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Abstract

Quantum Yangian symmetry in several sigma models with supergroup or su-

percoset as target is established. Starting with a two-dimensional conformal field

theory that has current symmetry of a Lie superalgebra with vanishing Killing form

we construct non-local charges and compute their properties. Yangian axioms are

satisfied, except that the Serre relations only hold for a subsector of the space of

fields. Yangian symmetry implies that correlation functions of fields in this sector

satisfy Ward identities. We then show that this symmetry is preserved by certain

perturbations of the conformal field theory.

The main example are sigma models of the supergroups PSL(N|N), OSP(2N+2|2N)

and D(2,1;α) away from the WZW point. Further there are the OSP(2N+2|2N)

Gross-Neveu models and current-current perturbations of ghost systems, both for

the disc as world-sheet. The latter we show to be equivalent to CPN−1|N sigma

models, while the former are conjecturally dual to supersphere sigma models.
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1 Introduction

Due to its infinite-dimensional Virasoro symmetry two-dimensional conformal field theory

belongs to the best understood quantum field theories. Nonetheless, there exist many non-

rational models which we cannot solve at the moment. Examples are sigma models on

supergroups and supercosets with the property that the Killing form of the superalgebra
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of the global symmetry vanishes identically. These theories are argued to be conformal

[1, 2, 3], a recent article is [4]. The problem is that generically these sigma models are

only known to have Virasoro and finite-dimensional Lie superalgebra symmetry, which is

in most cases not sufficient to determine physical quantities as spectra and correlation

functions. It is thus crucial to find more symmetry and to learn how to use it.

The state of the art of sigma models on target superspace is that WZW models on su-

pergroups are fairly well understood due to their Kac-Moody symmetry, see [5, 6, 7, 8, 9,

10, 11, 12, 13] for bulk and [13, 14, 15, 16, 17, 18, 19] for boundary models. The situation

changes when Kac-Moody symmetry ceases to be present. Then perturbative computa-

tions starting from the WZW model led to the computation of specific boundary spectra

[20, 21, 22, 23] and current correlation functions [24, 25, 26, 27, 28]. In both cases the

vanishing of the Killing form simplified the perturbative treatment. Non-perturbatively

one can single out some subsectors of the theory using the global symmetry and compute

correlation functions of fields in these sectors in simpler models [29].

The motivation to study target superspace sigma models are its appearance in string

theory and condensed matter physics.

String theory on AdSd × Sd is described by superspace sigma models [30, 31, 32, 33, 34].

These theories are important as they are conjectured to be dual to some gauge theories

[36]. They are classical integrable [33, 37, 38]1. Quantum integrability is tightly connected

with Yangian symmetry at the quantum level.

In condensed matter physics in the case of the integer quantum Hall effect as well as

for disordered systems psl(N|N) symmetry and its central extension gl(N|N) are present

[39, 40]. Boundary spectra were also computed perturbatively in this context [41].

An important quantity in the theory of ordinary Yangians is the eigenvalue of the quadratic

Casimir element of the Lie subalgebra in the adjoint representation. If the Killing form is

degenerate then this operator acts non-invertible in the adjoint2. In this case the nature

of the Yangian algebra is expected to be rather unusual. Having a natural construction

of the algebra as we provide it in this article should help understanding these special

Yangian superalgebras. Reviews on ordinary Yangians are [42, 43].

The present work is inspired by the following two developments. Lüscher found non-local

charges in massive two-dimensional quantum field theory [44], which were then identified

as Yangian algebras by Bernard [45]. These methods were extended to WZW models on

compact Lie groups in [46]. As conformal fields do not vanish at infinity the procedure

depends on a point of reference P .

1In the AdS4 × CP4 case classical integrability of the non-sigma model part of the string theory was
found in [35].

2This also applies to the superalgebras of type gl(N|N) where the Casimir acts non-zero but nilpotent
in the adjoint.
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The second development is twistor string theory. It is argued to be dual to N=4 super

Yang-Mills theory [47, 48]. Amplitudes in super Yang-Mills are computed to be Yangian

invariant [49, 50]. The world-sheet theory of the open twistor string is essentially a free

field representation of the psl(4|4) current algebra at level one. Using the methods of

[46] one can then establish Yangian symmetry [51]. The procedure simplifies considerably

due to the vanishing of the Killing form of psl(4|4), e.g. the dependence on the point of

reference P eventually vanishes. The main goal is to generalize this result and to establish

Yangian symmetry in many conformal field theories based on superalgebras with vanishing

Killing form and not necessarily possessing Kac-Moody current symmetry.

Our strategy is as follows. We consider Lie superalgebras whose Killing form vanishes

identically and which possess a non-degenerate invariant bilinear form. This applies to

the algebras of the groups PSL(N|N), OSP(2N+2|2N) and D(2,1;α). The first step is to

take a conformal field theory with current symmetry of such a Lie superalgebra. These

currents are then used to construct non-local currents and charges, which depend on a

point of reference P . Their properties are computed in complete analogy to the psl(4|4)

level one example of the twistor string [51]. The first result is that a special subsector of

the conformal field theory carries a representation of the Yangian, given by the action of

these non-local charges. Moreover this is a symmetry and gives interesting Ward identities.

