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ABSTRACT
The subject of this paper is an investigation of the nonlinear contributions to the spectrum
of the integrated Sachs-Wolfe (iSW) effect. We derive the corrections to the iSW-auto spec-
trum and the iSW-tracer cross-spectrum consistently to third order in perturbation theory and
analyse the cumulative signal-to-noise ratio for a cross-correlation between the PLANCK and
EUCLID data sets as a function of multipole order. We quantify the parameter sensitivity and
the statistical error bounds on the cosmological parametersΩm, σ8, h, ns andw from the lin-
ear iSW-effect and the systematical parameter estimation bias due to the nonlinear corrections
in a Fisher-formalism, analysing the error budget in its dependence on multipole order. Our
results include: (i) the spectrum of the nonlinear iSW-effect can be measured with 0.8σ sta-
tistical significance, (ii ) nonlinear corrections dominate the spectrum starting from ℓ ≃ 102,
(iii ) an anticorrelation of the CMB temperature with tracer density on high multipoles in the
nonlinear regime, (iv) a much weaker dependence of the nonlinear effect on the dark energy
model compared to the linear iSW-effect, (v) parameter estimation biases amount to less than
0.1σ and weaker than other systematics.
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1 INTRODUCTION

The integrated Sachs-Wolfe (iSW) effect (Sachs & Wolfe 1967;
Hu & Sugiyama 1994; Cooray 2002), which refers to the fre-
quency change of cosmic microwave background (CMB) pho-
tons if they cross time evolving gravitational potentials,is a
direct probe of dark energy because it vanishes in cosmolo-
gies with Ωm = 1 (Crittenden & Turok 1996). By now, it has
been detected with high significance with a number of differ-
ent tracer objects (Fosalba et al. 2003; Boughn & Crittenden2004;
Nolta et al. 2004; Padmanabhan et al. 2005; Giannantonio et al.
2006; Pietrobon et al. 2006; Gaztañaga et al. 2006; Cabré et al.
2006; Vielva et al. 2006; Rassat et al. 2007; McEwen et al. 2007;
Giannantonio et al. 2008), and derived parameter constraints pro-
vide support for aΛCDM cosmology.

Contrarily, the nonlinear iSW-effect, or Rees-Sciama (RS)
effect (Rees & Sciama 1968; Seljak 1996; Schäfer & Bartelmann
2006) is difficult to detect and shows only a weak signal amout-
ing to < 2σ in the spectrum (Cooray 2002) or up to 0.8σ in
the bispectrum (Schäfer 2008). The cross-correlation with weak
lensing has been shown to be feasible, but weak with cur-
rent surveys (Nishizawa et al. 2008). In comparison to the lin-
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ear iSW-effect, the RS-effect shows a flatter spectral depen-
dence and dominates the signal at higher multipoles exceeding
ℓ >∼ 100. Analytical, perturbative derivations agree well withthe re-
sults fromn-body simulations (Tuluie et al. 1996; Cai et al. 2008;
Smith et al. 2009; Cai et al. 2010). The non-Gaussianities intro-
duced into the CMB by the nonlinear RS-effect are very weak
(Mollerach et al. 1995; Munshi et al. 1995; Spergel & Goldberg
1999; Goldberg & Spergel 1999, although the first two papers work
in the context of a SCDM-cosmology, their results are still ap-
plicable toΛCDM). The RS-effect from the local Universe has
been found to amount to∼ 2µK in the most massive structures
(Maturi et al. 2007) forming in a constraint realisation.

The topic of this paper is the contamination of the iSW-
spectrum by the nonlinear RS-spectrum at intermediate multipoles:
In a measurement of the linear iSW-effect, nonlinear contributions
will alter the shape of the observed spectrum and can affect the
estimation of cosmological parameters by introducing estimation
biases. We investigate dependence of parameter accuracy aswell
as the parameter estimation bias as a function of maximum mul-
tipole order considered. Specifically, we use a Fisher-matrix ap-
proach to quantify the statistical and systematical errors, analyse
the error budget as a function of multipole order and derive the
optimal maximum multipole moment which minimises the com-
bined error for individual parameters. The nonlinear iSW-effect is
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the most important contaminant at intermediate multipoles, with
the kinetic Sunyaev-Zel’dovich effect starting to dominate at higher
multipoles above thousand.

After summarising key formulæ describing structure forma-
tion in dark energy cosmologies in Sect. 2, we introduce lineof
sight expressions of the two relevant observables in Sect. 3. We
carry out a perturbative expansion of the source fields to third order
in Sect. 4 and derive the spectrumCτγ(ℓ) between iSW-temperature
perturbationτ and the galaxy densityγ to third order in Sect. 5. We
quantify the degeneracies between the cosmological parameters us-
ing a Fisher-matrix analysis in Sect. 6 and extend this formalism to
describe the parameter estimation bias in Sect. 7. A summaryof
our results is compiled in Sect. 8.

