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Abstract

Perturbative canonical quantum gravity is considered, when coupled to a
renormalizable model for matter fields. It is proposed that the functional in-
tegral over the dilaton field should be disentangled from the other integrations
over the metric fields. This should generate a conformally invariant theory as
an intermediate result, where the conformal anomalies must be constrained
to cancel out. When the residual metric is treated as a background, and if
this background is taken to be flat, this leads to a novel constraint: in com-
bination with the dilaton contributions, the matter lagrangian should have a
vanishing beta function. The zeros of this beta function are isolated points in
the landscape of quantum field theories, and so we arrive at a denumerable,
or perhaps even finite, set of quantum theories for matter, where not only the
coupling constants, but also the masses and the cosmological constant are all
fixed, and computable, in terms of the Planck units.
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1. Introduction

In a previous paper[1], it was argued that the functional integral in canonical quantum
gravity,

∫

DgµνDφmat ei(S
EH(gµν) + S mat(gµν , φ

mat)) , (1.1)

where S EH is the Einstein-Hilbert action and S mat is the action of the matter fields,
here abbreviated as φmat , should be considered to be taken in two steps:

gµν ≡ ω2ĝµν ; det(ĝµν) = −1 ,

∫

Dgµν =

∫

Dĝµν
∫

Dω , (1.2)

and the integral over the dilaton field ω should be taken together with the integrations
over the matter fields φmat .

Rewriting the Einstein-Hilbert action (including a possible cosmological constant) in
terms of ω and ĝµν , one finds, in four dimensions,

S EH =

∫

d4x
1

2κ2

(

R̂ ω2 + 6 ĝµν∂µω∂νω − 2Λω4
)

, (1.3)

where κ2 = 8πGN , and R̂ is the Ricci scalar associated to ĝµν . It is convenient to split
the lagrangian of the matter fields into conformally invariant kinetic parts, mass terms,
and interaction terms. In a simplified notation (later we will be more precise), one has

φmat = {Aµ(x), ψ(x), ψ̄(x), ϕ(x)} ; (1.4)

Lkin = −1
4
ĝµαĝνβFµνFαβ − 1

2
ĝµν∂µϕ∂νϕ− 1

12
R̂ϕ2 − ψ̄γµD̂µψ ; (1.5)

Lmass = −1
2
m2

sω
2ϕ2 − ψ̄ ωµd ψ . (1.6)

Here, Fµν = ∂µAν − ∂νAµ ; the kinetic term for the Dirac fields is shorthand for the
corresponding expression using a vierbein field êaµ for the metric ĝµν with its associated
connection field. ms stands short for the scalar masses and md for the Dirac masses. The
term 1

12
R̂ϕ2 could be removed by a field redefinition, but is kept here for convenience,

making the scalar lagrangian conformally invariant.

Interaction between the matter fields must now be written in the form

Lint = − 1
4!
λϕ4 − ψ̄yiϕiψ − 1

3!
g3ϕ

3ω , (1.7)

where the Yukawa couplings yi could be matrices in the indices labeling the fermion
species, and λ and g3 could be 4- and 3-index tensors in the scalar field indices.

If now we rescale the ω field:

ω(x) =
κ√
6
ω̃(x) , (1.8)
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we notice two things. First, the action for the ω̃ field is now nearly identical to the kinetic
term for the ϕ field, both having the same conformal dimension:

LEH = 1
2
ĝµν∂µω̃ ∂νω̃ + 1

12
R̂ω̃2 − 1

36
κ2Λω4 , (1.9)

and secondly, the mass terms turn into conformally invariant quartic coupling terms be-
tween matter fields and the ω̃ field:

Lmass = −1
2
κ̃2m2

s ω̃
2ϕ2 − κ̃md ψ̄ ω̃ ψ , (1.10)

where κ̃ = κ/
√
6 =

√

4
3
πGN has the dimension of an inverse mass. Also the scalar 3-field

coupling, which originally was not conformally invariant, now turns into a conformally
invariant 4 field coupling (see Eq. (1.7)):

− 1
3!
κ̃g3ϕ

3ω̃ , (1.11)

and a new quartic interaction term for the ω̃ field is generated by the cosmological
constant:

−1
6
κ̃2Λ ω̃4 . (1.12)

