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Symmetry energy of dense matter in holographic QCD
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We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we
consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at high
density the symmetry energy monotonically increases without softening. For small density, it shows
power law behavior Esym ∼ ρ1/2.

Nuclear symmetry energy is one of key words in nuclear
physics as well as in astrophysics. Its density dependence
is a core quantity of asymmetric nuclear matter which
has important effects on heavy nuclei and is essential to
understand neutron star properties. Although much ef-
forts have been given to match its importance, it is still
very poorly understood especially in the supra-saturation
density regime, see [1–6] for a review and for a recent dis-
cussion.

From experimental side, the available data do not con-
strain much the value of the symmetry energy at supra-
saturation densities. Recently, using the FOPI data
on π−/π+ ratio in central heavy ion collisions, Xiao et
al. [7] obtained a circumstantial evidence for a soft nu-
clear symmetry energy at ρ ≥ 2ρ0, where the nuclear
symmetry energy increases with the density up to the
saturation density ρ0 and then starts to decrease after-
wards. Theoretically, almost all possible tools in many-
body theory, (Dirac)-Brueckner-Hartree-Fock approach,
self-consistent Green’s function approach, etc, as well as
phenomenological approaches, relativistic mean field the-
ory, Thomas-Fermi approximations, etc, were employed
to study the density dependence of the symmetry energy,
see [3] for a review. While they showed similar behaviors
up to the nuclear saturation density, at supra-saturation
densities, all possible results one can imagine were pre-
dicted and no consensus could be reached: some showed
stiff dependence (increasing monotonically with density),
while others showed soft one, see Fig. 1 for a typical
example. Given this situation, it is very important to
determine the behavior of the nuclear symmetry energy
at high densities with a model or theory which provides
a reliable calculational tool.

The gauge/gravity duality [9–11] provides a new tool
to study strongly interacting dense matter, and many
models for QCD [12, 13] based on the duality were con-
structed. Although the true holographic dual of QCD is
yet to be constructed, it is worthwhile to find out what
the new tool says about QCD, and this is the goal of this
paper.

Based on the treatment of dense matter in confined
phase suggested in [14], a simple model for nuclear matter
to strange matter transition was proposed in [15], where
two D6 branes for light and intermediate mass (strange)
flavors were introduced. The dense matter was intro-
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FIG. 1. (Color online) Example of density dependence of the
nuclear symmetry energy, taken from [8]. Depending on the
value of the parameter x, various high density behaviors are
possible.

duced by uniformly distributed compact D4 branes with
Nc fundamental strings attached. By considering energy
minimization, transition from nuclear to strange matter
could be studied. To calculate the symmetry energy in
nuclear matter, we study the case where two flavors have
the same quark masses, m1 = m2. We find that the
symmetry energy is increasing with the total charge Q,
showing that symmetry energy of our system has a stiff
dependence on the density.

The nuclear symmetry energy is defined as the energy
per nucleon required to change isospin symmetric nuclear
matter to pure neutron matter. In the Bethe-Weizsäcker
mass formula for the nuclear binding energy, it repre-
sents the amount of binding energy that a nucleus has to
lose when the numbers of protons and neutrons are not
equal. The semi-empirical mass formula based on the
liquid drop model has the form:

EB = avA− aa(N − Z)2/A− acZ
2/A1/3

− asA
2/3 ± aδ/A

3/4 . (1)

Here Z (N) is the number of protons (neutrons) in a nu-
cleus. The first term is called the volume energy since
the volume of a nucleus is proportional to A, total nu-
cleon number. The origin of this volume term is the
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strong nuclear force. The second is known as the asym-
metry term, which defines the symmetry energy. If there
were no Coulomb repulsions between protons, we would
expect to have equal number of neutrons and protons
in nuclei in general. The term with ac accounts for the
Coulomb interaction of Z(Z−1)/2 pairs of protons in the
nucleus. The last two terms represent the surface energy
and pairing effect, respectively. Using data for nucleus
binding energies, one can determine a set of coefficients
in Eq. (1).
Due to the invariance of nuclear forces under neutron-

proton interchange, iso-scalar quantities in a nuclear sys-
tem are function of only even powers of the asymme-
try factor. Here we define the asymmetry factor α̃ as
α̃ ≡ (N −Z)/A. Then we can express the energy density
per nucleon E(ρ, α̃) as