As cosmologies, we consider spatially flat homogeneous dark
energy models with constant dark energy equation of state, and
with Gaussian adiabatic initial conditions in the cold darkmatter
field. Specific parameter choices for thewCDM-fiducial model in
the Fisher-matrix analysis areH0 = 100hkm/s/Mpc with h = 0.72,
Ωm = 0.25,Ωb = 0.04,σ8 = 0.8, w = −0.9 andns = 1, with con-
stant unit bias for the tracer galaxy population.

2 COSMOLOGY AND STRUCTURE FORMATION

2.1 Dark energy cosmologies

In a spatially flat dark energy cosmology with a constant darken-
ergy equation of state parameterw, the Hubble functionH(a) =
d lna/dt is given by

H2(a)

H2
0

=
Ωm

a3
+

1− Ωm

a3(1+w)
. (1)

The valuew ≡ −1 corresponds to the cosmological constantΛ.
The conformal time, which is related to the cosmic timet by the
differential dη = dt/a, follows directly from the definition of the
Hubble function,

η =

∫ 1

a
da

1
a2H(a)

, (2)

in units of the Hubble timetH = 1/H0. Correspondingly, the defini-
tion of the comoving distanceχ is given byχ = cη with the speed
of light c.

2.2 CDM power spectrum

A common parameterisation for the CDM power spectrum is
P(k) ∝ knsT2(k) for describing the Gaussian fluctuation statistics
of the homogeneous and isotropic cosmic density fieldδ,

〈δ(k)δ(k′)∗〉 = (2π)3δD(k − k′)P(k) (3)

According to Bardeen et al. (1986), a convenient fit to the CDM
transfer functionT(k) is

T(q) =
ln(1+ 2.34q)

2.34q

(

1+ 3.89q+ (16.1q)2 + (5.46q)3 + (6.71q)4
)− 1

4
,

where the wave vectorq is given in units of the shape parameterΓ ≃
Ωmh. P(k) is normalised to the valueσ8 on the scaleR= 8 Mpc/h,

σ2
R =

1
2π2

∫

dk k2W2(kR)P(k), (4)

with a Fourier-transformed spherical top-hatW(x) = 3 j1(x)/x as
the filter function. jℓ(x) denotes the spherical Bessel function of
the first kind of orderℓ (Abramowitz & Stegun 1972). Smith et al.

(2009) found that nonlinear effects in the biasing model amount to
∼ 10%, but for simplicity, we assume a linear, local, non-evolving
and scale-independent biasing scheme,

∆n
n
=
∆ρ

ρ
, (5)

and relate fluctuations∆n in the spatial number densityn of galax-
ies directly to the dark matter overdensityδ = ∆ρ/ρ.

2.3 Structure growth in dark energy cosmologies

The linearised structure formation equations, i.e. the continu-
ity, Jeans and Poisson equations, can be combined to the
growth equation (Wang & Steinhardt 1998; Turner & White 1997;
Linder & Jenkins 2003),

d2

da2
D+ +

1
a

(

3+
d ln H
d lna

)

d
da

D+ =
3

2a2
Ωm(a)D+(a). (6)

whose solutionD + (a) describes the homogeneous growth of the
density field,δ(x,a) = D+(a)δ(x,1). In the standard cold dark mat-
ter (SCDM) cosmology withΩm = 1 and 3+ d lnH/d lna = 3

2 , this
solution is easily derived to beD+(a) = a. This motivates the choice
D+(0) = 0 and d/daD+(0) = 1 for the initial conditions, due to
matter domination at early times. The second solutionD−(a) = 1/a
decays rapidly and has no influence on the late-time iSW-effect.

3 OBSERVABLES: ISW-EFFECT AND TRACERS

3.1 iSW-temperature perturbation

The iSW-effect is caused by gravitational interactions of CMB pho-
tons with time-evolving potentialsΦ. The fractional perturbationτ
of the CMB temperatureTCMB is given by (Sachs & Wolfe 1967;
Rees & Sciama 1968)

τ =
∆T

TCMB
= −

2
c3

∫ χH

0
dχ a2H(a)

∂Φ

∂a
, (7)

The gravitational potentialΦ is a solution to the comoving Poisson
equation,

∆Φ =
3H2

0Ωm

2a
δ. (8)

Substituting into the line of sight expression for the linear iSW-
effectτ (integrating along a straight line and using the flat-sky ap-
proximation) yields

τ =
3Ωm

c

∫ χH

0
dχ a2H(a)

d
da

(D+
a

)

∆−1

χ2
H

δ, (9)

where the inverse Laplace operator∆−1/χ2
H solves for the potential:

ϕ ≡
∆−1

χ2
H

δ. (10)

The square of the Hubble distanceχH = c/H0 makes the differential
operator dimensionless.