It is important to observe that the lagrangian (1.9) for the dilaton field ω̃ has an
overall sign opposite to that of ordinary scalar fields ϕ . For any other field theory, this
would be disastrous because it would violate causality. Here however, the unconventional
sign is a necessary consequence of the canonical structure of the theory. Since it is an
overall sign, it has no net effect on the Feynman rules; this we will exploit by rotating the
field in the complex plane:

ω̃(x) ≡ iη(x) , (1.13)

so that the new field η(x) will be indistinguishable from other scalar fields, with one
important exception: the conformal interaction terms from the original mass terms,
Eq. (1.10), as well as the interaction from the original 3-field interaction, Eq. (1.11),
get unconventional factors -1 or i .

Another important thing to observe is that there is no term at all in the lagrangian
that could serve as a kinetic term for the ĝµν field1. Any such kinetic terms should arise
solely from higher order effects due to the interactions with the matter fields. Naturally,
since the entire lagrangian now is conformally invariant, we should expect the effective
lagrangian for ĝµν to be conformally invariant as well. It is emphasized in Ref. [1] however
that, as is well known [2], this conformal invariance is mutilated by conformal anomalies.

In this paper, we now propose to postpone any attempts to describe the functional
integrals over ĝµν . Not only do we have anomalies there, but also there are difficulties

1Of course, this term reappears if one substitutes η = −i + O(κη̃) , where η̃ is a small oscillating
field, by expanding R̂ .
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with unitarity and Landau ghosts.2 As was explained in Ref.[1], the effective interactions
with matter and dilaton fields generate an action for ĝµν that largely coincides with the
familiar conformally invariant action obtained from the square of the Weyl curvature,
but with an infinite numerical coefficient, which would have to be renormalized. The
difficulties associated to that are sufficient reason for us now to postpone this sector of
the theory entirely.

At first sight, one may well find logical objections to such a procedure: why not also
first integrate over ĝµν before examining whether the amplitudes obtained obey conformal
constraints? We argue however that the ĝµν integration is very different from the rest;
ĝµν determines the location of the local light cones, so that it determines the causal
relationships between points in space-time. It may well be that quantum interference of
states with light cones at different places will require treatments that differ in essential
ways from the standard functional integral.

In any case, it is worth investigating what happens if we follow this procedure. The
implications are quite remarkable, as we will show.

2. Renormalization

Let us assume that the matter fields φmat consist of Yang-Mills fields Aa
µ , Dirac fields

ψ̄, ψ and scalar fields ϕ , the latter three sets being in some (reducible or irreducible,
chiral or non chiral) representation of the local Yang-Mills gauge group. For brevity, we
will write complex scalar fields as pairs of real fields, and if Weyl or Majorana fermions
occur, the Dirac fields can be replaced by pairs of these.3 Let us rewrite the lagrangian for
matter interacting with gravity more precisely than in the previous, introductory section:

L(ĝµν , η, φmat) = −1
4
Ga

µνG
a
µν − ψ̄ γ̂µD̂µ ψ − 1

2
ĝµν(DµϕDνϕ+ ∂µη ∂νη)

− 1
12
R̂(ϕ2 + η2)− V4(ϕ)− iV3(ϕ)η +

1
2
κ̃2m2

i η
2ϕ2

i − Λ̃η4

−ψ̄(yiϕi + iy5i γ
5ϕi + iκ̃mdη)ψ , (2.1)

where Gµν is the (non Abelian) Yang-Mills curvature, and Dµ and D̂µ are covariant

derivatives containing the Yang-Mills fields; γ̂µ and D̂µ also contain the vierbein fields
and connection fields associated to ĝµν ; the Yukawa couplings yi , y

5
i and fermion mass

terms md are matrices in terms of the fermion indices. The scalar self interactions, V3(ϕ)
and V4(ϕ) must be a third and fourth degree polynomials in the fields ϕi :

V4(ϕ) = 1
4!
λϕ4 = 1

4!
λijkℓϕiϕjϕkϕℓ ; (2.2)

V3(ϕ) = 1
3!
g̃ijk3 ϕiϕjϕk , g̃3 = κ̃g3 . (2.3)

2In Ref. [3],[4] claims are made that unitarity can be restored. This however requires the integration
contours to be rotated in the complex plane such that ĝµν becomes complex. Such approaches are
interesting and may well serve as good starting points for generating promising theories, but they will
not be pursued here.

