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We derive the equations of motion for Palatini F (R) gravity by applying an entropy balance law
TdS = δQ + δN to the local Rindler wedge that can be constructed at each point of spacetime.
Unlike previous results for metric F (R), there is no bulk viscosity term in the irreversible flux δN .
Both theories are equivalent to particular cases of Brans-Dicke scalar-tensor gravity. We show that
the thermodynamical approach can be used ab initio also for this class of gravitational theories
and it is able to provide both the metric and scalar equations of motion. In this case, the presence
of an additional scalar degree of freedom and the requirement for it to be dynamical naturally
imply a separate contribution from the scalar field to the heat flux δQ. Therefore, the gravitational
flux previously associated to a bulk viscosity term in metric F (R) turns out to be actually part of
the reversible thermodynamics. Hence we conjecture that only the shear viscosity associated with
Hartle-Hawking dissipation should be associated with irreversible thermodynamics.

PACS numbers: 04.70.Dy, 04.20.Cv, 04.62.+v

I. INTRODUCTION

In the past decade, there has been significant inter-
est in the idea of gravity as the thermodynamics of a
quantum theory associated to some underlying micro-
scopic structure of spacetime [1–6]. The first striking
hint in this direction was given by Jacobson [1], who de-
rived the Einstein equation as an equilibrium equation
of state, starting from the thermodynamical properties
of the vacuum. The key ingredients of the derivation
were the possibility to characterize the Minkowski vac-
uum perceived by an uniformly accelerated observer as
a canonical thermal state (Unruh effect), together with
the idea that the local acceleration horizon, associated
with the former observer, could be analogous to a tiny
piece of a black hole event horizon, thereby allowing for
an area-entropy proportionality assumption.

In this context, the coupling between geometry and
matter was then provided by demanding a local equilib-
rium Clausius relation, TdS = δQ, as the main tool to
relate the variation of entropy of the vacuum fields dS
(horizon area deformation) to the perturbative effects of
a local flux of matter energy δQ through the acceleration
horizon.

More recently, in the attempt to understand whether
and how the thermodynamical derivation of the Einstein
equation could be generalized to allow for the higher
curvature terms expected by the effective field theory,
it was realized that the thermodynamical approach can
be naturally generalized from an equilibrium to a non-
equilibrium thermodynamical setting [3, 4]. Indeed, it
was pointed out in [3] that in a natural extension of
the framework to F (R) gravity theory, the horizon en-
tropy proportionality to a function of the Ricci scalar
necessarily led to a break down of the thermodynamical
equilibrium. In order to recover the F (R) gravity field
equation from the thermodynamical prescription, it was

necessary to generalize the local equilibrium condition to
a more general entropy balance law. The new local equi-
librium condition, TdS = δQ+ δN (generalized Clausius
relation), contains extra irreversible entropy production
terms due to the source contributions for the horizon
area/entropy evolution which are quadratic in expansion
and shear of the null geodesic bundle comprising the hori-
zon.

Already interpreted in [3] as dissipative effects, these
terms were linked to purely gravitational/internal de-
grees of freedom of the theory [5]. In particular, the
entropy production terms associated with the quadratic
shear were recognized to be the equivalent, for the local
horizon setting, of the tidal heating term associated to
dissipation of black hole horizon’s perturbations via grav-
itational fluxes. Similarly, the entropy production terms
associated with the quadratic expansion seemed to be an
extra purely scalar dissipative contribution.

However, the scalar dissipative contribution seems to
be formally local, as a derivative of a scalar field at a
point. Being local, this term would be frame indepen-
dent, thereby it would exist for any observer (accelerated
or inertial) in the local patch of spacetime and would al-
ways end up describing the dynamics of the global space-
time. Therefore, an interpretation of this term as a dissi-
pative contribution would imply waves of the scalar field
would be dissipative in the spacetime. This is inconsis-
tent with that fact that classical gravitational theories
are time reversal invariant.

In order to address this problem, we start in this work
by extending the thermodynamical approach, previously
applied to metric F (R) gravity, and work in the Pala-
tini formalism, where the connection is a priori an in-
dependent variable from the metric. In this theory, the
connection is not a propagating degree of freedom and
can be eliminated by an algebraic relation. As a conse-
quence, unlike the metric F (R) case, we show that no
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extra entropy production terms is required in order to
get the equations of motion from the generalized local
equilibrium condition. This is in agreement with what
one would expect from the reasoning proposed in [5] re-
garding the interpretation of these terms as linked to the
dynamical gravitational degrees of freedom of the theory.

However, both metric and Palatini F (R) gravity are
equivalent, at the classical level, to Brans-Dicke theories
with particular values of the Dicke constant. With this
motivation, we then consider an entropy density that is
a scalar spacetime function, promoting the inverse of the
Newton constant to be an independent scalar field. In
this way, we can show that the thermodynamic derivation
in this case can capture both the field equations of the
metric and the scalar field for these theories.

In this scalar-tensor framework, the extra entropy con-
tribution associated with the quadratic expansion in the
metric F (R) appears as a separate contribution from the
scalar field to the reversible heat flux δQ. Therefore, the
gravitational flux previously associated to a bulk viscos-
ity term in metric F (R) is understood as a component of
the reversible sector in the thermodynamical formalism.
In this picture, we are able to generalize the thermody-
namical approach to general Brans-Dicke scalar-tensor
theories of gravity.

We start in section II with a review of the spacetime
thermodynamics approach developed for Einstein gravity
in and its extension to metric F (R) theory. In section III,
we reconsider the thermodynamical formalism for Pala-
tini gravity. We show how the equilibrium condition,
which was just an auxiliary condition in the metric for-
malism, now implies the field equation associated with
the variation of the Lagrangian with respect to the in-
dependent connection. Then, we derive the equation of
motion from the local equilibrium assumption, where no
additional bulk viscosity term is needed in the analy-
sis. In section IV, the interpretation of the bulk viscosity
term is reconsidered through the equivalence of metric
and Palatini versions of F (R) to particular cases of scalar
tensor theories. This provides the background to gener-
alize the argument to a general Brans-Dicke theory in
section V. We conclude with a summary and discussion
of future work.