3.2 Galaxy density as a large-scale structure tracer

The projected galaxy densityγ can be related to the CDM density
δ via

γ =

∫ χH

0
dχ p(z)

dz
dχ

D+(χ) δ, (11)
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where p(z)dz is the redshift distribution of the surveyed galaxy
sample, rewritten in terms of the comoving distanceχ. We use
the redshift distribution of the main galaxy sample of EUCLID
(Refregier & the DUNE collaboration 2008), which willfsky = 0.5
of the sky with a median redshift ofzmed = 0.9 (Douspis et al.
2008). We use the parameterisation proposed by Smail et al. (1995)

p(z)dz= p0

(

z
z0

)2

exp













−

(

z
z0

)β










dz with
1
p0
=

z0

β
Γ

(

3
β

)

, (12)

for p(z)dz, with z0 = 0.64. We assume a constant bias ofb = 1,
which we absorb into the normalisationσ8 of the power spectra.

4 PERTURBATIVE CORRECTIONS

For a consistent derivation of the iSW-spectrum including correc-
tions due to the nonlinearly evolved source fields one needs to carry
out a perturbative expansion to third order,

δ(x,a) ≃
3

∑

n=1

Dn
+(a)δ(n)(x) + O(δ4). (13)

The linearity of the Poisson equation conserves the perturbative se-
ries,

ϕ̇(x, a) ≃
3

∑

n=1

d
da

Dn
+

a
ϕ(n) + O(ϕ4), (14)

and suggests that the time derivative of the potential is∝
d(Dn

+/a)/da. In perturbation theory, the second and third order cor-
rections to the density field are given by

δ(2)(k) =
∫

d3p
(2π)3

M2(k − p, p)δ(p)δ(|k − p|), (15)

δ(3)(k) =
∫

d3p
(2π)3

∫

d3q
(2π)3

M3(p, q, k−p−q)δ(p)δ(q)δ(|k − p− q|), (16)

where the mode coupling functionsM2(p, q) and M3(p, q, r) (see
Sahni & Coles 1995; Bernardeau et al. 2002) are a consequenceof
the inhomogeneous growth and introduce non-Gaussianitiesin the
evolved density field. The power spectrumP(11)

δδ
(k) = P(k) of the

density field thus acquires the corrections

P(22)
δδ

(k) = 2
∫

d3p
(2π)3

M2(k − p, p)2P(|k − p|)P(|p|), (17)

P(13)
δδ

(k) = 3
∫

d3p
(2π)3

M3(k, p,−p)P(k)P(|p|). (18)

In the computation of these corrections, the cylindrical symmetry
of the kernelsM2 and M3 can be taken advantage of, reducing to
a twofold integration 2πp2dpdµ with µ being the cosine of the an-
gle betweenk and p. Fig. 1 shows the time evolution of the source
fields, i.e. the growth functionDn

+(a) for the density field, and the
time derivative ofDn

+(a)/a for the iSW-source field, both up to per-
turbative ordern = 3. While the growth functions show a similar
behaviour in higher order, the derivatives are qualitatively very dif-
ferent. The evalutations of the integrals is done in a coordinate sys-
tem whosepz-axis is parallel tokz. The nonlinear corrections to the
CDM spectrumP(k) are shown in Fig. A1.

An interesting peculiarity of the nonlinear RS-effect in com-
parison to the linear iSW-effect is worth mentioning: Whereas in
SCDM-cosmologies the iSW-effect vanishes due toD+(a) ≡ a and
is nonzero in dark energy cosmologies, the RS-effect is strongest
in SCDM and weaker in dark energy cosmologies, at least at the
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Figure 1. Time evolution of the source termDn
+(a) for the density field

(thick line) and the modulus of d(Dn
+/a)/da for the iSW-effect (thin line),

for the linear ordern = 1 (solid line) and the nonlinear correctionsn = 2
(dashed line) andn = 3 (dash-dotted line), withΛCDM as the cosmological
model.

low redshifts we observe, whereD+(a) ≃ aα with α < 1. Further-
more, the cross-spectra of the RS-effect are proportional toΩmσ

4
8

(up to third order in perturbation theory), in contrast to the iSW-
spectrum, which scales asΩmσ

2
8. The dependence on the dark en-

ergy eos-parameterw is weaker in the nonlinear effect and the
shape of the spectrum (determined byh andns) becomes less im-
portant because of the integrations over d3p carried out in pertur-
bation theory. These arguments motivate the quantificationof the
RS-contamination of the iSW-spectrum, and their interference with
the estimation of cosmological parameters.