3A single Weyl or Majorana fermion then counts as half a Dirac field.
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In Eq. (2.1), like md , also m2
i δij are mass matrices, in general. Furthermore, Λ̃ stands

for 1
6
κ̃2Λ . Of course, all terms in (2.1) must be fully invariant under the Yang-Mills gauge

rotations. They must also be free of Adler Bell Jackiw anomalies.[6]

Now that the dilaton field η has been included, the entire lagrangian has been made
conformally invariant. It is so by construction, and no violations of conformal invariance
should be expected. This invites us to consider the beta functions of the theory. Can we
conclude at this point that the beta functions should all vanish?

Let us not be too hasty. In the standard canonical theory, matter fields and their
ineractions are renormalized. Let us consider dimensional renormalization, and the asso-
ciated anomalous behavior under scaling. In 4 − ε dimensions, where ε is infinitesimal,
the scalar field dimensions are those of a mass raised to the power 1−ε/2 , so that the cou-
plings λ have dimension ε . This means that in most of the terms in the lagrangian (2.1)
the integral powers of η will receive extra factors of the form η±ε or η±ε/2 , which will
then restore exact conformal invariance at all values for ε . If we follow standard proce-
dures, we accept that η is close to −i , so that singularities at η → 0 or η → ∞ are
not considered to be of any significance. Indeed, the limit η → 0 may be seen to be the
small-distance limit. This is the limit where gravity goes wrong anyway, so why bother?

However, now one could consider an extra condition on the theory. Let us assume that
the causal structure, that is, the location of the light cones, is determined by ĝµν , and
that there exist dynamical laws for ĝµν . This was seen to be a very useful starting point
for a better understanding of black hole complementarity[5]. The laws determining the
scale ω(x) should be considered to be dynamical laws, and the canonical theory of gravity
itself would support this: formally the functional integral over the η fields is exactly the
same as that for other scalar fields.

In view of the above, we do think it is worthwhile to pursue the idea that the η field
must be handled just as any other scalar component of the matter fields; but then, after
renormalization, fractional powers, in the ε → 0 limit would lead to log(η) terms, and
these must clearly be excluded. Renormalization must be done in such a way that no
traces of logarithms are left behind. Certainly then, a scale transformation, which should
be identical to a transformation where the fields η are scaled, should not be associated
with anomalies. Implicitly, this also means that the region η → 0 is now assumed to
be regular. This is the small distance region, so that, indeed, our theory says something
non-trivial about small distances. This is why our theory leads to new predictions that
eventually should be testable. Predictions follow from the demand that all beta functions
of the conformal “theory” (2.1) must vanish.

Note that one set of terms is absent in Eq. (2.1): the terms linear in ϕ and hence cubic
in η . This, of course, follows from the fact that, usually, no terms linear in the scalar
fields are needed in the standard matter lagrangians; such terms can easily be removed
by translations of the fields: ϕi → ϕi + ai for some constants ai . Thus, the classical
lagrangian is stationary when the fields vanish: ϕ = 0 is a classical solution. In our
present notation, this observation is equivalent to the observation that fields may be freely
transformed into one another without modifying the physics. One such transformation is
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a rotation of one of the scalar fields, say ϕ1 , with the η fields:

{

ϕ1 → ϕ1 coshα1 + iη sinhα1 ,
η → η coshα1 − iϕ1 sinhα1 ,

(2.4)

where α1 stands for the original shift of the field ϕ1 . The transformation is taken to
be a hyperbolic rotation because the “kinetic term” −1

2
(∂η2 + ∂ϕ2) = 1

2
(∂ω̃2 − ∂ϕ2) in

Eq. (2.1) has to be invariant.

In most cases, these transformations need not be considered since terms linear in ϕ
will in general not be gauge invariant.

Notice also that the Yang-Mills fields are not directly coupled to the η field. In the
“classical limit”, η → −i , we can see why this is so. Since not η , but ω̃ is real, the
invariant quantity is ϕ2 − ω2 . Rotating ϕ fields with η fields would therefore be a non-
compact transformation, and Yang Mills theories with non-compact Lie groups usually
do not work. There is food for thought here, but as yet we will not pursue that.