II. THERMODYNAMICS OF SPACETIME AND
METRIC F (R) GRAVITY

Here we will first review the thermodynamics of space-
time approach originally developed for Einstein gravity
[1] and its extension to metric F (R) gravity [3] (also see
[5]) as this will be the basis for our results in the fol-
lowing sections. The foundation of the approach is in
the thermodynamical properties of the flat Rindler space-
time, which are independent of gravity. In the Rindler
coordinates Y µ = (τ, ξ, x, y), a flat manifold has the line
element

ds2 = gµνdY
µdY ν = κ2ξ2dτ2 − dξ2 − dx2 − dy2. (1)

Here κ is an arbitrary constant with dimensions [L]−1

(we work in units where ~ = c = kB = 1) associated with
the normalization of the timelike Killing vector ∂τ . These
coordinates only cover a “wedge” subregion of the space-
time, in terms of global Minkowski coordinates the range
where z > |t|. The timelike Killing flow χµ = (∂τ )µ is
equivalent to a continuous boost in the z direction. The
respective boost time parameter τ is proportional to the
proper time along the wordlines of a uniformly acceler-
ated observer, defined by the ξ = const hyperbolas. The
surface ξ = 0 is the null surface z = t, which acts similar
to future event horizon of a black hole since the points
“inside” are causally disconnected from the accelerated
observers.

When restricted to the Rindler wedge, the usual global
Minkowski vacuum state |0〉 in quantum field theory
turns out to be equivalent to a Gibbs thermal state with
an Unruh-Tolman temperature [7, 8]

T =
κ

2π
, (2)

and a thermal entanglement entropy [9]

Sent = −Trρ ln ρ. (3)

As said, the factor κ is an arbitrary rescaling factor for
the proper time τ , as such it can always be set to one.
Hence from this point forward we will usually work with
the dimensionless “temperature” 1/2π. Remarkably, the
entanglement entropy associated with the fields in the
Rindler wedge scales not like the volume of the wedge,
but instead with the area of the Rindler horizon bound-
ary, just like the Bekenstein-Hawking entropy of a black
hole. On the other hand, in quantum field theory it is
also quadratically ultraviolet (UV) divergent and we will
assume a regulator has been introduced in order to render
it finite.

Now a general spacetime is a curved manifold, but the
equivalence principle implies that the neighborhood of
any point p is approximately flat. In this flat patch
of spacetime, one can always construct a local Rindler
wedge system. Let us be more precise about this con-
struction. The key quantity we need is a localized version
of the boost Killing vector χµ, vanishing at p. This object
will allow us to define a local temperature and eventually
a notion of heat flow. There are no Killing vectors for an
arbitrary spacetime, but Killing’s equation 2∇(µχν) = 0

can be solved around locally around p up to O(x3) using
Riemann normal coordinates xµ, where

gµν = ηµν +O(x2). (4)

In the neighborhood of each point in spacetime we
think of the thermal system as the local Minkowski
vacuum |0〉 restricted to the local Rindler wedge. Note
that the full Minkowski patch, where there is no local
horizon and no coarse graining, has zero temperature
and entropy and is not the thermal system in question.
To probe the behavior of this system out of equilibrium
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one constructs a local causal horizon at p as follows.
Choose a spacelike 2-surface patch B including p, and
choose one side of the boundary of the causal past of B.
Near p, this boundary is a congruence of null geodesics
orthogonal to B. These comprise the horizon. At p, B
agrees with the tangent plane Bp preserved by the flow
of the local Killing vector (Fig. 1).

p

p
B

Bp

FIG. 1. The 2-surface B agrees at p with the tangent plane
Bp preserved by the flow of the local Killing vector.

We arrange χµ so that it is future pointing on the
causal horizon. Therefore on the horizon generator
through p we have (up to to the ambiguities at O(x3))
χµ = −λkµ, where kµ is the affinely parameterized null
tangent vector kµ. This affine parameter obeys the for-
mula

λ = −e−v, (5)

where v is the “Killing time” parameter defined via
χµ∇µv = 1 characterizing the time flow of the local
wedge system.

The choice of how B is warped in the spacetime de-
termines the horizon expansion and shear, and therefore
the deviation of the system from equilibrium. Using (5)
one can show the relationship between the expansion and
shear of the local horizon defined in terms of v and cor-
responding quantities in λ is

θ̂ = −λ θ σ̂ = −λσ. (6)

The Killing quantities automatically vanish because p is a
fixed point of the local boost flow, consistent with our no-
tion of local thermodynamic equilibrium there. Whether
the affine quantities are zero or not in turn determines
the rate at which this equilibrium is approached. For
example, when σ|p = 0, σ̂ ∼ e−2v, while for σ|p 6= 0,

σ̂ ∼ e−v.
The basic idea is to impose a general entropy balance

law on this local system. When the thermal density ma-
trix ρ associated with the quantum fields in the wedge
is perturbed, the change in the entanglement entropy
should be related to the change in mean energy via the
entropy balance law

dS = δQ/T + δN/T. (7)

We assume the change in the mean energy of the system
is due to a flux into the unobservable region of spacetime,

which is perfectly thermalized by the horizon system and
therefore can be thought of as heat. It is assumed δQ is
the flow of boost matter energy current TMµνχ

ν across the
horizon, in terms of the affine kµ this is

δQ

T
= 2π

∫
TMµνk

µkν(−λ)dλ
√
hd2x, (8)

where
√
h is the cross-sectional area element on the causal

horizon.
The additional δN is an irreversible internal entropy

production term, or uncompensated heat. This term
arises in a slower approach to equilibrium. Using linear
constitutive relations between fluxes of momentum in a
fluid and the thermodynamic “forces” given by gradients
of a fluid velocity, it was argued in [3] that the entropy
production can be expressed in terms of the squared shear

σ̂µν and expansion θ̂ of the flow

δN

T
=

2η

T
σ̂µν σ̂

µν +
ξB
T
θ̂2, (9)

where η and ξB are shear and bulk viscosities respec-
tively.

