨、 羌塘、巴颜喀拉、柴达木和祁连. 昆仑山口地震和汶 川地震都位于巴颜喀拉活动地块的边界上,于田地 震发生在该地块的西端,构成一个强震成组活动. 2010 年 4 月 14 日玉树发生 6.9 级地震,连同 1996 年11月19日的喀喇昆仑山口 6.9级地震和 1997 年11月18日玛尼7.5级地震,都发生在巴颜喀拉 活动地块的南部边界上,也形成一个强震成组活动. 因此许多人认为这些都属于巴颜喀拉地块的活动. 但是后一组强震活动从破裂类型上看都是左旋走向 滑动,与巴颜喀拉块体向东的运动方式矛盾.本文将 从震源机制解的类型出发,探讨这两组强震活动的 构造块体归属,进而分析这两组强震活动的动力学 成因.

2 震源机制类型分析

2001 年 11 月 14 日昆仑山口 7.8 级地震的野 外考察发现^[4]:地震地表破裂带沿 N100°±10°E 走 向线性展布,全长约 426 km.显示出纯剪切走滑的 破裂特征,最大左旋水平位移 7.6m.和哈佛大学 CMT 解近 EW 向的直立节面纯左旋走滑的运动方 式一致(图 1).2008 年 3 月 21 日于田 7.1 级地震的 CMT 解是正断层错动,根据 $M_s \ge 4.0$ 余震震中分 布区长轴呈 NE 方向,判断西倾的 NE 向节面是断 层面^[5],断层的 NW 盘下降(图 1).汶川地震形成了 长达 300 km 的破裂带,其中 240 km 出露地表,破 裂带具有逆冲抬升和右旋走滑双重属性,最大垂直 错距和右旋水平错距分别达到 6.2 m 和 4.9 m^[6,7]. 破裂显示 NW 盘仰冲至地表,CMT 解也是逆断层 错动(图 1).玉树、喀喇昆仑山口和玛尼地震都位于 巴颜喀拉地块的南部边界上,但是它们的破裂类型 都是左旋走向滑动,与该块体向东的运动方式矛盾.

汶川地震发生时于田震区仍然有余震活动,根 据新疆维吾尔族自治区地震局编制的于田序列目 录,取 ML2.0 级以上地震做震级一时间分布和日频 次图(图 2).图 2下方是于田序列地震日频次 N,总 体看衰减比较快,但在5月份有3次起伏(柱状图填 黑);图 2 上方将 5 月 10 日至 30 日的资料放大,黑 色箭头标示汶川主震和强余震发生的时间,资料取 自美国地质调查局(www.usgs.gov[2010-04-20]), 震级 M_w≥5.8,并附上哈佛大学 CMT 解. 汶川地震 当天余震比较多,为清楚起见只标注主震 CMT 解. 从图中可以看出,5月12日14时28分汶川地震之 前,于田序列的余震强度和频度有增高趋势,尤其在 18日 M_w5.8强余震前 24 h,于田震区的余震活动 频度和强度在快速衰减的背景下出现显著增强.此 外,25日的强余震之前重复出现类似现象,但不如 前面两次起伏显著,时间间隔也比前两次稍长,可能 与震源机制类型有关,前面两次震源机制类型为逆 冲,25日地震震源机制类型为走滑.汶川主震和强 余震发生前于田震区地震频度强度显著增强不是偶 然的巧合,系内在的力学因素所致,表明巴颜喀拉块 体存在整体的向东运动,并且是西部显示在先,东部 响应在后,可以从2个地震序列中体现出来.

从1976年以来于田震区哈佛矩张量解可以看出(图3),发生在该地震周围的震源机制以正断层机制为主,走滑断层机制的地震也伴有正断分量.万 永革等^[8]对于田地震正断层机制的构造解释认为, 沿着阿尔金断裂的左旋走滑速率较大,喀喇昆仑断

裂右旋走滑的速率较小,且沿北北西方向,两个运动 方向合成使得贡嘎错断裂呈现为左旋张扭的运动模 式,与喀喇昆仑右旋走滑断裂模式形成对比,致使该 地震震源区域呈现东西向拉张的应力状态. 王琼 等^[9]对于田地震前区域地震活动和应力状态进行分 析,发现在于田7.3级地震前新疆和于田震区及其 附近具有正断层性质的中等地震增多,区域应力场 和震源区及其附近局部应力场的应力状态发生了一 定程度的改变,拉张作用力相对挤压作用力有所加 强.特别是在 2007 年 11 月至 2008 年 3 月 20 日于 田 7.3 级地震前,新疆 23 次 3 级以上地震中走滑型 地震占 13 次(8 次具有拉张分量);逆断型地震 1 次;正断型地震9次,拉张断错性质的地震明显增 多.同时于田地震前组成密集条带和孕震空区的3.5 级以上地震中近半数具有拉张分量,也在一定程度 表明了于田 7.3级地震前震源区应力场受张应力作 用有所加强,2001年昆仑山口地震 EW 向的左旋走 滑运动,位于巴颜喀拉活动块体中部北缘的南盘向 东,使得巴颜喀拉块体西端受到拉张作用,该地区的 应力场主要以拉张为主,也是发生于田正断层地震 的原因之一.于田余震的震源机制解主要以正断层 类型为主,表明拉张作用一直持续,巴颜喀拉块体的

方为 2001 年昆仑山口地震以前震源机制,下面为于 田序列的震源机制

Fig. 3 Focal mechanisms in Yutian hypocenter region since 1976. Up are the focal mechanisms before the 2001 Kunlun Mountain mass earthquake.