These identities are independent of the point of reference P . This leads us to define new

charges which also provide a Yangian symmetry of this special subsector of the model.

The new charges allow us to investigate truly marginal perturbations that preserve the

Yangian symmetry. We then list three examples. The main one are sigma models on

the supergroups PSL(N|N), OSP(2N+2|2N) and D(2,1;α). Further, if we take the disc

as world-sheet, we also have OSP(2N+2|2N) Gross-Neveu models which are conjectured

to be dual to supersphere S2N+1|2N sigma models. Finally again for the disc, we have

perturbations of supersymmetric ghost-systems. We show that these are equivalent to

sigma models on super projective space CPN−1|N. There are many more examples, as e.g.

massive deformations, which we do not consider.

2 Superalgebras

We present the superalgebras that appear in the conformal field theories.

2.1 Lie superalgebras

We start with some properties of Lie superalgebras. They were first studied by Victor

Kac [54]. A Lie superalgebra is defined as follows.

Definition 2.1 Let g be a Z2 graded algebra g = g0̄ ⊕ g1̄ with product [ , ] : g× g → g
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that respects the grading. The parity of a homogeneous element is denoted by

|X| =
{ 0 X in g0̄

1 X in g1̄

. (2.1)

Then g is a Lie superalgebra if it satisfies antisupersymmetry and graded Jacobi identity,

i.e.

0 = [X, Y ] + (−1)|X||Y |[Y,X ] and

0 = (−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X ]] + (−1)|Z||Y |[Z, [X, Y ]] ,

(2.2)

for all X, Y and Z in g.

Further a bilinear form B : g × g → R(resp.C) is called a consistent supersymmetric

invariant bilinear form if

B(X, Y ) = 0 ∀X ∈ g0̄ ∧ ∀Y ∈ g1̄

B(X, Y )− (−1)|X||Y |B(Y,X) = 0 ∀X, Y ∈ g and

B([X, Y ], Z)−B(X, [Y, Z]) = 0 ∀X, Y, Z ∈ g .

(2.3)

Let g be a Lie superalgebra with non-degenerate invariant bilinear form B, {ta} a basis

of g and fab
c the structure constants, i.e. they satisfy

[ta, tb] = fab
ct

c , (2.4)

where the summation over the repeated index c is understood. Introduce the short-hand

notation

(−1)ab = (−1)|t
a||tb| . (2.5)

Then antisupersymmetry and Jacobi identity expressed in terms of structure constants

are

0 = fab
c − (−1)abf ba

c

0 = (−1)aefab
cf

de
b + (−1)adf db

cf
ea

b + (−1)def eb
cf

ad
b .

(2.6)

Let κab denote the invariant bilinear form B(ta, tb) of our Lie superalgebra g. We choose

the basis such that

κabκbc = (−1)aδac , (2.7)
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which is always possible as can be seen by case by case analysis3. Since our bilinear form

is non-degenerate, we can define a dual basis {ta}

B(ta, tb) = δab (2.8)

with dual metric κab. We raise and lower indices by using the metric, especially we need

the formulae

fab
c = fabdκcd , fabc = fab

dκ
dc , κab = κab . (2.9)

The Lie superalgebras we are considering have vanishing Killing form, that is the super-

trace in the adjoint representations vanishes, i.e.

str(ad(ta)ad(tb)) = (−1)dfac
df

bd
c = 0 . (2.10)

Using (2.9) we ca rewrite the vanishing of the Killing form in the following way

fa
bcf

cb
d = (−1)bfab

cf
ec

bκde = 0 . (2.11)

This equation is important for the non-local charges we are going to construct.

2.2 Yangian superalgebras

Yangian algebras were first studied by Drindfel’d [55, 56].

From now on let g be a simple Lie superalgebra with vanishing Killing form but with a non-

degenerate invariant consistent bilinear form. Then we define the Yangian superalgebra

of g.

Definition 2.2 A Yangian superalgebra (Y (g),∆, ǫ, S) is a Z2 graded algebra that is in

addition graded by the non-negative integers

Y (g) =

∞
⊕

n=0

Yn (2.12)

such that the part of level zero is the Lie superalgebra g (with basis {ta0}), and the part

of level one its adjoint representation (with basis {ta1}). The higher level parts are then

generated by the algebra product [ , ] : Y (g) × Y (g) → Y (g) subject to the constraint

that the co-multiplication ∆ : Y (g) → Y (g) ⊗ Y (g) defined on the level zero and level

3Except for the exceptional Lie superalgebras it can be seen from the fundamental matrix represen-
tation.
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one part as

∆(ta0) = ta0 ⊗ 1 + 1 ⊗ ta0

∆(ta1) = ta1 ⊗ 1 + 1 ⊗ ta1 + α fa
bc t

c
0 ⊗ tb0

(2.13)

is an algebra homomorphism. In addition the co-multiplication has to be co-associative

(∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆ . (2.14)

Further there is a co-unit ǫ : Y (g) → R

ǫ(tai ) = 0 for i = 0, 1 (2.15)

and an anti-pode S : Y (g) → Y (g)

S(tai ) = −tai for i = 0, 1 (2.16)

This defines a Hopf superalgebra. Note that the anti-pode axiom has such a simple form

because of the vanishing of the Killing form.