The entropy balance law (7) we postulated requires a
corresponding change in the entanglement entropy asso-
ciated with the local Rindler wedge. In [1] a constant,
universal UV cut-off α with units of [L]−2 was postulated
to make the entropy density s finite and the total entropy
just proportional to the horizon cross-sectional area. Im-
posing the entropy balance law ultimately yielded two
results, which we will briefly summarize. The Einstein
equations (with undetermined cosmological constant and
the Newton constant GN = (4α)−1) are associated with
reversible changes in the global spacetime. This is con-
sistent with the time reflection symmetry of Einstein’s
theory. In the irreversible sector, associated with the
horizon, the shear viscosity was fixed to have the uni-
versal ratio η/s = 1/4π [3, 4]. The shear viscosity term
coincides with the Hartle-Hawking tidal heating term and
therefore appears to be associated with the purely tenso-
rial gravitational degrees of freedom in the theory [5].

However, one can imagine that the entanglement en-
tropy density has a more complicated structure in gen-
eral. For example, the only known theory of gravity con-
sistent with the strong equivalence principle is Einstein
gravity. The strong equivalence principle implies that
gravity is purely geometrical. Physics (with gravity in-
cluded) is the same in any locally flat region of spacetime,
which means the UV cutoff is constant, GN is universal,
and there are no extra gravitational fields. However, in
more general theories of gravity, the strong equivalence
principle is not satisfied, suggesting one should consider
an entanglement with a spacetime dependent cutoff and
as a result, more general entropy functionals.

In [3] it was assumed the entropy density is a general
function of the Ricci scalar f(R), so that the total en-
tropy is

S = α

∫ √
hf(R)d2x, (10)
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In this case we will review the details of how the entropy
balance law is imposed. The variation of this entropy in
terms of the affine parameter λ has the form

δS = α

∫ √
h

(
fθ +

df

dλ

)
dλd2x. (11)

To compare with the heat flux in (8) we perform a series
expansion in λ around the point p,

δS = α

∫ √
h

[(
θf +

df

dλ

)
+

+ λ

(
θ
df

dλ
+ f

dθ

dλ
+
d2f

dλ2
+ fθ2 + θ

df

dλ

)]
p

. (12)

The first three terms in O(λ) piece come from the deriva-
tive of the integrand in (11), while the last two terms are
associated with the derivative of the transverse volume
element

√
h.

We now match this expansion with the heat flux and
irreversible heat at lowest orders in λ as required by the
entropy balance law. Because we are dealing with quan-
tities evaluated at p, equating the integrals (12) and (8)
is equivalent to equating the integrands. Since there is
no zeroth order part of these fluxes (they must vanish at
the equilibrium point p, see for example (8)), we have the
equilibrium condition that(

θf +
df

dλ

)
p

= 0. (13)

One can always construct a 2-surface B at p to satisfy this
condition. Now consider the O(λ) terms of (7). First, we
replace dθ/dλ with the right hand side of the Raychaud-
huri equation

dθ

dλ
= −1

2
θ2 − σµνσµν −Rµνkµkν , (14)

Comparing the integrands, we find at p

α(−fRµνkµkν + kµkν∇µ∇νf −
3

2
fθ2 − ϕσµνσµν)

= 2π(−TMµνk
µkν − 2ησµνσ

µν − ξBθ2).(15)

Note that in writing this equation we used d/dλ = kµ∇µ
and the affine geodesic equation kµ∇µkν = 0. Using
(13), the expansion can be expressed as a kinetic term
for f ,

3

2
fθ2 =

3

2f
kµkν∇µf∇νf. (16)

If we consider this kinetic term to be a part of the
reversible sector and demand the equation hold at any
point p and for all null vectors kµ, we get

fRµν −∇µ∇νf +
3

2f
∇µf∇νf + Φgµν =

(
2π

α

)
TMµν ,

(17)

where Φ is an arbitrary function. Local energy-
momentum conservation requires ∇µTMµν = 0 and
therefore gives us a condition to solve for Φ. However, as
was shown in [3], with the additional kinetic term (16)
present, there is a contradiction and one cannot solve
for Φ. In this case, conservation of energy-momentum
seems to require this term contribute to the irreversible
entropy production. Put differently, one must have the
identifications

η =
αf

4π
(18)

ξB =
3αf

4π
. (19)

to cancel out the kinetic and shear squared terms. Note
that since s = αf , the ratio η/s = 1/4π still. The purely
reversible changes are now associated with the equation

fRµν −∇µ∇νf + Φgµν =

(
2π

α

)
TMµν , (20)

Imposing local energy conservation and then using the
contracted Bianchi identity and the commutator of co-
variant derivatives, one finds that Φ = �f − 1

2F , where
F (R) is the Lagrangian of the theory and defined here by
the equation f = dF/dR. As a result (20) now coincides
with the equation of motion derived from the action

Imet =
α

4π

∫ √
−gd4x(F (R) + Lmatt). (21)

III. PALATINI F (R) GRAVITY

In this section we will address whether the formalism
of Palatini gravity is compatible with the thermodynamic
approach. In the Palatini formalism, one treats the con-
nection as an independent variable a priori. The Rie-
mann tensor Rµνρλ, constructed out of this connection,
is now therefore also independent of the metric.

Our starting point will be an entropy density which is
an arbitrary function of the independent Ricci scalar

S = α

∫ √
hf(R)d2x. (22)

If the thermodynamic approach works in this case, we
expect now two equations, which are the equations of
motion following from the variation of the Lagrangian

IP =
α

4π

∫ √
−g(F (R) + Lmatt(gµν , ψ)) (23)

with respect to gµν and Γλµν . Note that in the Palatini
formalism the matter part of the action is assumed not
to depend on the independent connection.