When constructing a complete theory, the next step should be to consider just any
configuration of ĝµν(~x, t) , formulate the renormalized theory in this background, and
finally consider functional integrals over ĝµν . Unfortunately, this is still too difficult. In a
non-trivial ĝµν background, there will be anomalies depending on the derivatives of ĝµν ;
there are divergences[1] proportional to the Weyl curvature squared, which can be seen
to correspond to the field combination R̂ 2

µν − 1
3
R̂2 , and subtracting those leads to new

conformal anomalies[2]. It was suggested in Ref. [1] to keep the conformal infinity, which
would turn gravitons into “classical” particles, or more precisely, particles that cannot
interfere quantum mechanically, but whether this can be held up as a theory remains
to be seen. To avoid further complications, we now decided to look at the case when
ĝµν(~x, t) = ηµν , or, space-time is basically flat, though we just keep the field η(~x, t) .

3. The β functions

Thus, we return to a theory to which all known quantum field theory procedures can be
applied, the only new thing being the presence of an extra, gauge neutral, spinless field
η , and the perfect local scale invariance of the theory.

We arrived at the lagrangian (2.1), and we wish to impose on it the condition that
all its beta functions vanish, since conformal invariance has to be kept. As the theory is
renormalizable, the number of beta functions is always exactly equal to the number of
freely adjustable parameters. In other words: we have exactly as many equations as there
are freely adjustable unknown variables, so that all coupling constants, all mass terms and

also the cosmological constant, should be completely fixed by the equations βi = 0 . They
are at the stationary points. Masses come in the combination κ̃mi and the cosmological
constant in the combination κ̃2Λ , so all dimensionful parameters of the theory will be
fixed in terms of Planck units.

In principle, there is no reason to expect any of these fixed points to be very close yet
not on any of the axes, so neither masses nor the cosmological constant can be expected
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to be unnaturally small, at this stage of the theory. In other words, as yet no resolution
of the hierarchy problem is in sight: why are many of the physical mass terms 40 orders
of magnitude smaller than the Planck mass, and the cosmological constant more than 120
orders of magnitude? We have no answer to that in this paper, but we will show that the
equations are quite complex, and exotic solutions cannot be excluded.

The existence of infinitely many solutions cannot be excluded. This is because one can
still adjust the composition and the rank(s) of the Yang-Mills gauge group, as well as one’s
choice of the scalar and (chiral) spinor representations.4 These form infinite, discrete sets.
However, many choices turn out not to have any non trivial, physically acceptable fixed
point at all: the interaction potential terms V (ϕ) must be real and properly bounded,
for instance. Searches for fixed points then automatically lead to vanishing values of
some or more of the coupling parameters, which would mean that the symmetries and
representations have not been chosen correctly.

Every advantage has its disadvantage. Since all parameters of the theory will be fixed,
we cannot apply perturbation theory. However, we can make judicious choices of the scalar
and spinor representations in such a way that the existence of a fixed point for the gauge
coupling to these fields can be made virtually certain. The β function for SU(N) gauge
theories with Nf fermions and Ns complex scalars in the elementary representation is

16π2 β(g) = −a g3 − b g5 +O(g7) , (3.1)

a = 11
3
N − 2

3
Nf − 1

6
Ns , (3.2)

b = O(N2, N Nf , N Ns) . (3.3)

Choosing one scalar extra, or one missing, we can have a as small as a = ±1
6
, while a

quick inspection in the literature[8][9] reveals that, in that case, b may still have either
sign:

b = ±O(N2) . (3.4)

depending on further details, such as the ratio of fermions and scalars, the presence of
other representations, and the values of the Yukawa couplings. Choosing the sign of a
opposite to that of b , one then expects that a fixed point can be found at

g2 = −b/a = O(1/N2) . (3.5)

This, we presume, is close enough to zero that the the following procedure may be
assumed to be reliable. Let there be ν physical constants, the νth one being the gauge
coupling g , which is determined by the above equation (3.5). If we take all other coupling
parameters to be of order g or g2 , then the beta function equations are reliably given by
the one-loop expressions only, which we will give below. Now these are ν − 1 equations
for the ν−1 remaining coupling parameters, and they are now inhomogeneous equations,
since the one coupling, g2 , is already fixed. All we have to do now, is find physically
acceptable solutions. We already saw that non-Abelian Yang-Mills fields are mandatory;

4which of course must be free of Adler Bell Jackiw anomalies[6][7].
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we will quickly discover that, besides the η fields, both fermions and other scalar matter
fields are indispensable to find any non-trivial solutions.