The co-multiplication being a homomorphism restricts the algebra bracket of level one

elements by some algebraic relations, the Serre relations. More precisely one can write

the bracket as

[ta1 , t
b
1] = fab

ct
c
2 + Xab . (2.17)

The Serre relations then fix Xab uniquely as follows (see [42] for a similar argument).

Consider uab satisfying

uab = −(−1)ab uba and uab f
ab

c = 0 (2.18)

this means that we can identify uab with a closed element u = uab t
a
0 ∧ tb0 in ∧2

g ⊗ C.

For homology of Lie superalgebras see [52]. We define

Y ab = (−1)de fa
dc f

b
ge f

dg
h t

c
0 t

e
0 t

h
0 . (2.19)

Vanishing of the Killing form implies that Y ab is totally supersymmetric, i.e. we can view

it as an element of Sym3(g). Requiring that ∆ is a homomorphism leads to the Serre

relations

uab [t
a
1 , t

b
1] = uabX

ab = uab
α2

3
Y ab . (2.20)

If the second homology of ∧∗
g with coefficient in the trivial representation were zero,
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then these relation would be similar to the standard Serre relations of Yangian algebras:

−fkl
i [t

i
1 , t

j
1] + (−1)ljfkj

i [t
i
1 , t

j
1]− (−1)k(l+j)f lj

i [t
i
1 , t

k
1] =

= α2 (−1)ih+gj fgid f
ld
h f

ki
c f

jg
e t

c
0 t

h
0 t

e
0 .

(2.21)

This is the case for g ∈ {osp(2N + 2|2N), d(2, 1;α)}, but not for psl(N |N) [52].

2.3 Representations

A representation of the Yangian is also one of its Lie subalgebra. But not every Lie

superalgebra representation can be lifted to the Yangian. The simplest lift is the trivial

one, i.e. let ρ : g :→ End(V ) be a representation of g, then we define ρ̃ : Y (g) :→ End(V )

by

ρ̃(ta0) = ρ(ta0) and ρ̃(ta1) = 0 . (2.22)

Looking back to the Serre relations (2.20), we see that this becomes a representation of

the Yangian if and only if ρ(Y ab) = 0. It is not known in general when this condition is

satisfied, however there are some criteria [55, 53]. These representations are important to

us.

2.4 Current algebra

The conformal field theories we start to look at we require to possess currents Ja(z) taking

values in our Lie superalgebra g and satisfying the operator product expansion

Ja(z)J b(w) ∼
kκab

(z − w)2
+

fab
c J

c(w)

(z − w)
. (2.23)

These currents have the operator valued Laurent expansion

Ja(z) =
∑

n

Ja
n z

−n−1 (2.24)

and the modes satisfy the relations of the affinization ĝ of g

[Ja
n , J

b
m] = fab

c J
c
n+m + kκabδn+m,0 , (2.25)

where the central element takes the fixed value k, the level. Especially the zero modes

form a copy of g. The action of these modes on the vacuum state is

Ja
n|0〉 = 0 = 〈0|Ja

−n for n ≥ 0 . (2.26)
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Important fields of the conformal field theory are the primary fields φ(z, z̄). Let ρ : g →

End(V ) be a representation of g. Then to a vector φ in V , we associate the primary field

φ(z, z̄) and this field has the following operator product expansion with the currents

Ja(z)φ(w, w̄) ∼
ρ(ta)φ(w, w̄)

(z − w)
. (2.27)

The field φ(z, z̄) is bosonic/fermionic if the vector φ is bosonic/fermionic and we denote

its parity by |φ|. Finally, we define the subsector of primary fields that transform in

representations that can be lifted trivially to representations of the Yangian

Y = {φ(z, z̄) | φ in V and ρ(Y ab) = 0 for ρ : g → End(V ) } . (2.28)

This terminates our preparations.

3 Non-local Charges

Most of this section is in analogy of section four in [51]4, which handled the special case

of psl(4|4) current algebra at level one. We start with a conformal field theory having a

current algebra of g, and g has vanishing Killing form as before. The zero modes of the

currents form a copy of g. They are the charges of level zero

Qa
0 = Ja

0 =
1

2πi

∮

dz Ja(z) . (3.1)

The main goal of this section is to construct level one charges and to work out their

properties. These charges correspond to non-local currents. Symmetries from non-local

charges were considered in [57].