5 ANGULAR POWER SPECTRA

In summary, the line of sight integrals for the iSW-temperature per-
turbationτ(n) and the galaxy densityγ(n) in ordern read:

τ(n) =
3Ωm

c

∫ χH

0
dχ a2H(a)

d
da

(

Dn
+

a

)

ϕ(n), (19)

γ(n) =

∫ χH

0
dχ p(z)

dz
dχ

Dn
+(χ) δ

(n), (20)

where we have defined the dimensionless potentialϕ(n) ≡

∆−1δ(n)/χ2
H from the inversion of the Poisson equation, rescaled

with the square of the Hubble distanceχH = c/H0 for convenience.
Due to the linearity of the Newtonian Poisson-relation, thepertur-
bative corrections inδ map directly onto the corrections inϕ. The
weighting functions

W(n)
τ (χ) =

3Ωm

c
a2H(a)

d
da

Dn
+

a
, (21)

W(n)
γ (χ) = p(z)

dz
dχ

Dn
+(χ), (22)

can be identified, which allow the expressions for the angular cross
spectra to be written in a compact notation, applying a Limber-
projection (Limber 1954) in the flat-sky approximation.

C(11)
τγ (ℓ) =

∫ χH

0

dχ
χ2

W(1)
τ (χ)W(1)

γ (χ)P(11)
δϕ

(ℓ/χ) (23)
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C(13)
τγ (ℓ) =

∫ χH

0

dχ
χ2

(

W(1)
τ (χ)W(3)

γ (χ) +W(3)
τ (χ)W(1)

γ (χ)
)

P(13)
δϕ

(ℓ/χ)(24)

C(22)
τγ (ℓ) =

∫ χH

0

dχ
χ2

W(2)
τ (χ)W(2)

γ (χ)P(22)
δϕ

(ℓ/χ) (25)

with the cross-spectrumP(i j )
δϕ (k) = P(i j )

δδ (k)/(χHk)2. The expression

for the spectrumC(13)
τγ (ℓ) has been symmetrised. The angular auto-

spectra of the temperature perturbationτ are given by:

C(11)
ττ (ℓ) =

∫ χH

0

dχ
χ2

W(1)
τ (χ)2P(11)

ϕϕ (ℓ/χ) (26)

C(13)
ττ (ℓ) = 2

∫ χH

0

dχ
χ2

W(1)
τ (χ)W(3)

τ (χ)P(13)
ϕϕ (ℓ/χ) (27)

C(22)
ττ (ℓ) =

∫ χH

0

dχ
χ2

W(2)
τ (χ)2P(22)

ϕϕ (ℓ/χ) (28)

In analogy toP(i j )
δϕ

(k), the spectrum of the potentialϕ is defined as

P(i j )
ϕϕ (k) = P(i j )

δδ
(k)/(χHk)4. Finally, the spectra of the galaxy density

γ can be evaluated to be:

C(11)
γγ (ℓ) =

∫ χH

0

dχ
χ2

W(1)
γ (χ)2P(11)

δδ
(ℓ/χ) (29)

C(13)
γγ (ℓ) = 2

∫ χH

0

dχ
χ2

W(1)
γ (χ)W(3)

γ (χ)P(13)
δδ

(ℓ/χ) (30)

C(22)
γγ (ℓ) =

∫ χH

0

dχ
χ2

W(2)
γ (χ)2P(22)

δδ
(ℓ/χ) (31)

Collecting all terms, the full spectra consists of one first and two
second order contributions,

Cτγ(ℓ) = C(11)
τγ (ℓ) +C(22)

τγ (ℓ) +C(13)
τγ (ℓ), (32)

Cττ(ℓ) = C(11)
ττ (ℓ) +C(22)

ττ (ℓ) +C(13)
ττ (ℓ), (33)

Cγγ(ℓ) = C(11)
γγ (ℓ) +C(22)

γγ (ℓ) +C(13)
γγ (ℓ). (34)

Figs. 2 and 3 give the iSW-auto and cross-spectra, respec-
tively, split up into linear contributions and the two perturbative
corrections. The iSW-auto spectrum is dominated on multipoles
larger than 100 and the cross-spectrum is suppressed by the neg-
ative correlation between iSW-effect and tracer density on sim-
ilar scales, leading to a sign change of the cross-spectrum at
ℓ ≃ 500, which confirms earlier perturbative andn-body results
(Seljak 1996; Cooray 2002; Nishizawa et al. 2008; Cai et al. 2008;
Smith et al. 2009), but using a different perturbation theory ap-
proach. arsinh(x) is equal tox for |x| ≪ 1 and∝ ln x for |x| ≫ 1,
which allows to show the logarithmic behaviour ofCτγ(ℓ) despite
the sign change. Another interesting feature is the fact that the non-
linear effect is much less sensitive on the choice of cosmological
parameters, in particular the dark energy equation of stateparam-
eterw, for which the RS-spectra depicted differ by about 5%. The
sign change and its sensitivity onw is mostly driven by changes
in C(11)