Palatini F (R) gravity theory has been discussed ex-
tensively over the past decade as an alternative theory of
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gravity [10]. Here we pause briefly to review the proper-
ties of this theory. Defining f = dF/dR as before, the
equations of motion are

f(R)Rµν −
1

2
F (R)gµν =

(
2π

α

)
Tµν (24)

∇̄σ(
√
−gf(R)gσ(µδν)λ − ∇̄λ(

√
−gf(R)gµν) = 0, (25)

where ∇̄ represents the covariant derivative defined with
respect to the independent connection. The connection
equation is equivalent to the more compact condition

∇̄λ(
√
−gf(R)gµν) = 0. (26)

Note that when f is equal to a constant this equation re-
duces to the usual metric compatibility condition for gµν .
Therefore we see the textbook equivalence of the Palatini
and metric formalisms of GR. In general however, (26)
implies the conformally related metric

ḡµν = f(R)gµν (27)

is compatible with the connection. Imposing this con-
dition, one can relate the Ricci tensor and scalar con-
structed from ḡµν to the metric quantities

Rµν = Rµν +
3

2

1

f2
(∇µf ′)(∇νf)

− 1

f
(∇µ∇ν −

1

2
gµν�)f (28)

R = R+
3

2

1

f2
(∇µf)(∇µf) +

3

f
�f. (29)

These equations can be substituted into (24) to yield [10]

fGµν =

(
2π

α

)
Tµν −

1

2
gµν (fR− F (R))

+
1

f
(∇µ∇ν − gµν�)f − 3

2

1

f2
[(∇νf)(∇νf)

−1

2
gµν(∇f)2]. (30)

Solving the trace of (24) for R in terms of T , one can
completely eliminate the connection as an independent
variable and reduce the system to one equation of motion
that looks like GR with a modified source. Following
the reasoning of [5] one then should expect that no bulk
viscosity term appears in this case, as no-extra dynamical
gravitational degree of freedom with respect to the metric
appears in Palatini F (R) gravity.

A. Thermodynamic formalism

With the connection now an independent variable and
the metric no longer a priori compatible with it, we want
to consider the effect (if any) on the basics of the thermo-
dynamics of spacetime formalism introduced in Section

II. This is not only worth doing for checking the validity
of the above discussed expectation (no-bulk viscosity as-
sociated to F (R)) but also as a first step towards the gen-
eralization of the spacetime thermodynamics formalism
to the broader class of metric-affine theories of gravity.

In the neighborhood of each point, spacetime is still
locally flat and we still can construct the boost Killing
vector χµ since the Killing equation Lχgµν = 0 does not
depend on the connection. On the local horizon χµ is
still a null generator. However, in the presence of an
independent connection, there is a priori an ambiguity in
whether χµ is a geodesic with respect to the independent
connection or the metric one. We have either

χν∇̄νχµ = κ̄χµ (31)

or

χν∇νχµ = κχµ, (32)

and the corresponding choices for the affine parametriza-
tion

χµ = −κ̄λ̄`µ (33)

χµ = −κλkµ. (34)

Each vector above is affinely parameterized with respect
to either the independent or the Levi-Civita connection:
`ν∇̄ν`µ = 0 or kν∇νkµ = 0. Therefore, in the entropy
change δS, one must consider changes with respect to
either affine parameter. A priori the different Clausius
relations could yield two different equations of motion.
In the next two subsections we will consider variations
with respect to λ̄ and λ in turn.

1. Variation using independent connection

First we consider the heat flux. We express the Killing
field in terms of the affine `µ using the formula χµ =
−λ̄`µ, where we scale the κ̄ = 1 as usual.1 Therefore,

δQ

T
= 2π

∫
TMµν`

µ`ν(−λ̄)dλ̄
√
hd2x. (35)

In the expression above, differently from Eq. (8), we use
the affine null vector `µ with respect to the independent
connection and the null geodesic bundle comprising the
horizon is now parametrized by λ̄. On the other hand,
as the matter only feels the metric gµν , the relevant vol-

ume element is still given by
√
g, reducing to

√
h on the

1 It is worth noticing here that there is an ambiguity about which κ
(barred or unbarred) would actually appear in the Tolman-Unruh
temperature T , see Eqn. (2). If the unbarred κ is chosen, due to
the coupling of matter fields only to metric, then we assume the
ratio of the two surface gravities can be scaled to unity without
loss of generality.
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horizon. In this sense, we can write the relevant horizon
volume element as dΣν = `µ

√
hd2xdλ̄.

Along the same parameter λ̄, we now consider a general
variation of the entropy. This has the same form as (11),
but we express it in a slightly different way,

δS =

∫ √
hfθ̄d2x, (36)

where

θ̄ =
1√
h

d
√
h

dλ̄
+

1

f

df

dλ
=
d ln(f

√
h)

dλ̄
. (37)

This suggests that the new expansion measuring the the
product of f and transverse element is the relevant one.
Thus, we make the transformation√

h̄ = f(R)
√
h. (38)

so that in terms of this new variable, the entropy is an
area entropy

S = α

∫ √
h̄d2x. (39)

Imposing the entropy balance equation and matching or-
der by order in λ̄ we find the zeroth order equilibrium
condition, which can be expressed as

θ̄ = 0→ `µ∇̄µ(
√
h̄) = `µ∇̄µ(f ′

√
h) = 0. (40)

Note that we could have performed the above conformal
transformation also in metric F (R) gravity, but in that
case the equilibrium condition involves the Levi-Civita
connection. On the other hand, the above formula in
terms of the independent connection is reminiscent of the
metric compatibility condition (26).

First, note that the vanishing of the expansion θ̄ can
be expressed as

d

dλ̄

√
det(ḡµνe

µ
aeνb ) =

d

dλ̄

√
det(ḡµν)det(eµaeνb ) = 0. (41)

The quantities eµa are basis vectors in the cross-section of
the horizon and the index a runs over the two transverse
directions. Since these basis vectors by construction are
Lie transported along the horizon, we must have that

d

dλ̄

√
−ḡ = 0. (42)

But since

d

dλ̄

√
−ḡ =

1

2
ḡµν

d

dλ̄
ḡµν = 0, (43)

this condition implies that

d

dλ̄
(
√
−ḡḡµν) = 0. (44)

Demanding this equation hold for all null vectors `µ, at
each point p, and using the fact that (38) implies

ḡµν = fgµν , (45)

we arrive at the metric compatibility equation (26),

∇̄λ(f
√
−ggµν). (46)

Remarkably, the equilibrium condition, which was just an
auxiliary condition in the metric formalism, now implies
the field equation associated with the variation of the
Lagrangian with respect to the independent connection.