We introduce the non-local field χa(z;P ),

χa(z;P ) =

∫ z

P

dwJa(w) (3.2)

and the non-local current

Y a(z;P ) = fa
bc

∫ z

P

dwJc(w) J b(z) = fa
bc χ

c(z;P ) J b(z) . (3.3)

Note that there is no normal ordering necessary, since vanishing of the Killing form plus

antisupersymmetry of the structure constants imply

fa
bc J

c(w) J b(z) ∼ 0 . (3.4)

4Which is based on [46].
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We now investigate the corresponding charges and their action on primary fields.

3.1 Co-algebra

The co-algebra is determined by the action of the charges on a product of fields.

The operator product with a primary φ(w, w̄) is

Y a(z;P ) φ(w, w̄) ∼ fa
bc

( ×

×
χc(w;P )ρ(tb)φ(w, w̄)×

×

(z − w)
+

− ln
( z − w

P − w

)

×

×
Jc(z) ρ(tb)φ(w, w̄)×

×

)

.

(3.5)

The action of the non-local charge Qa
1(P ) corresponding to the current Y (z;P ) on the

primary field φ(w, w̄) is

Qa
1(P )

(

φ(w, w̄)
)

=

∮

Cw

dz Y a(z;P ) φ(w, w̄) = 2 fa
bc

×

×
χc(w;P ) ρ(tb)φ(w, w̄)×

×
, (3.6)

where the cut for the logarithm extends from w passing through the point P , and for the

contour Cw see Figure 1. The computation of the integral is then as in [51]. The action

P
Cw

w

Figure 1: The contour Cw starts just above P , circles around w and stops just below P .

of the non-local charge on two fields is

Qa
1(P )

(

φ1(w1, w̄1)φ2(w2, w̄2)
)

=

∮

Cw1,w2

dz Y a(z;P )φ1(w1, w̄1)φ2(w2, w̄2)

= Qa
1(P )

(

φ1(w1, w̄1)
)

φ2(w2, w̄2)+

+ (−1)a|φ1|φ1(w1, w̄1) Q
a
1(P )

(

φ2(w2, w̄2)
)

+

− 2πi fa
bc Q

c
0

(

φ1(w1, w̄1)
)

Qb
0

(

φ2(w2, w̄2)
)

.

(3.7)

For the contour Cw1,w2
see Figure 2. Again the computation is exactly as in [51]. The

9



P

w1 w2

Cw1,w2

Figure 2: The contour Cw1,w2
starts at P above both cuts (cut from w1 to P , and cut from

w2 to P ), encircles both w1, w2 and stops below both cuts at P .

action on two fields can be written in terms of the co-product of the Yangian (2.13)

∆(Qa
1(P )) = Qa

1(P )⊗ 1 + 1⊗Qa
1(P )− 2πi fa

bc Q
c
0 ⊗Qb

0 . (3.8)

3.2 Algebra

The algebra axiom is a straightforward computation. We compute

Qa
0 Y

b(v;P ) =
1

2πi

∮

dz Ja(z) f b
cd

∫ v

P

dv Jd(w) Jc(v)

= f b
cd

(

fad
e χ

e(v;P ) Jc(v) + (−1)adfac
e χ

d(v;P ) Je(v)
)

= fab
c Y

c(v;P ) .

(3.9)

The last equality follows from the Jacobi identity. Hence, the charges transform in the

adjoint

[Qa
0, Q

b
1(P )] = fab

cQ
c
1(P ) . (3.10)

3.3 Serre relations

Recall that the co-multiplication is only well defined if the Serre relations (2.20) are

satisfied. If these relations fail to hold, the action of the level one Yangian charges on

products of fields are preposterous.

We show that the left-hand side of the Serre relations vanish acting on one field. This

means that not the full space of fields of our conformal field theory forms a representation

of the Yangian, but only the subspace Y (2.28) spanned by those fields transforming in a

representation that can be lifted trivially to a representation of the Yangian.

The left-hand side of the Serre relations (2.20) for the level one charges Q1(P ) vanishes

10



acting on a primary field φ(w, w̄), if

[Qa
1(P ), Q

b
1(P )]φ(w, w̄) = fab

cX
c(w, w̄;P ) (3.11)

holds for some Xc(w, w̄;P ). We show that the charges act indeed in this form.

We start with Q1(P ) acting on χ(w;P ). We compute

fa
bcJ

c(w)J b(z)Jd(v) ∼ fa
bc

(kκbdJc(w)

(z − v)2
+

(−1)bckκcdJ b(z)

(w − v)2
+

+
f bd

e
×

×
Jc(w)Je(v)×

×

(z − v)
+

(−1)bcf cd
e
×

×
J b(z)Je(v)×

×

(w − v)

)

.