τγ (ℓ). Fig. A2 gives the cross-spectrum in a logarithmic rep-
resentation and shows that the anti-correlation betweenτ andγ is
a generic feature of nonlinearly evolving structures from angular
scales ofℓ ≃ 70 on, but the linear effect shifts the anticorrelation
scales to much higher multipole moments. The sign change can
be easily explained by the fact that in linear structure formation
potentials are constant or decay slowly, depending on cosmology,
whereas in nonlinear structure formation the potentials grow fast,
which manifests itself in the iSW-effect by causing temperature per-
turbations of opposite sign.
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Figure 2. Angular iSW-spectrumCττ(ℓ) of the iSW-effect (solid line),
split up into the linear effect C(11)

ττ (ℓ) (dashed line) and the nonlinear RS-
correctionsC(22)

ττ (ℓ)+C(13)
ττ (ℓ) (dash-dotted line). The plot compares spectra

for wCDM with w = −0.9 (thick lines) withΛCDM with w = −1 (thin
lines).
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Figure 3. Angular iSW-cross spectrumCτγ(ℓ) of the iSW-effect (solid line),

split up into the linear effect C(11)
τγ (ℓ) (dashed line) and the nonlinear RS-

correctionsC(22)
τγ (ℓ)+C(13)

τγ (ℓ) (dash-dotted line), both forwCDM (w = −0.9,
thick lines) andΛCDM (w = −1, thin lines).

6 STATISTICAL ERRORS

In this chapter, we recapitulate the estimation of statistical preci-
sion on parameters derived from angular iSW-spectra with Fisher
matrices (Tegmark et al. 1997), and the accuracy of the parameter
estimation with an extended Fisher formalism (Cabré et al.2007;
Amara & Refregier 2007; Taburet et al. 2009).

6.1 Fisher-matrix for the iSW-spectrum Cτγ(ℓ)

The Fisher matrix, which quantifies the decrease in likelihood if
a model parameterxµ moves away from the fiducial value, can be
computed for a local Gaussian approximation to likelihoodL ∝
exp(−χ2/2). The Fisher-matrix for the measurement ofCτγ(ℓ) is
given by
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F iSW
µν =

ℓmax
∑

ℓ=ℓmin

∂Cτγ(ℓ)

∂xµ
Cov−1

(

Cτγ(ℓ),Cτγ(ℓ)
) ∂Cτγ(ℓ)

∂xν
. (35)

We construct the Fisher-matrixFµν for ΛCDM as the fiducial cos-
mological model, with fiducial values for the parameters being
Ωm = 0.25,σ8 = 0.8, h = 0.72, ns = 1 andw = −1. Implicitly,
we assume priors on spatial flatness,Ωm + ΩΛ = 1 and neglect the
weak dependence of the shape parameter on the baryon densityΩb.
CMB-priors on the cosmological parameters are incorporated by
adding the CMB Fisher matrixFCMB

µν ,

Fµν = F iSW
µν + FCMB

µν . (36)

6.2 Noise modelling

In an actual observation, the iSW-power spectrum is modifiedby
the intrinsic CMB-fluctuations, the instrumental noise andthe beam
as noise sources, assuming mutual uncorrelatedness of the individ-
ual contributions. The galaxy correlation function assumes a Pois-
sonian noise term,

C̃ττ(ℓ) = Cττ(ℓ) +CCMB(ℓ) + w−1
T B−2(ℓ), (37)

C̃γγ(ℓ) = Cγγ(ℓ) +
1
n
, (38)

For PLANCK’s noise levels the valuew−1
T = (0.02µK)2 has

been used, and the beam was assumed to be Gaussian,B−2(ℓ) =
exp(∆θ2 ℓ(ℓ + 1)), with a FWHM-width of∆θ = 7.′1, correspond-
ing to channels of PLANCK closest to the CMB-maximum at
≃ 160 GHz.

EUCLID is designed to survey the entire extragalactic sky and
to cover the solid angle∆Ω = 2π, corresponding tofsky = 0.5,
yielding a total ofn = 4.7× 108 galaxies per steradian at a density
of 40 galaxies per squared arcminute. The observed cross power
spectra are unbiased estimates of the actual spectra,

C̃τγ(ℓ) = Cτγ(ℓ), (39)

in the case of uncorrelated noise terms. We determine the spectrum
CCMB(ℓ) of the primary CMB anisotropies with the CAMB code
(Lewis et al. 2000). The covariance of the spectrumCτγ(ℓ) is given
in terms of the observed spectrãCττ(ℓ), C̃τγ(ℓ) andC̃γγ(ℓ) which
follow directly from applying the Wick-theorem,

Cov(Cτγ,Cτγ) =
1

2ℓ + 1
1

fsky

[

C̃2
τγ(ℓ) + C̃ττ(ℓ)C̃γγ(ℓ)

]

. (40)

In all applications considered in this paper, PLANCK causesthe
dominating noise contribution in comparison to the Poissonnoise
in the galaxy number density given by EUCLID.