Now we go back to the entropy balance law and con-
tinue to next order in λ̄. We find

δS = α

∫ √
h̄
dθ̄

dλ̄
λ̄d2x. (47)

Using the Raychaudhuri equation this can be re-
expressed as

δS = −α
∫ √

h̄Rµν`µ`ν λ̄d2x, (48)

in terms of the Ricci tensor constructed from ḡµν . Note

the appearance of
√
h as opposed to the

√
h̄ = f

√
h.

Imposing the Clausius relation, and matching both sides,
we find

fRµν + Φgµν =

(
2π

α

)
TMµν . (49)

The f in front of the Ricci tensor has reappeared to ac-
count for the mismatch between the effective volume ele-
ment and the metric volume element felt by matter flux.

In the Palatini formalism, ∇̄µTµν 6= 0, but the usual
metric conservation law ∇µTµν = 0 holds. Imposing this
condition yields

∇νΦ = −f∇µRµν −Rµν∇µf. (50)

The main problem is to calculate the g covariant diver-
gence of the ḡ Ricci tensor. We know that Rµν is related
to Rµν via a conformal transformation with conformal

factor f1/2. The connection relating the covariant deriva-
tives with respect to the two metrics has the form

Γσµν = −δσ(µ∇̄ν) ln f ′ +
1

2
ḡµν ḡ

σδ∇̄δ ln f ′. (51)

Using the formula (see e.g. [11])

∇µGµν = −∇µ ln fRµν (52)

and defining Gµν = Rµν− 1
2gµνR, we ultimately find that

∇νΦ = −1

2
f∇̄νR = −1

2
∇̄νF, (53)

so that Φ = −1/2F + const. as we expect. Therefore in
the irreversible sector, there is no need for a bulk viscosity
term, and the shear viscosity remains the same as in GR
and metric F (R) gravity.
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2. Variation using Levi-Civita connection

Now we re-consider the same problem, but working
instead with quantities defined with respect to the Levi-
Civita connection. Hence we consider the affinely param-
eterized tangent to be kµ. The representation of the heat
flow and the entropy change is exactly the same as for the
metric F (R) case in Section II. As a result, the analysis
shows that we have an equation similar to (17)

fRµν −∇µ∇νf +
3

2f
∇µf∇νf + Φgµν =

(
2π

α

)
TMµν ,

(54)
but instead of the fully metric-derived object f(R), now
we have f(R). The Ricci tensor that appears explicitly
is constructed from the metric and comes from the Ray-
chaudhuri equation in terms of metric compatible vari-
ables.

We need to solve for the unknown function Φ. In the
metric theory this lead to a contradiction and one had to
cancel the kinetic ∇µf∇µf by introducing a bulk viscos-
ity (or equivalently, move it into the irreversible sector),
but here we have to consider the presence of two different
curvature tensors. Taking a covariant divergence of (54),
we find that

∇νΦ = −(∇µf)Rµν − f∇µRµν +∇µ∇µ∇νf

+
3

2f2
∇µf∇µf∇νf −

3

2f
�f∇νf

− 3

2f
∇µf∇µ∇νf. (55)

Next, we use the Bianchi identity, ∇µRµν = 1
2∇νR and a

contracted version of the commutator of covariant deriva-
tives

∇µ∇νVµ −∇ν∇µVµ = RτνVτ , (56)

where Vµ ≡ ∇µf to re-express the second and third terms
on the right hand side above. In addition, note that the
last term can be re-expressed as

− 3

2f
∇µf∇µ∇νf = − 3

4f
∇ν(∇µf∇µf) =

−∇ν
(

3

4f
∇µf∇µf

)
− 3

4f2
∇µf∇µf∇νf. (57)

Combining these results, we obtain

∇νΦ = ∇ν
(
�f − 3

4f
∇µf∇µf

)
− 1

2
f(R)∇νR

−
(

3

4f2
∇µf∇µf +

3

2f
�f

)
∇νf. (58)

Here, the key term is the −1/2f(R)∇νR. We can intro-
duce the following ansatz

R = R− Y, (59)

where Y is some unknown function. Then this term can
be manipulated into total derivative terms plus a term
multiplying ∇νf :

−1

2
f(R)∇νR = −1

2
∇νf +

1

2
∇ν(fY ) +

1

2
Y∇νf. (60)

As total derivatives, the first two pieces contribute to the
solution for Φ, which now agrees with the set of terms
proportional to gµν in the single equation of motion (30).
The last term above combines with the terms propor-
tional to ∇νf in (58). Demanding that term be zero as
a type of consistency or integrability condition implies

Y = R−R =
3

2f2
∇µf∇µf +

3

f
�f, (61)

which is exactly the relationship between the two Ricci
scalars in (29) derived from the conformal transforma-
tion.

We have derived (albeit somewhat indirectly) the equa-
tions of motion for Palatini F (R) gravity when the con-
nection is eliminated as a independent variable. The fact
that equations of motion derived in Sections III A 1 and
III A 2 are equivalent can be seen a posteriori from the
conformal relationship between ḡµν and gµν . This im-
plies that the Killing vector χµ is geodesic with respect
to both the independent and metric connections. There-
fore, we have showed that the thermodynamic approach
can be extended to encompass the Palatini formalism and
Palatini F (R) gravity. In this case no additional bulk
viscosity term is needed in the analysis.

IV. SCALAR-TENSOR REPRESENTATIONS

It is well known that both the metric and Palatini ver-
sions of F (R) gravity are equivalent to particular scalar-
tensor theories. First consider the metric F (R) action
(21). One can treat f(R) ≡ ∂F

∂R as an auxiliary field ϕ
and assume F ′′(R) 6= 0 for all R. Then one can take
the potential V (ϕ) as the Legendre transform of F (R) so
that R = V ′(ϕ). Therefore one can rewrite the action in
the equivalent form

Iω=0 =
α

4π

∫
d4x
√
−g(ϕR+ V (ϕ) + Lmatt). (62)

This is the Jordan frame representation of a Brans-Dicke
scalar-tensor theory with the Dicke coupling constant set
to ω = 0. The corresponding equations of motion are

R = V ′(ϕ) (63)

ϕGµν = ∇µ∇νϕ+

(
2π

α

)
TMµν − gµν�ϕ

−1

2
gµνV (ϕ). (64)