(3.12)

Using the integrals in appendix A, we get

Qa
1(P )(χ

d(w;P )) = fa
bcf

bd
eχ

c(w;P )χe(w;P )− 2fa
cbkκ

cdχb(w;P ) . (3.13)

This together with (3.6) implies

Qa
1(P )(Q

b
1(P )(φ(w, w̄))) = 2f b

cdQ
a
1

(

χd(w;P )ρ(tc)φ(w, w̄)
)

= 2f b
cdQ

a
1

(

χd(w;P )
)

ρ(tc)φ(w, w̄)) +

+ (−1)ad2f b
cdχ

d(w;P )Qa
1

(

ρ(tc)φ(w, w̄)
)

.

(3.14)

We combine this to

Qa
1(P )(Q

b
1(P )(φ(w, w̄)))− (−1)abQb

1(P )(Q
a
1(P )(φ(w, w̄))) = Aab +Bab (3.15)

with

Aab = 4f b
cdf

a
ef(−1)efkκfd(χeρ(tc)φ)(w, w̄;P )+

− 4(−1)abfa
cdf

b
ef(−1)efkκfd(χeρ(tc)φ)(w, w̄;P ) and

Bab =
(

f b
cdf

a
eff

ed
g + (−1)aff b

dff
a
egf

ed
c+

− (−1)abfa
cdf

b
eff

ed
g − (−1)ab+bffa

dff
b
egf

ed
c

)

2(χfχgρ(tc)φ)(w, w̄;P ) .

(3.16)
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The Jacobi identity implies

Aab = −4fab
df

d
ce(χ

eρ(tc)φ)(w, w̄;P )

Bab = 2fab
ef

dc
gf

e
df (χ

fχgρ(tc)φ)(w, w̄;P ) .

(3.17)

We have thus shown (3.11), and hence the left-hand side of the Serre relations vanishes

acting on one primary field φ(w, w̄). This means that our charges Qa
0 and Qb

1(P ) form

a representation of the Yangian if and only if the representation ρ of the primary field

can be lifted trivially to a representation of the Yangian (recall subsection 2.3). Thus, we

restrict to fields φ(z, z̄) in Y .

3.4 Co-unit

Before we turn to Ward identities, we have to show that

Qa
0| 0 〉 = Qa

1(P )| 0 〉 = 0 . (3.18)

This means that the vacuum is a co-unit and implies Ward identities for these charges.

Recall that the vacuum satisfies

Ja
n| 0 〉 = 0 for n ≥ 0 . (3.19)

Hence

Qa
0| 0 〉 = 0 , (3.20)

and further

Qa
1(P )| 0 〉 =

1

2πi

∮

dz

∫ z

P

dw fa
bc J

c(w) J b(z)| 0 〉

=
1

2πi

∮

dz

∫ z

P

dw fa
bc

∑

m,n

Jc
n w

−n−1 J b
m z

−m−1| 0 〉

= 0 .

(3.21)

The last line follows from the vanishing of the Killing form plus supersymmetry of the

invariant bilinear form. In complete analogy one can show that

〈 0 |Qa
0 = 〈 0 |Qa

1(P ) = 0 . (3.22)
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3.5 Ward identities

In this section, we show that the non-local charges are indeed symmetries, that is they

annihilate correlation functions. But, we stress again that the action of the non-local

charges on products of fields is only well defined if these fields transform in representation

that allow to be lifted trivially to a Yangian representation. Hence, the Ward identities

only hold for correlation functions containing these fields. Let φi(zi, z̄i) be such fields.

From last section, we get the Ward identities

〈0|Qa
iφ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 = 0 . (3.23)

For the level zero charges this takes the form

0 =
n

∑

i=1

ρi(t
a) 〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 . (3.24)

Here and in the following we use the notation

ρi(t
a) 〈0|φ1(z1, z̄1) . . . φi(zi, z̄i) . . . φn(zn, z̄n)|0〉 =

= 〈0|φ1(z1, z̄1) . . . ρi(t
a)φi(zi, z̄i) . . . φn(zn, z̄n)|0〉 .

(3.25)

Using co-multiplication (3.8) and also (3.6) the level-one charges annihilating the vacuum

imply

0 = 〈0|Qa
1(P )φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉

= 2fa
bc

∑

i<j

ρi(t
c) ρj(t

b) ln
(zi − zj
zj − zi

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉+

− 2fa
bc

∑

i<j

ρi(t
c) ρj(t

b) ln
(P − zj
P − zi

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉+

+ 2πi fa
bc

∑

i<j

ρi(t
c) ρj(t

b) 〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 .