6.3 Detectability of the RS-effect

The signal to noise ratioΣ of the cross-spectrumCτγ(ℓ) reads:

Σ2 =

ℓmax
∑

ℓ=ℓmin

C2
τγ(ℓ)

Cov(Cτγ(ℓ))
, (41)

for mutually uncorrelated modes as in the case of a full-sky obser-
vation. Fig. 4 shows the signal to noise ratioΣ of a measurement
of Cτγ(ℓ) including the nonlinear contribution at highℓ. The fig-
ure suggests thay ideal cosmic variance limited experiments can in
fact detect the RS-effect with a significance of 3.22σ (correspond-
ing to a confidence of 0.998) integrating over all multipolesup to
ℓ = 3×103, and that this significance is reduced by the finite resolu-
tion and the noise of PLANCK to a mere 0.77σ (0.558 confidence).
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The plot compares the signal to noise ratio attainable with hypothetical
cosmic-variance limited experiments (upper set of lines) with that reach-
able by combining PLANCK with EUCLID (lower set of lines).

Thus, the signal to noise ratio of the nonlinear effect is roughly
smaller by an order of magnitude compared to that of the linear
iSW-effect. Apart from the increasing correlation noise at highℓ it
is the smallness of the spectrum around the cross-over scalewhich
does not provide enough signal for a detection. Betweenℓ = 30 and
ℓ = 100 the cumulative signal to noise ratio stagnates, which isnot
included in the computation by Cooray (2002) as his perturbative
approach is not able to reproduce the small values of dΣ/dl due to
the sign-change ofCτγ(ℓ) at ℓ ≃ 70. Despite the sensitivity of the
cross-over scale on e.g. the dark energy equation of state parameter
w it would be very difficult to measure this scale as the signal to
noise ratio of each multipole is about 10−3 and as the same knowl-
edge onw can be already derived from much smaller multipoles
with sufficient accuracy.

6.4 Parameter bounds and degeneracies

Theχ2-function for a pair of parameters (xµ, xν) can be computed
from the inverse (F−1)µν of the Fisher matrix,

χ2 =

(

∆xµ
∆xν

)t (
(F−1)µµ (F−1)µν
(F−1)νµ (F−1)νν

)−1 (

∆xµ
∆xν

)

, (42)

where∆xµ = xµ − xΛCDM
µ . The correlation coefficient rµν is defined

as

rµν =
(F−1)µν

√

(F−1)µµ(F−1)νν
, (43)

and describes the degree of dependence between the parameters
xµ and xν by assuming numerical values close to 0 for indepen-
dent, and close to unity for strongly dependent parameters.The
degeneracies between the cosmological parametersΩm, σ8, h, ns

and w estimated from the linear iSW-effect is shown in Fig. 5,
along with the correlation coefficient from a measurement com-
bining PLANCK and EUCLID data up to very high multipoles of
ℓ = 3000, including a prior from CMB data.
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7 SYSTEMATICAL ERRORS

In this section, we quantify how the interpretation of the data with
the pure iSW-spectrum affects the estimation of cosmological pa-
rameters, if in reality there are nonlinear RS-contributions at higher
multipoles. Using this formalism, we seek to minimise the com-
bined statistical error by finding an optimal angular scaleℓopt down
to which the iSW-measurement should be carried out. The nonlin-
ear iSW-effect is the dominant contamination of the iSW-spectrum
at intermediate multipoles, with the kinetic Sunyaev-Zel’dovich ef-
fect becoming important at multipoles aboveℓ ≃ 103. The parame-
ter estimation bias formalism has been validated with Monte-Carlo
Markov-chains and was found to be an excellent approximation for
weak systematics (Taburet et al. 2010).

7.1 Estimation bias formalism

The angular iSW-spectrumCτγ(ℓ) = CiSW(ℓ) +CRS(ℓ) can be sepa-
rated into the linear partCiSW(ℓ) and an additive systematicCRS(ℓ)
due to the nonlinear corrections,

CiSW(ℓ) = C(11)
τγ (ℓ) (44)

CRS(ℓ) = C(22)
τγ (ℓ) +C(13)

τγ (ℓ) (45)

Using these relations, we define the power spectrum of the true
modelCt(ℓ) including nonlinear corrections,

Ct(ℓ) = CiSW(ℓ) +CRS(ℓ) = C(11)
τγ (ℓ) +C(22)

τγ (ℓ) +C(13)
τγ (ℓ) (46)

as well as the spectrum of the false modelC f (ℓ), which neglects
these RS-contributions,