These equations also simply follow from the metric equa-
tion of motion (20) with the identification f ≡ ϕ. Hence
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in the scalar-tensor representation the “bulk viscosity”
term has the form [5]

δNbulk = α

∫
d2xdλλ

√
h

3

2ϕ
kµkν∇µϕ∇νϕ. (65)

The procedure is the same for the Palatini action (23)
and one finds

Ipal =
α

4π

∫
d4x
√
−g(ϕR+ V (ϕ) + Lmatt). (66)

Using the relationship between R and R found earlier in
(29) we can express this action (up to surface terms) as

Iω=−3/2 =
α

4π

∫
d4x
√
−g(ϕR+

3

2ϕ
∇µϕ∇µϕ

+V (ϕ) + Lmatt), (67)

which is the Brans-Dicke theory with ω = −3/2.
To apply the thermodynamic formalism, much of the

previous analysis can be carried over, just with the iden-
tification ϕ = f . However, it is initially unclear how
the equations of motion for the scalar field can emerge
out of this analysis. To start, we assume the holographic
entropy has the form

S = α

∫ √
hϕd2x. (68)

Suppose we follow ([3]) and cancel out the expansion term
by treating it as a part of the irreversible sector. Then
we arrive at

ϕRµν −∇µ∇νϕ+ Φgµν =

(
2π

α

)
TMµν , (69)

for some undetermined function Φ. To determine Φ we
can demand the local conservation of matter-energy as
usual. Imagine that we know the action for the matter
fields present. It is a functional of Imatt(gµν , ψ), where ψ
represents some arbitrary matter. Using the diffeomor-
phism invariance of this action and assuming the matter
fields satisfy their equation of motion δImatt/δψ = 0,
one can easily show the following conservation equation
holds2

∇µTMµν = 0. (70)

Imposing this equation we find the following equation
for Φ,

∇νΦ = −(∇µϕ)Rµν − ϕ∇µRµν +∇µ∇µ∇νϕ. (71)

2 In general, the matter part of the action can also depend on
the scalar field: Imatt(g, ψ, ϕ). Then the matter stress ten-
sor is not conserved: ∇µTMµν = 1

2
Tϕ∇νϕ, where Tϕ =

(
√
−g)−1δImatt/δϕ.

Using the contracted Bianchi identity and the commuta-
tor of covariant derivatives, we are left with

∇νΦ = ∇ν(�ϕ)− 1

2
∇ν(ϕR) +

1

2
R∇νϕ. (72)

Now in order to solve this equation, we must impose the
following “integrability condition” on the last term of the
r.h.s of the previous equation. Namely, we assume it can
be expressed as the derivative of some function, chosen
to have the form 1

2 V (ϕ), i.e. 1
2R∇νϕ = 1

2 ∇νV (ϕ).
Therefore, we have the condition that

dV

dϕ
= R. (73)

Meanwhile, the solution for Φ is

Φ = �ϕ− 1

2
ϕR+

1

2
V (ϕ) + Λ, (74)

and the reversible equation becomes

ϕRµν −∇µ∇νϕ−
1

2
ϕRgµν + gµν�ϕ

+
1

2
gµνV (ϕ) =

(
2π

α

)
TMµν , (75)

where we have absorbed the cosmological constant Λ into
the potential V (ϕ). This is exactly the set of field equa-
tions for the ω = 0 theory. The scalar equation of motion
is an integrability condition we must impose for consis-
tency with the conservation of local energy-momentum.

Suppose, on the other hand, that we do not introduce a
bulk viscosity term. Then equation describing reversible
changes is

ϕRµν −∇µ∇νϕ+
3

2ϕ
∇µϕ∇νϕ+ Φgµν =

(
2π

α

)
TMµν .

(76)
This has the same form as (17), but now that ϕ is an
independent field, we can repeat the analysis above to
solve for the unknown Φ function and find the scalar
equation of motion as an integrability condition.

Taking a covariant divergence of (76), we find that

∇νΦ = −(∇µϕ)Rµν − ϕ∇µRµν (77)

+∇µ∇µ∇νϕ+
3

2ϕ2
∇µϕ∇µϕ∇νϕ

− 3

2ϕ
�ϕ∇νϕ−

3

2ϕ
∇µϕ∇µ∇νϕ. (78)

As before, we can use the Bianchi identity and the com-
mutator of covariant derivatives (56) along with the for-
mula (57) in Section (III A 2). Combining these results,
we obtain

∇νΦ = ∇ν
(
�ϕ− 1

2
ϕR− 3

4ϕ
∇µϕ∇µϕ

)
+

(
1

2
R− 3

4ϕ2
∇µϕ∇µϕ−

3

2ϕ
�ϕ

)
∇νϕ. (79)
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We now impose the integrability condition on the second
term as before

dV

dϕ
= R+

3

2ϕ2
∇µϕ∇µϕ−

3

ϕ
�ϕ, (80)

which allows us to solve for Φ. The resulting metric field
equation is

ϕRµν −
1

2
ϕRgµν −∇µ∇νϕ+

3

2ϕ
∇µϕ∇νϕ

+�ϕgµν −
3

4ϕ
∇µϕ∇µϕgµν

+
1

2
V (ϕ)gµν =

(
2π

α

)
TMµν . (81)

Therefore we arrive at the equations of motion for Pala-
tini F (R) theory in ω = −3/2 scalar-tensor representa-
tion.

V. GENERAL BRANS-DICKE THEORIES AND
“BULK VISCOSITY” AS A HEAT FLUX

In the above section we showed how the thermody-
namic approach can be used to derive the field equations
for both metric and Palatini F (R) gravity purely in their
scalar-tensor representations. However, the entropy func-
tional (68) holds also for a general Brans-Dicke theory,
which has the action

Igen =

∫ √
−g d4x[

α

4π
(ϕR− ω

ϕ
∇µϕ∇µϕ

+V (ϕ)) + Lmatt]. (82)

Previously we were only able to derive the equations of
motion for the special cases ω = 0 and ω = −3/2, de-
pending on whether “bulk viscosity” term is needed. In
particular, for the ω = −3/2 case equivalent to Palatini,
no such term was needed to complete the analysis.