(3.26)
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We choose the phase5

ln
(zi − zj)

(zj − zi)
= ln(−1) = πi . (3.27)

Using ordinary global symmetry (3.24) of the correlation functions, antisupersymmetry

of the structure constants and the vanishing of the Killing form, we get

fa
bc

∑

i<j

ρi(t
c) ρj(t

b) ln
(P − zj
P − zi

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 = 0 . (3.28)

Thus, we arrive at the remarkable consequent of the Ward identity

fa
bc

∑

i<j

ρi(t
c) ρj(t

b) 〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 = 0 . (3.29)

Note that this identity does not depend on P . For two-point functions this identity follows

from the vanishing of the Killing form plus global symmetry, while for more than two field

insertions this is a non-trivial new identity, e.g. three-point functions obey

fa
bc ρ1(t

c) ρ2(t
b) 〈0|φ1(z1, z̄1) φ2(z2, z̄2) φ3(z3, z̄3)|0〉 = 0 , (3.30)

where we simplified the identity using global symmetry and the vanishing of the Killing

form.

3.6 Yangian symmetry

We now have obtained our first goal, namely constructing non-local charges end estab-

lishing Yangian symmetry for a subsector of the conformal field theory. In this section, we

find Yangian charges that are independent of P , all we need is the Ward identity (3.29).

These new charges have the advantage that we can use them to study perturbations of

our conformal field theory.

We keep the action of the level zero charges as before, the level one generators we define

to act trivially on a single field

Qa
1

(

φ(z, z̄)
)

= 0 , (3.31)

and the action on products of fields is defined by the Yangian co-multiplication plus its

5This means we insert the fields φi at points zi such that the phase is (3.27). As this is certainly
possible for an open domain of n-copies of the world-sheet there is no restriction. Also note, that other
phase choices would give either trivial identities or Ward identities which can be obtained from the Ward
identities we get plus crossing symmetry.
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co-associativity. This is only consistent with the Serre relations, if the right-hand side of

the Serre relations acts trivially on a single field. We thus continue to restrict to fields

φ(z, z̄) in Y . The crucial observation now is, that this representation of the Yangian is

also a symmetry of correlation functions

∆n
(

Qa
1

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 =

= fa
bc

∑

i<j

ρi(t
c) ρj(t

b) 〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉 = 0 .
(3.32)

The last equality is (3.29).

3.7 Perturbations

So far, we have found Yangian symmetry for a subsector of conformal field theories that

already have affine Lie superalgebra symmetry. Now, we turn to theories without Kac-

Moody symmetry.

Conformal field theories with those Lie superalgebras as current symmetry which have

zero Killing form possess interesting deformations. We now introduce perturbations that

preserve the symmetry we just found, i.e. they preserve global Lie superalgebra symmetry

but also the Ward identities (3.29) will still hold and hence the subsector Y of fields will

still have Yangian as symmetry.

Let O(z, z̄) be a truly marginal operator that transforms in the trivial representation of

the Lie superalgebra, i.e.

Qa
0O(z, z̄) = ρO(t

a)O(z, z̄) = 0 . (3.33)

Truly marginal means that the dimension of O(z, z̄) is (1,1) and that a perturbation

Sλ = S +
λ

2π

∫

d2zO(z, z̄) (3.34)

of our original conformal field theory with action S by this field is still conformally invari-

ant. Transforming in the trivial representation ensures that we keep global Lie supergroup

symmetry, and hence fields still form a representation of the finite-dimensional Lie super-

algebra.
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Let φi(zi, z̄i) in Y as before. A correlation function can be computed perturbatively as

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉λ =

=
∑

m

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)
1

m!

( λ

2π

∫

d2zO(z, z̄)
)m

|0〉 .
(3.35)

The right-hand side is to be computed in the unperturbed theory. The trivial repre-

sentation can obviously be lifted to the trivial representation of the Yangian. Since the

perturbing field transforms by assumption in this representation, our Ward identities

(3.29) still hold in the perturbed theory

0 =
∑

m

∆n+m
(

Qa
i

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)
1

m!

( λ

2π

∫

d2zO(z, z̄)
)m

|0〉

=
∑

m

〈0|
(

∆n
(

Qa
i )φ1(z1, z̄1) . . . φn(zn, z̄n)

) 1

m!

( λ

2π

∫

d2zO(z, z̄)
)m

|0〉

= ∆n
(

Qa
i

)

〈0|φ1(z1, z̄1) . . . φn(zn, z̄n)|0〉λ

(3.36)

for i = 0, 1 and all a. But this says that the perturbed theory still satisfies the nice Ward

identity

∆n
(

Qa
1

)

〈0|V1(z1)V2(z2) . . . Vn(zn)|0〉λ =

2πifa
bc

∑

i<j

ρi(t
c) ρj(t

b) 〈0|V1(z1)V2(z2) . . . Vn(zn)|0〉λ = 0 .
(3.37)

and hence those fields that were forming a Yangian representation before perturbation

still do so. Further because of the Ward identity it is still a Yangian symmetry.

4 Examples

We now list some examples. The first one is the CFT of twistor string theory, which in-

spired our analysis. The other ones are sigma models on Lie supergroups, orthosymplectic

Gross-Neveu models and sigma models on super projective space. In the latter two cases,

the world-sheet needs to be the disc.