E(ρ, α̃) ≃ E(ρ, 0) + S2(ρ)α̃
2 , (2)

where ρ is the nucleon number density and S2(ρ) =
1
2
∂2E
∂α̃2 |α̃=0 is the symmetry energy.

Now we study the symmetry energy in the D4/D6/D6
model [15] with baryon vertices which consist of D4
branes and fundamental strings. In our approach gluon
dynamics is replaced by the gravity sourced by the Nc

color D4 branes, and two probe D6 branes are used to
describe the up and down quarks. The bare quark masses
are the distances between the D4 and two D6’s in the ab-
sence of the string coupling.
We can write the metric of the confining D4 back-

ground as

ds2 =

(

U

R

)3/2
(

−dt2 + d~x2 + f(U)dx2
4

)

(3)

+

(

R

U

)3/2 (
U

ξ

)2
(

dξ2 + ξ2dΩ2
4

)

,

where f(U) = 1− (UKK/U)3 and (U/UKK)3/2 = (ξ3/2+
ξ−3/2)/2 ≡ ξ3/2ω+/2.
We wrap the D4 brane on S4 which is transverse to

the original D4 brane. Due to the Chern-Simons inter-
action with RR-field, U(1) gauge field is induced on the
D4 brane world volume. The source of gauge field is in-
terpreted as the end point of fundamental strings. Sub-
stituting the equation of motion for gauge field to the
Dirac-Born-Infeld action of D4 brane with the Chern-
Simons, we get ‘Hamiltonian’ for D4 brane as

HD4 = τ4

∫

dθ

√

ω
4/3
+ (ξ2 + ξ′2)

√

D(θ)2 + sin6 θ , (4)

where τ4 = 1
22/3

µ4Ω3g
−1
s R3UKK , D(θ) = −2 + 3 cos θ −

cos3 θ and the prime denotes the derivative with respect
to θ. We assume that the radial coordinate ξ depends
only on the polar angle θ of S4.
Now, we consider the other end points of fundamen-

tal strings that are attached to two D6 branes with given
number ratio. The end points of fundamental strings pro-
vide the source of U(1) gauge field on the D6 brane. By

taking the Legendre transformation for the gauge field,
we get ‘Hamiltonian’ for D6 brane as

HD6 = τ6

∫

dρ
√

1 + ẏ2
√

ω
4/3
+

(

Q̃2 + ρ4ω
8/3
+

)

, (5)

where τ6 = 1
4µ6V3Ω2g

−1
s U3

KK . Q̃ is dimensionless and

related to the number of fundamental strings Q, Q̃ =
UKKQ

2·22/3πα′τ6
. Two D6 branes are connected to a D4 brane

by fundamental strings. Therefore, D6 branes are pulled
down and compact D4 brane is pulled up. As discussed in
[14], the length of the fundamental strings becomes zero
since the tension of the fundamental strings is always
larger than that of D-branes. Finally, the position of the
cusp of D6 branes should be located at the same position
of the cusp of D4 brane, ξc. We consider Q1 fundamental
strings attached on one D6 brane and Q2 strings attached
on another D6 brane. We denote the slope at the cusp

of each brane as ẏ
(1)
c and ẏ

(2)
c . The force at the cusp of

D6 branes can be obtained as

FD6 =
∂H(Q1)D6

∂Uc

∣

∣

∣

∣

∣

∂

+
∂H(Q2)D6

∂Uc

∣

∣

∣

∣

∣

∂

≡ F
(1)
D6 (Q1) + F

(2)
D6 (Q2). (6)