C f (ℓ) = CiSW(ℓ) = C(11)
τγ (ℓ), (47)

where the observed spectrãCi(ℓ) are unbiased estimators of the
theoretical spectraCi(ℓ) in each case, because of uncorrelated er-
rors in each observational channel in the cross-correlation measure-
ment method. The estimation of cosmological parameters is carried
out from maximisation of theχ2-functionals of the two competing
models,

χ2
t =

ℓmax
∑

ℓ=ℓmin

(

C̃t(ℓ) −Ct(ℓ)
)2

Cov [Ct(ℓ),Ct(ℓ)]
, and (48)

χ2
f =

ℓmax
∑

ℓ=ℓmin

(

C̃t(ℓ) −C f (ℓ)
)2

Cov
[

C f (ℓ),C f (ℓ)
] , (49)
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i.e. the data is in reality described byCt(ℓ) and, in the second case,
fitted wrongly withC f (ℓ) instead ofCt(ℓ). The best-fit parametersx
for each model can be derived by solving the equations〈∂χ2/∂xµ〉 =
0 following from the respectiveχ2-functional.

For deriving the distancex f − xt between the best-fit values
of the true and the false model, we expand theχ2

f function at the
best-fit positionxt in a Taylor series (see Taburet et al. 2009)

χ2
f (x f ) = χ

2
f (xt)+

∑

µ

∂

∂xµ
χ2

f (xt) δµ+
1
2

∑

µ,ν

∂2

∂xµ∂xν
χ2

f (xt) δµδν, (50)

where the parameter estimation bias vectorδ ≡ x f −xt was defined.
The best-fit positionx f of χ2

f can be recovered by extremisation of
the ensemble-averaged〈χ2

f 〉, yielding
〈

∂

∂xµ
χ2

f

〉

xt

= −
∑

ν

〈

∂2

∂xµ∂xν
χ2

f

〉

xt

δν, (51)

which is a linear system of equations of the form
∑

ν

Gµνδν = aµ → δµ =
∑

ν

(G−1)µνaν, (52)

where the two quantitiesGµν andaµ follow from the derivatives of
theχ2

f -function, evaluated atxt,

GiSW
µν ≡

ℓmax
∑

ℓ=ℓmin

Cov−1

[

∂CiSW(ℓ)
∂xµ

∂CiSW(ℓ)
∂xν

−CRS(ℓ)
∂2CiSW(ℓ)
∂xµ∂xν

]

,

aµ ≡

ℓmax
∑

ℓ=ℓmin

Cov−1

[

CRS(ℓ)
∂CiSW(ℓ)
∂xµ

]

. (53)

The CMB priors can be incorporated by adding the Fisher-matrix
FCMB
µν to Gµν,

Gµν = GiSW
µν + FCMB

µν , (54)

for independent iSW- and CMB-likelihoods. The biases in parame-
ter estimation from the iSW-effect are depicted alongside the de-
generacies in Fig. 5, for a maximum multipole order ofℓmax =

3000. The parameter estimation biases in the combined set ofcos-
mological parameters are very small, due to the weakness of the
RS-signal in comparison to that of the iSW-effect, and due to
the strong prior from primary CMB fluctuations. Typical values
for misestimates in cosmological parameters are of the order of
< 0.1σ, and are negligible in comparison to statistical errors.

7.2 Contamination of the iSW-spectrum

In this section we consider the application of the iSW-effect for pro-
viding independent constraints on individual cosmological param-
eters. If the iSW-likelihood is combined with the CMB-likelihood
according to eqn. (54), the latter is by far dominating due tolarger
signal to noise ratio. Although the signal strength of the iSW-effect
is not enough for fully constraining a standard dark energy cos-
mology with five or more parameters, it is sufficient to place com-
petitive bounds on single cosmological parameters. Therefore, we
define the conditional systematical errorσµ = 1/

√

Fµµ and the sys-
tematical errorbµ on a single parameterxµ while all other parame-
ters are assumed to coincide exactly with their fiducial values.

At low multipoles ℓmax the error budget will be dominated
by statistics, while the systematics due to the nonlinear contribu-
tions are negligible. Conversely, the extention of the computation
to higher multipolesℓmax will reduce the statistical error, but the
RS-contributions will start to deteriorate the parameter accuracy.
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Figure 6. Conditional statistical errorsσµ(ℓmax) (thick lines) and systemat-
ical errorsbµ(ℓmax) (thin lines) for individual cosmological parameters:Ωm

(solid line),σ8 (dashed line),h (dash-dotted line) andw (dotted line) as a
function of maximum multipole orderℓmax. No prior information is used
in the computation of the errors. The plot compares a cosmic variance lim-
ited measurement (upper lines) with the cross correlation of PLANCK with
EUCLID (lower lines).