4.1 Supergroup sigma models

Let the Lie supergroup be one of PSL(N|N), OSP(2N+2|2N) and D(2,1:α). Then the

Killing form of the underlying Lie superalgebra vanishes identically. Now, let g(z, z̄) be a
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supergroup valued field. The supergroup sigma model action is

Sk,f [g] =
1

2πf 2

∫

d2z str
(

g−1∂gg−1∂̄g
)

−
k

12π

∫

d2z d−1str
(

(g−1dg)3
)

(4.1)

For ordinary Lie groups and supergroups this model is only quantum conformal for the

Wess-Zumino-Witten model, i.e. for k = f−2. In our case they are conformal at any

coupling and at the WZW point we have additional Lie superalgebra current symmetry.

We thus view the sigma model as a perturbation from the WZW model

Sk,f [g] = SWZW [g] −
λ

2π

∫

d2z str
(

g−1∂gg−1∂̄g
)

, (4.2)

where λ = f−2 − k. The principal chiral field OPC = str
(

g−1∂gg−1∂̄g
)

satisfies

Qa
0 OPC(z, z̄) = 0 . (4.3)

Hence at any sigma model on these supergroups possesses the additional symmetry. Es-

pecially let us mention again that the Ward identities (3.37) hold at any point λ.

Remark, that we could have chosen a perturbation by the Wess-Zumino term equally well

as the total action is invariant under the global symmetry.

4.2 OSP(2N+2|2N) Gross-Neveu models

Orthosymplectic Gross-Neveu models are supersymmetric generalizations of Gross-Neveu

models for orthogonal groups. In the case of ordinary Gross-Neveu models the O(2)-model

is special, as it is quantum conformal at any coupling. The reason for this is that O(2)

is abelian. In the supergroup case despite being non-abelian the OSP(2N+2|2N) Gross-

Neveu models are still quantum conformal. These theories are conjectured to be dual

to sigma models on the superpheres S2N+1|2N [21, 23]. The OSP(2N+2|2N) Gross-Neveu

model is a current-current perturbation of a free theory given by 2N+2 real dimension

1/2 fermions plus N bosonic βγ−systems also of dimension 1/2,

Sλ = S +
λ

2π

∫

d2z JaκbaJ̄
b

S =
1

2π

∫

d2z
(

2N+2
∑

i=1

ψi∂̄ψi + ψ̄i∂ψ̄i

)

+

+
1

2

(

N
∑

a=1

βa∂̄γa − γa∂̄βa + β̄a∂γ̄a − γ̄a∂β̄a

)

.

(4.4)
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At λ = 0 the model has a holomorphic and a anti-holomorphic osp(2N+2|2N) current

symmetry. The holomorphic o(2N+2) currents are generated by the dimension one cur-

rents ψiψj , the sp(2N) currents are generated by the βaβb, γaβb and γaγb and the fermionic

currents are of the form ψiβa and ψiγa. This realisation is the affine analogue of an oszil-

lator realisation for the horizontal subsuperalgebra for which the vanishing of the right-

hand side of the Serre relations is understood [58]. The current-current perturbation field

OGN = JaκbaJ̄
b transforms in the adjoint representation under both holomorphic and

anti-holomorphic currents. It is thus not an operator that preserves Yangian symmetry.

The situation changes if we take the world-sheet to have a boundary, i.e. the disc or

equivalently the upper half plane. In this case, we have to demand gluing conditions for

the fields at the boundary. We require that

ψi(z) = ψ̄i(z̄) , βa(z) = β̄a(z̄) and γa(z) = γ̄a(z̄) for z = z̄ . (4.5)

This implies that the currents satisfy trivial boundary conditions Ja(z) = J̄a(z̄) for z = z̄.

Now, we view the anti-holomorphic coordinates as holomorphic coordinates on the lower

half plane. We can then analytically continue the currents Ja(z) on the entire plane

Ja(z) =
{ Ja(z) z in upper half plane

J̄a(z) z in lower half plane
(4.6)

Now, the holomorphic currents as well as the anti-holomorphic currents transform in the

adjoint representation of the charges Qa
0 corresponding to the currents that are defined

on the full plane. It follows that the current-current perturbation transforms trivially,

Qa
0J

b(z)κcbJ̄
c(z̄) =

(

fab
dκcb + (−1)adfab

cκbd
)

Jd(z)J̄c(z̄) = 0 . (4.7)

Hence, the boundary Gross-Neveu model also has a subsector with Yangian symmetry.

Again especially the Ward identity (3.37) holds.

4.3 Ghost-systems and CPN−1|N sigma models

Our next example is given by N fermionic ghost systems, each of central charge c = −2,

and N bosonic ghost systems each of central charge c = 2. Such a system has a gl(N|N)

current symmetry. Denote the bosonic ghosts by βi, γ
i, i = 1, ..., N and the fermionic
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ones by βi, γ
i, i = N + 1, ..., 2N . Then the action is

Sλ = S −
λ

2π

∫

d2zOβγ

S =
1

2π

∫

d2z βi(∂̄ + Ā)γi + β̄i(∂ + A)γ̄i

Oβγ = OβOγ , Oβ =
∑

i

βiβ̄i , Oγ =
∑

i

γiγ̄i .