One trivial, yet interesting solution must be mentioned: N = 4 super Yang-Mills. We
take its lagrangian, and add to that the η field while postulating that this η field does
not couple to the N = 4 matter fields at all. Then indeed all β functions vanish[10].
However, since the η field is not allowed to couple, the physical masses are all strictly
zero, which disqualifies the theory physically. Note, however, that also the cosmological
constant is rigorously zero. Perhaps the procedure described above can be applied by
modifying slightly the representations in this theory, so that a solution with masses close
to zero, and in particular a cosmological constant close to, but not exactly zero, emerges.

The one loop β functions are generated by an algebra[11], in which one simply has to
plug the Casimir operators of the Yang Mills Lie group, the types of the representations,
the quartic scalar couplings and the fermionic couplings. If we take the scalar fields ϕi

and η together as σi , the generic lagrangian can be written as

L = −1
4
Ga

µνG
a
µν − 1

2
(Dµσi)

2 − V (σ)− ψ̄(γD − (Si + iγ5Pi)σi)ψ , (3.6)

where σi and ψ̄, ψ are in general in reducible representations of the gauge group, Dµ

is the gauge covariant derivative, V (σ) is a gauge-invariant quartic scalar potential, and
Si and Pi are matrices in terms of the fermion flavor indices. Everything must be gauge
invariant and the theory must be anomaly free[6][7].

The covariant derivatives contain the hermitean representation matrices T a
ij , U

L a
αβ and

URa
αβ :

Dµσi ≡ ∂µσi + iT a
ijA

a
µσj ; (3.7)

Dµψα ≡ ∂µψα + i(UL a
αβ P

L + URa
αβ P

R)Aa
µψβ ; PL,R ≡ 1

2
(1± γ5) . (3.8)

The gauge coupling constant(s) g are assumed to be included in these matrices T and
U . The operators PL and PR are projection operators for the left- and right handed
chiral fermions.

The group structure constants fabc are also assumed to include a factor g , and they
are defined by

[T a, T b] = ifabcT c ; [UL a, UL b] = ifabcUL c ; [URa, UR b] = ifabcUR c . (3.9)

Casimir operators Cg, Cs and Cf will be defined as

fapqf bpq = Cab
g , Tr (T aT b) = Cab

s , Tr (UL aUL b + URaUR b) = Cab
f . (3.10)

All beta functions are given by writing down how the entire lagrangian (3.6) runs as
a function of the scale µ [11]:

µ∂

∂µ
L = β(L) =

1

8π2
∆L , (3.11)

∆L = −1
4
Ga

µνG
b
µν(

11
3
Cab

g − 1
6
Cab

s − 2
3
Cab

f )−∆V − ψ̄(∆Si + iγ5∆Pi)σi ψ . (3.12)
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Here,

∆V = 1
4
V 2
ij − 3

2
Vi(T

2σ)i +
3
4
(σT aT bσ)2 +

σiVjTr (SiSj + PiPj)− Tr (S2 + P 2)2 + Tr [S, P ]2 , (3.13)

where Vi = ∂V (σ)/∂σi , Vij = ∂2V (σ)/∂σi∂σj .

It is convenient to define the complex matrices Wi as

Wi = Si + iPi , (3.14)

Then,

∆Wi = 1
4
WkW

∗

kWi +
1
4
WiW

∗

kKk +WkW
∗

i Wk −
− 3

2
(UR)2Wi − 3

2
Wi(U

L)2 +WkTr (SkSi + PkPi) . (3.15)

If now we write the collection of scalars as {σi = ϕi, σ0 = η} , taking due notice of
the factors i in all terms odd in η , we can apply this algebra to compute all β functions
of the lagrangian (2.1).

The values of the various β functions depend strongly on the choice of the gauge
group, the representations, the scalar potential function and the algebra for the Yukawa
terms, and there are very many possible choices to make. However, the signs of most
terms are fixed by the algebra (3.12)—(3.15). By observing these signs, we can determine
which are the most essential algebraic constraints they impose on possible solutions. As
we will see, they are severely restrictive.