Whether or not we need an additional term appears
to be directly related to the existence of an additional
propagating scalar degree of freedom in F (R) and scalar-
tensor gravity, as was first hypothesized in [5]. Since in
Palatini F (R) the connection is only an auxiliary field,
one would not identify it with any additional propagat-
ing degree of freedom. It is possible to more clearly show
this distinction between an auxiliary field and dynami-
cal, propagating one in the scalar-tensor representation.
Consider, for example, the ω = 0 theory (any general ω
will do). The trace of the metric field equation (75) and
the scalar integrability condition (73) yield

3�ϕ+ 2V (ϕ)− ϕdV
dϕ

=

(
2π

α

)
TMµ

µ, (83)

so the propagation of the scalar is determined by the mat-
ter sources, as usual. On the other hand, in the special
case where ω = −3/2 the same procedure yields

2V (ϕ)− ϕdV
dϕ

=

(
2π

α

)
TMµ

µ. (84)

Therefore in this case the scalar field is algebraically re-
lated to the matter sources and does not propagate.

We now argue the clear link between the additional flux
term associated with the horizon expansion θ and a prop-
agating scalar degree of freedom indicates that the previ-
ous “bulk viscosity” interpretation in [3, 5] was incorrect.
First, let us go back and consider the shear squared term.
We think of this term as indicating a channel for hori-
zon dissipation, given a gravity theory or equivalently an
entropy functional. In GR, this channel is sourced by
a flux of gravitational perturbations across the horizon
(specifically, a perturbation of the electric part of the
Weyl tensor) and gives rise to the Hartle-Hawking tidal
heating term [12–15]

δNshear =
1

8πGN

∫
σ̂µν σ̂

µνdv
√
hd2x. (85)

The above expression generalizes in metric F (R) in a
similar way, acquiring only an overall f(R) factor.

Note that this does not mean gravitational waves are
dissipative. While the spacetime dynamics is completely
conservative, dissipation only exists for the thermody-
namical horizon system. Furthermore, in the thermody-
namical argument, the shear at p only depends on the
warping of B and therefore is completely independent of
the spacetime geometry.

Gravitational waves have no local stress tensor, and
correspondingly the Hartle-Hawking term has a non-local
character as the integral over the horizon of an object
constructed out of derivatives of the null normal kµ. This
term is consistent with an irreversible flux, which in non-
equilibrium thermodynamics [16, 17] is positive definite
and constructed out of derivatives of the state functionals
of the system.

It was argued in [5] that when the additional scalar de-
gree of freedom is present, there is a new “gravitational”
channel available for dissipating energy (e.g. for relaxing
horizon perturbations). However, it is unclear if the re-
lated term (65) should be associated to some irreversible
branch of the thermodynamic equations. The problem
with this interpretation can be realized by analyzing the
form of the “bulk viscosity” term itself given in (65):
Unlike the shear squared term, it does not depend on
derivatives of kµ and both the integral over the horizon
and the arbitrary kµ vectors can be peeled off. Hence,
like the other terms with this structure, it has a local
interpretation, which is consistent with fact that a scalar
field has a local stress tensor. After the kµ vectors are
peeled off, local terms at p are frame independent. They
exist for any observer (accelerated or inertial) in the local
patch of spacetime and always end up describing the dy-
namics of the global spacetime. Indeed, the expansion is
no longer an arbitrary quantity defining the local horizon
system, but instead fundamentally linked to the deriva-
tive of the scalar field on the spacetime. Therefore, if we
insist that this term is irreversible, it would imply waves
of the scalar field would be dissipative in the spacetime.
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This is inconsistent with the fact that classical gravita-
tional theories are time reversal invariant.

We now present a new interpretation of this term as a
contribution to the heat flux δQ of reversible thermody-
namics. Let us return to the beginning of the argument
and the entropy

S =

∫
d4x
√
hϕ(x). (86)

Here we have promoted the entropy density to be an
independent field in the spacetime, with dimensions of
[L]−2. In order to be consistent with the principle of
background independence, this field should not be a fixed
structure, it must be varied like other fields. It also must
contribute to the total Lagrangian of the theory, i.e.

Lmatt(gµν , ψ) + Lscalar(gµν , ϕ) (87)

where ψ represent “ordinary” matter fields. Upon vary-
ing with respect to the metric, we have the usual stress
tensor of the various matter fields which do not con-
tribute to the horizon entropy, plus a stress tensor for
the scalar field. The components relevant for the heat
flux across the horizon are given by contraction with the
null vectors

δQ ∼ kµkν(TMµν + Tϕµν). (88)

Generally, the Lagrangian for a scalar field consists of
possible interaction terms, e.g. a mass squared term, ϕ4

term, etc. These can be represented as part of a generic
scalar potential V (ϕ). However, in the stress tensor, this
term’s contribution is proportional to gµν , so it does not
appear in the heat flux. On the other hand, kinetic terms
in the scalar field action must contribute. We assume
that the action is constructed out of first derivatives of
the scalar field. This eliminates non-minimally coupled
k-essence models [18], where the scalar fields have non-
canonical kinetic terms.

Based on dimensional analysis, the most general con-
tribution of the scalar to the heat flux has the basic form

δQscalar ∼
Ω(ϕ)

ϕ
kµkν∇µϕ∇νϕ (89)

where Ω is some dimensionless function. Since ϕ is di-
mensionfull, one would have to introduce a new length
scale in order to construct a non-trivial Ω. Therefore we
take Ω to be an arbitrary constant. The general form of
the heat flux is now

δQ

T
= −

∫
d4x
√
hλ (2πTMµνk

µkν +

(
Ω

ϕ

)
kµkν∇µϕ∇νϕ).

(90)
Following the analysis as before, the equation of motion
the reversible sector is now (76), but with the extra heat
flux contribution

ϕRµν−∇µ∇νϕ+

(
3/2− Ω

ϕ

)
∇µϕ∇νϕ+Φgµν = 2πTMµν ,

(91)

which captures any Brans-Dicke theory if we set the Dicke
constant ω = Ω− 3/2.