To make the system stable, the force balancing condition
should be satisfied;

Q

Nc
FD4 = F

(1)
D6 (Q1) + F

(2)
D6 (Q2), (7)

where Q1 = (1−α)Q and Q2 = αQ with 0 ≤ α ≤ 1, and
FD4 is the force at the cusp due to the D4 brane.
To find the ground state of our system, we need to

consider the energy minimization together with the force
balancing condition. The total energy of our system can
be written as

Etot =
Q

Nc
HD4 +HD6(Q1) +HD6(Q2) . (8)

With given Q, we can determine the value of α, which
satisfies the force balancing condition and minimizes the
total energy. As in [15], for m2/m1 = 50 there exists a
transition from a matter with α = 0 to α 6= 0 at some
value of Q. This was identified as a transition from nu-
clear to strange matter. For very large Q, α saturates to
0.5, as expected. If we take m1 = m2 and if we do not
consider isospin violating interactions or electromagnetic
interactions, then the ground state of the matter would
be always with α = 0.5 .
Here we consider only two cases: m2/m1 = 1 and

m2/m1 = 2. The former is for the nuclear matter with
isospin invariance and the latter is for the non-invariant
case. The energy density per nucleon E(ρ, α) is given by
Etot in Eq. (8) divided by Q/Nc. Then we define the
symmetry energy as in Eq. (2) with α̃ = 1− 2α.
We start with m2/m1 = 1 case. The explicit form of

symmetry energy per nucleon can be written as

S2 =
2τ6
NB

∫

dρ

√

1 + ẏ2Q̃2ω
10/3
+ ρ4

(Q̃2 + 4ω
8/3
+ ρ4)3/2

, (9)
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where y is the embedding solution of D6 brane with
α̃ = 0. Notice that NB = Q/Nc and so the symme-
try energy (9) contains Nc factor. We need to factor this
Nc out for the reason we discuss later. Our results are
given in Fig. 2. Note that so far we use ρ for both the
coordinate and the density. Hereafter ρ is only for the
density. To fix the energy scale, we used the value of
the ’t Hooft coupling λ and the compactification scale
MKK determined in [19], see Eq. (12) for details. Now,
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FIG. 2. (Color online) Solid line is the symmetry energy as a
function of the density. The dotted line is the best fit of S2

with ρ1/2.

we lay emphasis on two aspects of our results, which are
rather insensitive to the choice of λ and MKK . One is the
stiffness of the symmetry energy S2 in supra-saturation
density regime, and another is its low density power law
behavior S2 ∼ ρ1/2.
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FIG. 3. (Color online) Embedding of D-branes with α 6= 0.5.
The asymptotic heights of two branes are the same (m1 =
m2 = 0.1). Red curve denotes to the position of UKK .

One can understand the stiffness based on the property
of the branes: suppose two D6 branes meet with compact
D4 at a point with different polar angles θ1 and θ2, see
Fig. 3. Here Q1 and Q2 with Q1 + Q2 = Q fixed are
the number of the strings attached to each D6 brane. To
balance the pulling force of the compact D4 with a mini-
mum energy, each D6 brane balances roughly half of the

pulling force. Since the upward force is proportional to
cos θ, we have Q1 cos θ1 ∼ Q2 cos θ2. Since θ1 > θ2, more
strings should be attached to the lower brane. Therefore,
the asymmetry in the number of the attached string is
due to the angle difference. Notice that each end point
provides the ‘electric’ flux which contributes to the en-
ergy of the brane. Since each flux of charges Q1, Q2 are
confined in each brane, Coulomb energy increases like
∼ (Q2

1+Q2
2). Minimum energy requests Q1 = Q2 = Q/2.