4. Adding the dilaton field to the algebra for the β functions.

Consider the dilaton field η added to the lagrangian, as in Eq. (2.1). This requires
extending the indices i, j, . . . in the lagrangian (3.6) to include a value 0 referring to
the η field. The unusual thing is now that the terms odd in η are purely imaginary,
while all terms in Eq. (2.1) are of dimension 4. Let us split off this special component. In
Eq. (3.6), we then write

V (σ) = Λ̃η4 − 1
2
m2

i η
2ϕ2

i + iV3(ϕ)η + V4(ϕ) ; (4.1)

S0 = imd ; P0 = 0 ; Si = yi ; Pi = y5i . (4.2)

Here, md is the fermionic mass matrix, yi are matrices representing the scalar Yukawa
couplings, and y5i are the pseudoscalar Yukawa coupling matrices. m2

i δij is the scalar
mass matrix, which is allowed to have negative eigenvalues, so we allow the Higgs mecha-
nism to take place. We henceforth choose modified Planck units by setting κ̃2 = 4

3
πGN =

1 .
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Note, that in the Standard Model, there is no gauge-invariant Dirac mass matrix and
no gauge-invariant cubic scalar interaction, so there md and V3 are zero, but we will
need to be more general.

We write W = S + iP , and now W̃ = S − iP . The algebra (3.12) — (3.15) is then
found to become

∆V (σ) = ∆V 0(ϕ) (a)

−1
2
V 2
3i − V3ϕiTr (mdyi) +

1
4
(m2

iϕ
2
i )

2 (b)

+iη
(

− 3
2
V3i(T

2ϕ)i +
1
2
V3ijV4ij + ϕiV3jTr (yiyj + y5i y

5
j ) + V4iTr (mdyi) (4.3)

−4Tr (md(yiϕi)
3) + 2Tr ([md, y

5
iϕi][yjϕj , y

5
kϕk])− 2Tr ((y5iϕi)

2(mdyj + yjmd)ϕj)

−2V3im
2
iϕi − V3Trm

2
d −m2

jϕ
2
jϕiTr (mdyi)

)

(c)

+η2
(

− 1
4
V 2
3ij − V3iTr (mdyi)− 1

2
m2

iV
2
4ii + 2Tr ((md yiϕi)

2) + 4Tr (m2
d(yiϕi)

2)

+2Tr (m2
d(y

5
iϕi)

2 − Tr ([md, y
5
iϕi]

2)−m2
jϕiϕjTr (yiyj + y5i y

5
j ) +

3
2
m2

iϕi(T
2ϕ)i

+2m4
iϕ

2
i + Tr (m2

d)m
2
iϕ

2
i − 6Λ̃m2

iϕ
2
i

)

(d)

+iη3
(

− 1
2
m2

iV3ii −m2
iϕiTr (mdyi) + 4Tr (m3

d yiϕi) + 4Λ̃ϕiTr (mdyi)
)

(e)

+η4
(

36Λ̃2 − 4Λ̃Tr (m2
d) +

1
4

∑

im
4
i − Tr (m4

d)
)

, (f)

where V3i = ∂V3/∂ϕi , etc, and we apply summation convention: double indices are
summed over starting with 1, except the index in the scalar mass matrix m2

i , which is
only summed over if it occurs twice elsewhere as well, or if this is explicitly indicated.
∆V 0 is the expression that we already had, in Eq. (3.13).

The beta coefficients for the Yukawa couplings follow from adding the index 0 to
Eq. (3.15):

∆Wi = ∆W 0
i − 1

4
(m2

dWi +Wim
2
d) +mdW̃imd −mdTr (md Si) , (4.4)

−i∆W0 = ∆md = −3
2
m3

d −mdTr (m
2
d) +

1
4
(y2k + y5k

2
)md +

1
4
md(y

2
k + y5k

2
)

+ ykmd yk − y5kmd y
5
k + ykTr (ykmd) + iγ5y5k Tr (ykmd) , (4.5)

where ∆W 0
i stands for the standard β function for the corresponding dimension 4 in-

teraction terms.