Fig. 6 depicts the individual conditional statistical and systematical
errors as a function of maximum multipole orderℓmax. In compar-
ison to the statistical errors on parameters derived with the iSW-
spectrum, which are monotonically decreasing, the parameter es-
timation biases due to RS-contributions have a more complicated
behaviour with multipole orderℓ, but remain always small in com-
parison to the statistical error by more than one order of magnitude,
for both cosmic variance dominated experiments and the combina-
tion of PLANCK with EUCLID. The worst case is the constraint
onw in a cosmic variance limited experiment, where the systematic
error amounts to 20% of that of the statistical error. There are cer-
tain scales at which the systematical errors are very small,namely
as they change their signs, in agreement with changing parameter
degeneracies on different angular scales.

8 SUMMARY

The topic of this paper is an investigation of the contamination due
to nonlinearly evolving structures on the linear iSW-effect, and the
consequent parameter estimation biases.

(i) The angular spectrum of the Rees-Sciama effect was com-
puted in third order perturbation theory. The spectrumCττ(ℓ) of
the RS-effect starts dominating that of the linear integrated Sachs-
Wolfe effect from multipoles ofℓ ≃ 100 on. In particular the cross-
spectrumCτγ(ℓ) shows a sign change suggesting that the CMB
temperature is anticorrelated with the galaxy density on nonlinear
scales. This scale bears some sensitivity onw and is shifted from
ℓ ≃ 70, where the sign change occurs in the spectrum of the nonlin-
ear effect toℓ ≃ 500 for the combination of the linear and nonlinear
effect. The sensitivity of the RS-effect on the dark energy model it-
self is rather weak.

(ii) By combining the PLANCK and EUCLID data sets one can
measure the nonlinear RS-effect with a significance of 0.77σ out
to multipoles ofℓ = 3000, where the most important limitations
are cosmic variance and PLANCK’s instrumental noise. An ideal
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experiment only subjected to cosmic variance would be able to de-
tect the effect with 3.22σ, but at higher multipoles, confusion with
the kinetic Sunyaev-Zel’dovich effect would occur. Measurements
of the angular scale on which the sign change occurs are almost
impossible as the signal to noise ratio on these scales is≃ 10−3. In
summary, the significance of the RS-effect is smaller to that of the
iSW-effect by a factor of∼ 10 for the combination of PLANCK
with EUCLID, which reaches∼ 7σ.

(iii) If constraints on cosmological parameters are derived from
the linear iSW-effect and if contributions from the RS-effect are ne-
glected, the induced parameter estimation biases are smaller than
the statistical errors by one order of magnitude because of the
smallness of the RS-effect in comparison to cosmic variance in-
duced into the measurement by primary CMB fluctuations and be-
cause of the strong prior used. If the iSW-effect is used to constrain
individual cosmological parameters without using a CMB-prior, a
similar result still applies. Therefore, the RS-effect is negligible as
a systematic in comparison to other systematics that have been dis-
cussed in the literature and which have a more pronounced effect
on cosmogical parameters, e.g. redshift errors due to peculiar mo-
tion of the tracer galaxies (Rassat 2009), weak lensing on the tracer
population and galaxy magnification bias (Loverde et al. 2007),
bias evolution of the tracer population (Raccanelli et al. 2008;
Schäfer et al. 2009), and contributions due to the kinetic Sunyaev-
Zel’dovich effect from reionisation (Giannantonio & Crittenden
2007).

Given the estimates that both the spectrum and the bispectrum of
the RS-effect are only detectable with significances of∼ 0.8σ casts
doubt on the detectability of this effect in a statistical way, and em-
phasises the importance of alternative approaches such as stacking
methods (Granett et al. 2008).
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APPENDIX A: NONLINEAR CORRECTIONS IN
PERTURBATION THEORY

Fig. A1 illustrates the validity of the perturbative corrections to
P(k) due to nonlinear growth, by comparison to the result fromn-
body data (Smith et al. 2003). Third order perturbation theory is
able to describe the increase in fluctuation amplitude due tonon-
linear structure formation down to very small scales. One notices
a deviation between the n-body result and the perturbation theory
amounting to about 20% in the transition region at a few inverse
Mpc, corresponding to angular scales ofℓ ≃ 300, if most of the
iSW-signal in the cross-correlation function arises at a comoving
redshift of χ = 2 Gpc/h, i.e. the maximum of the redshift dis-
tribution p(z)dz used in this work. The higher orders beyond 3 in
perturbation theory would correct the difference to then-body re-
sult, and it should be kept in mind that the simulation on which the
description by Smith et al. (2003) is based uses slightly different
cosmological parameters, most notably higherΩm andσ8.

The remarkable behaviour of the nonlinear effect to cause an
anticorrelation between the CMB and the tracer density is shown
again in Fig. A2, in a logarithmic representation.
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