As the number of attached strings increases, the brane
gets stiffer and the maintaining the angle difference costs
more and more energy.
The Coulomb repulsion discussed above is, of course,

not the electromagnetic one. However, the repulsion in
the dual bulk theory means repulsion in 4 dimension as
well. From the boundary theory point of view, such re-
pulsion is simply due to the presence of the baryon charge
at the boundary. Therefore, it may be interpreted as the
realization of the Pauli principle, which was suggested in
[17] for different reason. Indeed, in the boundary theory
it is the Pauli principle that requires N = Z when we
do not introduce any isospin violations. While, in the
dual bulk theory it is the Coulomb interaction that re-
quests N = Z, and therefore our interpretation of the
Coulomb repulsion as the holographic Pauli principle is
very natural [20].
Now we discuss the power law behavior of S2 in low

density. We can understand the numerical result by cal-
culating analytically in special limit, mq → ∞ and ρ → 0.
In this case, the solution of D6 brane embedding becomes
trivial, ẏ = 0 and we can integrate (9) analytically to
have

S2 =

(

Γ(
5

4
)

)2 √
λρ0

2MKK

√

ρ

ρ0
. (10)

The current experimental result of the symmetry energy
can be summarized by a fitting formula

S2(ρ) = c(ρ/ρ0)
γ (11)

with c ≃ 31.6 MeV and γ = 0.5− 0.7 in the low density
regime, 0.3ρ0 ≤ ρ ≤ ρ0, see [16] for example.
To fix the energy scale, we rewrite the energy density

per nucleon as

E(ρ, α) =
λNcMKK

22/3(9π)

Ẽ

Q̃
, ρ =

2 · 22/3

81(2π)3
λM3

KK Q̃ ,(12)

where Ẽ = Etot/τ6. For our purpose, we have to fix the
value of λ and MKK . One may determine those values
by using the quark mass or meson mass as inputs. From
the the non-anomalous η′ mass, ∼ 390 MeV [18], and the
quark mass, Mq = 7 MeV, we can determine parameter
of the D4/D6 model: λ = 1.905, and MKK = 1.039
GeV [19]. With this choice as an example, we obtain
γ ≃ 0.48 and c ≃ 31 MeV from Eq. (9). In this case,

Q̃ = 4 corresponds to ρ ≃ 1.03ρ0. Notice that the value
of γ is rather insensitive to the value of λ and MKK .
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Now, we study the effect of small isospin violation by
considering m1 6= m2. In this case, α for physical config-
uration becomes 0.5 only after certain density. Once α
reaches 0.5, the symmetry energy seems to be the same
for any values of m2/m1.

In summary, we calculated the symmetry energy of
dense matter in the D4/D6/D6 model. To obtain the
symmetry energy in nuclear matter with charge symme-
try, we considered the case with m1 = m2 and found that
the symmetry energy is increasing with the total charge
Q, showing a stiff nuclear symmetry energy. It is uni-
versal in the sense that the result is independent of the
value of λ and MKK . We also studied the low density
behavior with power γ to be ∼ 1/2, which is again inde-
pendent of the value of λ and MKK and is close to the
value suggested by experiments, γ = 0.5− 0.7.
One subtle point we mentioned in the main text was

about the factor Nc. The reason we divided this factor
out is as follows. In our model, the same flavor quarks
form a nucleon; for instance, proton in our model con-
sists of Ncm1 quarks and neutron has Ncm2 quarks in it.
Hence, the total number difference of quarks is Nc times
the number difference of neutrons and protons, resulting

in the overall Nc factor in the symmetry energy. How-
ever, in reality, where Nc = 3, proton consists of two up
quarks and one down quark, and neutron contains one
up quark and two down quarks. The total number dif-
ference of quarks is the same as the number difference
of neutrons and protons. Therefore, in order to compare
our result with the realistic case, we have to divide the
symmetry energy (9) by Nc.

Finally, we studied the effect of isospin violation by
considering m1 6= m2. However, the symmetry energy in
this case turned out to be almost the same with the case
with isospin invariance for the mass ratios of order one.
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