Before demanding that the β functions all vanish, we observe that we can still allow
for an infinitesimal field transformation of the form (2.4) in the original lagrangian. This
adds to the counter terms:

δV (σ) = iαi

(

η
∂V (σ)

∂ϕi
− ϕi

∂V (σ)

∂η

)
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= αiV3ϕi + iη αi

(

V4i +m2
jϕ

2
jϕi

)

+ η2 αi (−V3i) + iη3 αi

(

−m2
iϕi − 4Λ̃ϕi

)

, (4.6)

and a similar rotation in the Yukawa couplings. This can be used to eliminate the term
(4.3 e) by adjusting αi ; it corresponds to a field shift in the non-gravitational case. In
most cases, however, such as in the Standard Model, the terms in (4.3 e) are forced to
vanish anyhow due to gauge invariance. In a similar way, an infinitesimal chiral rotation
among the fermions can be used to eliminate the last term in Eq. (4.5).

Thus, after term (e) has been made to vanish by hand, the demand that all β functions
vanish, for all values of η , applies in particular to the terms in Eq. (4.3 a — d) and (f),
and to Eqs. (4.4) and (4.5).

We have already assumed that the non-Abelian Yang Mills field coupling(s) g have a
small but non-vanishing fixed point. Through the effects of the group matrices T a, ULa

and URa , the coupling(s) g determine the values of the other parameters, by as many
coupled non-linear equations as there are unknowns. It follows that, in this theory, we
must have non-Abelian Yang-Mills fields. In contrast, Abelian U(1) components are not
allowed since those do not have fixed points close to the origin.

Next, let us consider the requirement that the term (f) in Eq. (4.3) vanishes:

36Λ̃2 = Tr (m4
d) + 4Λ̃Tr (m2

d)− 1
4

∑

i

m4
i . (4.7)

The r.h.s. of this equation resembles a supertrace. Since its sign must be positive, we read
off right away that there must be fermions. If furthermore we like to have a very small
or vanishing cosmological constant Λ , we clearly need that the sum of the fourth power
of the Dirac fields (approximately) equals the sum of the fourth powers of the masses of
the real scalar particles divided by 4.

Can we do without the scalar fields ϕi ? Eq. (4.7) would have a solution, although
the cosmological constant would come out fairly large. However, now there is only one
more equation to consider: Eq. (4.5), with all Yukawa couplings yi and y5i replaced by
0. That gives:

3
2
m3

d +mdTr (m
2
d)

?
= 0 . (4.8)

Whenever md has a real, non vanishing eigenvalue, this would imply that the trace of
m2

d is negative, an impossible demand. Therefore, our theory also must have scalars ϕi ,
besides the dilaton field η .

It appears that in today’s particle models not only the cosmological constant Λ̃ but
also the mass terms are quite small, in the units chosen, which are our modified Planck
units. Also, if there is a triple scalar coupling, V3(ϕ) , it appears to be small as well. This
is the hierarchy problem, for which we cannot offer any solution other than suggesting that
we may have to choose a very complex group structure — as in the landscape scenarios
often proposed in superstring theories. Perhaps, the small numbers in our present theory
are all related.
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If the masses are indeed all small, then the only large terms in our equations are the
ones that say how the coupling constants and masses run with scale. Our theory suggests
that they might stop running at some scale; in any case, a light Higgs particle indeed
follows from the demand that the Higgs self coupling is near an UV fixed point.

The author did not (yet) succeed in finding a physically interesting prototype model
with a non-trivial fixed point; this is a very complex, but interesting technical problem.
Let us briefly set out a strategy.

We search for a solution where all mass terms, and of course also the cosmological
constant, are small. Start with a theory that has nearly, but not quite, a set of β
functions that vanish at one-loop. Assume that it has a fixed point near the origin. It is
known that Eqs. (3.12)—(3.15) allow this. For simplicity, let us assume that there are no
triple scalar couplings, V3 = 0 , and no gauge invariant scalars, so that the terms (4.3 c)
and (e) are forbidden by gauge invariance. If we deviate slightly from the fixed point,
term (b) dictates that we must be at a point where the β function for the scalar self
couplings is negative. This gives us a first guess for m4

i , the absolute values of the scalar
masses, but not the signs of m2

i .