Down are the focal mechanisms of the Yutian earthquake sequences in 2008 东向运动最终在块体的东边界发生了汶川逆冲型 地震.

取青藏地块 1900 年以来 6 级以上地震的矩张 量解投影于图 4^[10,11].总体来看,逆冲类型地震都发 生在青藏地块边界地带,如北部的柴达木和南部的 喜玛拉雅块体,以及巴颜喀拉块体的东端.正断层发 生在各个块体的内部(巴颜喀拉、羌塘、拉萨、川滇). 走滑类型地震多数分布在块体的边界带上,如柴达 木和巴颜喀拉块体之间、巴颜喀拉和羌塘块体之间、 巴颜喀拉和川滇块体之间(鲜水河).

Fig. 1 Epicenter location and fault type of six strong earthquakes in Tibetan Plateau in the recent years. Red solid circle is epicenter location; yellow line is the first active block boundary; blue line is the second active block boundary; the vector shows the block motion direction of Bayankala block relative to the Qaidam block

图 4 青藏块体矩张量最佳双力偶解投影(红色—逆冲、蓝色—正断、黑色—走滑) Fig. 4 The projection of the best double-couple solution of the moment tensor in Qinghai-Tibet block. Focal mechanism type is distinguished by color: red is thrust type, blue is normal fault type and black is strike slip type, respectively

根据矩张量解的应力轴空间取向可以得出以下 结论:青藏地块受印度板块向 NNE 向的推挤,其中 各个块体表现并不一致.柴达木显示向 NE 方向推 挤;巴颜喀拉向东运动,西部呈 EW 向拉张,东部 SEE 向推挤,北部边界带左旋走滑;羌塘北部左旋 走滑,中部 SEE 向拉张,呈向东运动;拉萨 EW 向拉 张;喜马拉雅 NNE 向推挤.川滇东北边界(鲜水河) 左旋走滑,北部 SSE 向拉张,总体呈 SSE 向运动.

3 结论与讨论

昆仑山口 7.8 级地震是 EW 向构造产生左旋 走向滑动,位于巴颜喀拉活动块体中部北缘的南盘 向东,使得块体的西部受拉张,东部受挤压,因而先 后产生在块体西部于田地震的正断层错动和块体东 端的汶川地震逆冲断层错动.同样位于羌塘块体北 边界的喀喇昆仑山口、玛尼、玉树 3 次强震表现为一 致的左旋走向滑动.包括汶川、玉树在内近期发生的 6 次强震,虽然都发生在巴颜喀拉块体边界,分析它 们的破裂性质应当分别归属于 2 个活动块体(巴颜 喀拉、羌塘),都表现为向东运动.

两组强震,每组的3个地震同在活动地块的边 界相继发生,依据震源机制类型划分了每组地震的 构造块体归属,大地震破裂特征提供了块体活动力 学一致性的证据.证实块体是作为整体活动的,因此 块体整体运动是地震共同的动力成因.地震成组发 生,意味着它们是同时孕育、相互关联,因此不宜局 限于单一构造分析地震的重复性,或者寻找小范围 的前兆现象,只有扩大视野,从块体整体活动的认识 出发,才能更客观、全面地了解地震的孕育、发生 过程.

利用中国及其邻区近十年的 1683 个 GPS 测站 的观测资料,建立由 31 个活动地块组成的大陆变形 运动学模型^[12].块体内部变形十分有限,说明块体 的旋转运动而非连续分布变形是大陆构造的主要 活动方式.巴颜喀拉块体存在较大的旋转速度 (-0.583°/Ma)和运动速率(16.5 mm/a),方向角 为-82.8°,顺时针旋转,块体整体向东运动.羌塘块 体东部存在更大的旋转速度(-1.135°/Ma)和运动 速率(18.1 mm/a),方向角为-82.9°,顺时针旋转, 块体也是整体向东运动.