In the special case when ω = −3/2, Ω = 0 and there is
no additional contribution to heat flux from the scalar.
This is consistent with the fact that the ϕ field is non-
propagating (has no kinetic term) in this particular case.
In addition, note that when ω < −3/2 the scalar field flux
comes in as a “ghost” with a negative sign and the change
in the black hole entropy can longer be positive definite
due to the violation of the null energy condition. This is
consistent with the study of the classical second law for
Brans-Dicke theory done in [19] and the numerical results
of the gravitational collapse of scalar matter pulses [20],
which indicated a violation of weak cosmic censorship
when ω < −3/2.

It is also interesting to make the transformation to the
so-called Einstein frame of the Brans-Dicke theory. One
makes a conformal transformation and a redefinition of
the scalar field

g̃µν = ϕgµν

dϕ̃ =
dϕ

ϕ
(92)

in the action (82). The action now has the form

IEin =

∫ √
−g̃d4x [R̃− (ω + 3/2)∇̃µϕ̃∇̃µϕ̃

+ exp(−2ϕ̃)Lmatt(g̃)], (93)

which is just Einstein gravity with the scalar field as a
matter field minimally coupled to gravity, but universally
coupled to the other matter fields3.

In the thermodynamic approach, this transformation
returns the entropy to just an area in the new conformally
related metric. Working in terms of this new metric, we
arrive at the just the Einstein equations

G̃µνk
µkν = 2πT totalµν kµkν , (94)

where

T totalµν ∼ δ(Iscalar(g̃, ϕ̃) + Imatt(g̃, ϕ̃, ψ))

δg̃µν
. (95)

In this case there is no need for a bulk viscosity term, but
in order to be consistent with the equations of motion we

3 Note that our redefinition for the scalar field differs from the
standard one used in [21]. In that case there is an overall factor
of (ω+3/2)−1/2 in (92), which normalizes the scalar kinetic term
to the canonical unity value in the Einstein frame. Hence, in
this ansatz one cannot go to the Einstein frame in the ω < −3/2
regime, where the theory is likely to be sick as we discussed
earlier. Also in our case one can clearly see that something goes
wrong in the same region of parameter space: Eqn.(93) shows in
fact that for ω < −3/2 the kinetic term for the field ϕ̃ changes
sign leading effectively to a ghost field
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now must explicitly include a scalar flux as a part of the
heat flow due to the matter fields. This has the form

δQscalar = (ω + 3/2)

∫
d4x
√
h̃kµkν∇̃µϕ̃∇̃νϕ̃. (96)

Rewriting this term in the Jordan frame using (92), we
find it is exactly the scalar field flux we argued for in
(90). Therefore the new interpretation of the scalar field
contribution as a heat flux ultimately does not depend on
the choice of conformal frame. We can work in a frame
where the scalar is purely matter, with no contribution
to the entropy, or in a frame where it is another gravita-
tional field.

VI. DISCUSSION

In this paper we have extended the thermodynamics of
spacetime formalism to Palatini gravity, where the con-
nection is a priori an independent variable from the met-
ric. We applied this procedure to Palatini F (R) gravity
and derived the field equations as a consequence of en-
forcing an entropy balance law on the local Rindler wedge
system. Unlike the metric F (R) case studied previously
in [3], no “bulk viscosity” term was required in order to
have equations consistent with the conservation of local
energy-momentum. Motivated by the fact that both ver-
sions of F (R) gravity are equivalent at the classical level
to particular Brans-Dicke theories, we considered an en-
tropy density that is a scalar spacetime function ϕ(x).
This amounts to promoting the inverse of the Newton
constant to be an independent scalar field. We showed
how the thermodynamic derivation in this case can cap-
ture both the field equations of the metric and the scalar
field. As a key part of our analysis, we recognized that
previous interpretations introducing an irreversible bulk
viscosity were incorrect. Instead, we argue that the heat
flux δQ naturally contains a separate contribution from
the scalar field. This description also is consistent when
one works ab initio in the Einstein conformal frame of
the scalar-tensor theory. In these theories, it seems the
bulk viscosity ξB should actually be zero.

It is worth noting that if one works a priori the met-
ric F (R) theory, as was done in [3], interpreting the
extra term needed for consistency with local energy-
momentum conservation as a separate heat flux is not as
clear. In this representation, there isn’t a distinct scalar

field we need to endow with its own dynamics, only the
metric and and the general function f(R). Of course,
it is well-known that there is an extra dynamical scalar
degree of freedom in a theory of gravity which is fourth
order in metric derivatives. For example, the trace of the
equation of motion (20) gives a wave equation relating
�f to the trace of the matter stress tensor TM ; there is
no longer just an algebraic link between scalar curvature
and TM as in GR. Therefore, one can argue that f needs
its own dynamics, but it appears there is no way this can
be done a priori starting only with an entropy functional∫ √

hd2xf(R). Instead, the warning that there is an extra
degree of freedom (effectively, an extra flux) is given by
the fact that local energy-momentum conservation fails.

In the future, it would be interesting to see if other dif-
feomorphism invariant theories of gravity admit a ther-
modynamic interpretation. In particular, what kind of
heat fluxes and viscosities appear in different theories?
For example, generalized Lovelock gravities are of partic-
ular interest and have been studied in a different thermo-
dynamic picture of gravity [22]. Some other interesting
examples are the generalized Palatini gravities discussed
in [23] and the “metric-affine” theories [24, 25], where the
matter is now coupled to the independent connection and
not just the metric. One can also consider theories with a
non-zero torsion, either as a dynamical propagating field
[26] or algebraically determined by spin, as in Einstein-
Cartan theory [27]. How do these types of geometrical
structures get mapped into thermodynamics?

Finally, note that while we argued for generalizations
of the entanglement entropy density by appealing to
less restrictive formulations of the equivalence principle,
our choices were always consistent with [28, 29] Wald’s
Noether charge entropy formula [30]. Since the field
equations are an assumption in the derivation of the
Noether charge entropy, one may worry our approach
is just a consistency check. However, a recent work [31]
has found that the Noether charge entropy applied to
static, spherically symmetric spacetimes is equivalent to
an area entanglement entropy divided by an effective
Newton constant. It would be very interesting to see
if this result can be generalized.
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