Knowing the approximate values of the Yukawa couplings yk and y5k allows us to fix
the Dirac mass matrix md using Eq. (4.5). Since we want these masses to be small, we
must assume that the pseudoscalar Yukawa couplings largely cancel against the scalar
ones in this equation. Then, Eq. (4.4) can be obeyed by moving slightly away from the
original fixed point in that direction.

The only remaining equation is then the vanishing of term (d), the running of the
scalar mass-squared terms. Knowing V 2

4ii and Tr (m2
d) , and assuming that m4

i is very
small, then gives us an equation for m2

i . Notice that its sign was still free, so that
there is some freedom here. Various further attempts to refine this procedure may well
lead to interesting models with fixed points. We do note that, apparently, relatively large
pseudoscalar Yukawa couplings y5i are wanted. Also, we are talking about primary, gauge
invariant Dirac masses, which have to be there due to the term (4.3 f), while they do not
occur in the presently known Standard Model.

5. Discussion.

Our theory derives constraints from the fact that matter fields interact with gravity. The
basic assumption could be called a new version of relativity: the scalar matter fields
should not be fundamentally different from the dilaton field η(~x, t) . Since there are no
singular interactions when a scalar field tends to zero, there is no reason to expect any
singularity when η(~x, t) tends to zero at some point in space-time. Standard gravity
theory does have singularities there: this domain refers to the short distance behavior of
gravity, which is usually considered to be “not understood”. What if the short distance
behavior of gravity and matter fields is determined by simply demanding the absence of
a singularity? Matter and dilaton then join smoothly together in a perfectly conformally
invariant theory. This, however, only works if all β functions of this theory vanish: its
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coupling parameters must be at a fixed point. There are only discrete sets of such fixed
points. Many theories have no fixed point at all in the domain where physical constants
are real and positive — that is, stable. Searching for non trivial fixed points will be an
interesting and important exercise.

Indeed, all physical parameters, including the cosmological constant, will be fixed and
calculable in terms of the Planck units. This may be a blessing and a curse at the same
time. It is a blessing because this removes all dimensionless freely adjustable real numbers
from our theory; everything is calculable, using techniques known today; there is a strictly
discrete set of models, where the only freedom we have is the choice of gauge groups and
representations. It is difficult to tell how many solutions there are; the number is probably
infinite.

This result is also a curse, because the values these numbers have in the real world is
strange mix indeed: the range of the absolute values cover some 122 orders of magnitude:

Λ̃ = O(10−122) ; µ2
Higgs ≈ 3.10−36 . (5.1)

The question where these various hierarchies of very large, or small, numbers come from
is a great mystery called the “hierarchy problem”. In our theory these hierarchies will be
difficult to explain, but we do emphasize that the equations are highly complex, and pos-
sibly theories with large gauge groups and representations have the potential to generate
such numbers.

Our theory is a “top-down” theory, meaning that it explains masses and couplings at
or near the Planck domain. It will be difficult to formulate any firm predictions about
physics at energies as low as the TeV domain. Perhaps we should expect large regions on
a logarithmic scale with an apparently unnatural scaling behavior. There is in principle
no supersymmetry, although the mathematics of supersymmetry will be very helpful for
constructing the first non-tivial models.

What is missing furthermore is an acceptable description of the dynamics of the re-
maining parts ĝµν of the metric field. In Ref. [1], it was suggested that this dynamics
may be non quantum mechanical, although this does raise the question how ĝµν can back
react on the presence of quantum matter. Standard quantum mechanics possibly does
not apply to ĝµν because the notion of energy is absent in a conformal theory, and con-
sequently the use of a hamiltonian may become problematic. A hamiltonian can only be
defined after coordinates and conformal factor have been chosen, while this is something
one might prefer not to do. The author believes that quantum mechanics itself will have
to be carefully reformulated before we can really address this problem.

Our theory indeed is complex. We found that the presence of non-Abelian Yang-Mills
fields, scalar fields and spinor fields is required, while U(1) gauge fields are forbidden (at
least at weak coupling, since the β function for the charges here is known to be positive).
Because of this, one “prediction” stands out: there will be magnetic monopoles, although
presumably their masses will be of the order of the Planck mass.

Finally, there is one other firm prediction: the constants of nature will indeed be
truly constant. Attempts to experimentally observe variations in constants such as the
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finestructure constant or the proton electron mass ratio, with time, or position in distant
galaxies, are predicted to yield negative results.
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