(4.8)

The gauge field A, Ā ensures that βiγ
i (often called U(1)R current) acts as zero and thus

there is only sl(N|N) symmetry. Further the total central charge is c = −2. The super-

algebra sl(N|N) has a central element E, restricting to those representations that possess

E-eigenvalue zero effectively reduces the symmetry to psl(N|N). The perturbation is a

current-current perturbation corresponding to the quadratic Casimir. Yangian symmetry

is preserved in the boundary case by the same arguments as in the Gross-Neveu model.

Interestingly all vertex operators that only depend on the γi and γ̄i obey the criterion

of [53] as argued in the case N = 4 [51], i.e. they allow for a trivial lift to a Yangian

representation.

We are looking for a geometric interpretation of this theory. Recently path integral

arguments led to correspondences [11, 61, 62] and dualities [59, 60] involving sigma models

on non-compact (super) target spaces. In our case such arguments turn out to be very

simple.

We restrict to correlation functions of fields Vi(zi) = Vi(γ(zi), γ̄(zi)) only depending on

the γi, γ̄i as for example gluon vertex operators in the twistor string. Then performing

the path integral first for the βi, β̄i gives

〈V1(z1)...Vn(zn)〉λ =

∫

d2γd2βd2AV1(z1)...Vn(zn) e
−Sλ[β,β̄,γ,γ̄,A,Ā]

=

∫

d2γdβ̄d2AV1(z1)...Vn(zn) δ(λβ̄iOγ + (∂̄ + Ā)γi) e
−Sλ[0,β̄,γ,γ̄,A,Ā]

=

∫

d2γd2AV1(z1)...Vn(zn) e
−S1

λ
[γ,γ̄,A,Ā] (4.9)

where S1
λ[γ, γ̄, A, Ā] =

1

2πλ

∫

d2z
1

Oγ

∑

i

(∂̄ + Ā)γi(∂ + A)γ̄i .
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Further integrating the gauge fields and redefining

(zi, z̄i) =
1

Oγ

(γi, γ̄i) (4.10)

yields the action of the CPN−1|N sigma model with couplings θ = 2
λ
and g2 = πλ

2
[22].

In summary, the complete (not only a subsector) boundary CPN−1|N sigma model at

couplings θ = 2
λ
and g2 = πλ

2
has Yangian symmetry.

5 Outlook

We have found Yangian symmetry in a subsector of many conformal field theories with

global superalgebra symmetry. The underlying Lie superalgebra has the crucial property

that its Killing form vanishes identically. Our derivation was divided into several steps.

The starting point was a conformal field theory that possesses Kac-Moody current symme-

try. Non-local charges depending on a point P were constructed in terms of these currents

and their properties were computed. The crucial result was that correlation functions of

primaries in the subsector Y , that allows for trivial lifts to Yangian representation, obey

the Ward identity (3.37). This identity is independent of P . This observation led us

to define new charges that are again a symmetry for the subsector Y due to the Ward

identity (3.37). Then perturbations that preserve this Yangian but not the Kac-Moody

symmetry were considered. Finally, we gave some examples. We also derived a first order

formulation for CPN−1|N sigma models.

There are several open questions.

The apparent problem is to understand which representation of the Lie superalgebra can

be lifted trivially to a representation of the Yangian, i.e. to identify the subsector of the

conformal field theory having Yangian symmetry. Once knowing these representation one

should search for solutions to the Ward identities and classify them. We hope that they

constrain correlation functions severely.

The list of examples can certainly be extended, e.g. one could search for massive de-

formations, one can apply it to world-sheet supersymmetric supergroup WZW models

[63]. Also our method applies to the current-current deformations recently studied in

[28] in this case for the disc as world-sheet. Here it would be interesting to understand

how the Yangian symmetry is preserved by current-current perturbations according to

the quadratic Casimir for the sphere as world-sheet.
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A Useful integrals

Let f(z) be an analytic function inside and on the contour Cx. For us f is either J or χ.

Note, that the contour is not going around the point P . Then [51, 46] have the following

integrals

1

2πi

∮

Cx

dz f(z) ln
( z − x

P − x

)

=

∫ P

x

dz f(z)

1

2πi

∮

Cx

dz f(z)

∫ v

P

dv
g(v)

(z − v)
=

∫ x

P

dz f(z) g(z)

1

2πi

∮

Cx

dz f(z)

∫ x

P

dv
1

(z − v)2
= f(x)

1

2πi

∮

Cx

dz f(z)

∫ z

P

dw

∫ x

P ′

dv
1

(w − v)2
=

∫ P ′

x

dv f(v)

∮

Cx

dz

∫ z

P

dw

∫ x

P ′

dv
g(z)f(w)

(w − v)
= 0 .

(A.1)
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