青藏高原的构造变形模式存在侧向逃逸和压缩 增厚两种学说,前者强调青藏高原不同级别块体通 过大型走滑断裂带的高速滑动实现向东挤出,调节 青藏高原近南北向的缩短^[13].后者则强调印度板块 的向北推挤导致韧性下地壳增厚和上地壳发育大量 缓慢滑动断层,发生分布式连续变形^[14,15].高原中 北部的岩石圈下方存在剪切变形^[16,17].Zhang等^[18] 研究表明,现今构造变形以连续变形为特征,印度板 块和欧亚板块之间的相对运动主要被青藏周边的地 壳缩短和内部的走滑剪切所吸收.Wang等^[19]分析 给出青藏高原内部活动地块的运动方式是分块的, 各块之间或者运动方向不同,或者运动速度不同.近 年发生的汶川、于田和昆仑山口3次强震,以及喀喇 昆仑山口、玛尼、玉树3次强震的力学联系支持青藏 高原内部的变形主要发生在活动块体边界.但是青 藏地块内部发生的大量正断层地震显示的拉张性 质,上述两种学说尚难以给出满意解释,需要进一步 分析研究.

致 谢 审稿人提出的修改意见使本文得以很大改进,特此致谢!

参考文献(References)

- Li Q Z, Yu X C. Occurrences of major earthquake by groups in North China. *Tectono physics*, 1982, 85: 61~74
- [2] 李钦祖,于利民,王吉易等.中国大陆强地震的成组活动和概率预报.中国科学(B辑),1993,23(5):519~526
 Li Q Z, Yu L M, Wang J Y, et al. Grouping occurrences and probability prediction of the strong earthquakes in Chinese mainland. *Science in China (Series B)* (in Chinese), 1993, 23(5): 519~526
- 【3】张培震,邓起东,张国民等.中国大陆的强震活动与活动地块.中国科学(D辑),2003.33(增刊):12~20
 Zhang P Z, Deng Q D, Zhang G M, et al. Strong earthquake activity and active blocks in China mainland. Science in China (Series D) (in Chinese), 2003, 33(Suppl.): 12~20
- Xu X W, Yu G H, Klinger Y, et al. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (M_w7. 8), northerm Tibetan Plateau, China. J. Geophys. Res., 2006, 111, B05316, doi:10.1029/2004JB003488
- [5] 李志海,马宏生,曲延军. 2008 年 3 月 21 日新疆于田 7.3 级 地震发震构造与震前地震活动特征研究.中国地震,2009,25
 (2):199~205

Li Z H, Ma H S, Qu Y J. Study on seismogenic structure and seismic activity characteristics before the Yutian M7. 3 earthquake on March 21, 2008, Xinjiang. *Earthquake Research in China* (in Chinese), 2009, **25**(2):199~205

[6] 徐锡伟,闻学泽,叶建青等. 汶川 M₈8.0 地震地表破裂带及其 发震构造. 地震地质,2008,30(3):597~629
Xu X W, Wen X Z, Ye J Q, et al. The M₈8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 2008, 30(3):597~ 629

[7] 张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,2008,51
 (4):1066~1073

Zhang P Z, Xu X W, Wen X Z, et al. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. *Chinese J*. *Geophys.* (in Chinese), 2008, **51**(4):1066~1073

[8] 万永革,沈正康,盛书中等.2008年新疆于田7.3级地震对周 围断层的影响及其正断层机制的区域构造解释.地球物理学 报,2010,53(2):280~289

Wan Y G, Shen Z K, Sheng S Z, et al. The mechanical effects of the 2008 M_*7 . 3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism. *Chinese J. Geophys.* (in Chinese), 2010, **53** (2): 280~289

[9] 王 琼,聂晓红,温和平. 2008 年新疆于田 M_s7.3 地震前区域地震活动和应力状态特征初步研究.地震学报,2009,31 (3):235~244

Wang Q, Nie X H, Wen H P. Preliminary research on the characteristics of regional seismic activity and stress state before the 2008 M_s7 . 3 earthquake in Yutian, Xinjiang of China. Acta Seismologica Sinica (in Chinese), 2009,**31**(3): 235~244

[10] Selva J, W Marzocchi. Focal parameters, depth estimation and plane selection of the worldwide shallow seismicity with M_s≥7.0 for the period 1900~1976. Geochem. Geophys. Geosyst., 2004,5, Q05005, doi:10.1029/2003GC000669.

- [11] http://www.globalcmt.org/CMTsearch.html[2010-04-20]
- [12] 王 伟,王 琪. GPS 观测约束下的中国大陆活动块体地块运动学模型. 大地测量与地球动力学,2008,28(4):74~82
 Wang W, Wang Q. Kinematical model of crustal blocks of China continent revealed by GPS measurements. *Journal of Geodesy and Geodynamics* (in Chinese). 2008, 28(4): 74~82
- [13] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671~ 1677
- [14] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276:788~790
- [15] Shen F, Leigh H R, Burchtiel B C. Large-scale crustal deformation of the Tibetan Plateau. J. Geophys. Res., 2001,106, 6793~6816, doi:10.1029/2000JB900389
- [16] Thatcher W. Microplate model for the present-day deformation of Tibet. J. Geophys. Res., 2007, 112, B01401, doi:10.1029/2005JB004244
- [17] Meade B J. Present-day kinematics at the India-Asia collision zone. Geology, 2007, 35: 81~84
- [18] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. *Geology*, 2004, **32**: 809~812
- [19] Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science, 2001, 294(5542):574~577

(本文编辑 胡素芳)