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De Sitter brane-world, localization of gravity, and the cosmological constant
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Cosmological models with a de Sitter 3-brane embedded in a five-dimensional de Sitter spacetime
(dS5) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world
models in AdS5 spacetime. Yet there arise a few important differences as compared to the results
with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF)
M2

Pl =M3
(5)ℓAdS as well as the relationship M2

Pl =Mn+2
Pl(4+n)L

n (with L being the average size or the

radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compacti-
fications get modified in cosmological backgrounds. In an expanding universe, a physically relevant
MRF encodes information upon the four-dimensional Hubble expansion parameter, in addition to
the length and mass parameters L, MPl and MPl(4+n). If a bulk cosmological constant is present in
the solution, then the reduction formula is further modified. With these new insights, we show that
the localization of a massless 4D graviton as well as the mass hierarchy between MPl and MPl(4+n)

can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter
bulk is that in this case the zero-mass wavefunction is normalizable, which is not necessarily the
case if the bulk spacetime is anti de Sitter. In spacetime dimensions D ≥ 7, however, the bulk
cosmological constant Λ

b
can take either sign (Λ

b
< 0, = 0, or > 0). The D = 6 case is rather

inconclusive, in which case Λb may be introduced together with 2-form gauge field (or flux).

PACS numbers: 11.25.Mj, 98.80.Cq, 11.25.Yb, 04.65.+e arXiv: arXiv:1011.nnnn

I. INTRODUCTION

The universe endows with a number of cosmological
mysteries, but the one that most vex physicists is the
smallness of the observed vacuum energy density in the
present universe and its effects on an accelerated expan-
sion of the universe at a late epoch [1]. This cosmological
enigma has so far defied an elegant and forthright expla-
nation.

Brane-worlds are promising theories with extra spa-
tial dimensions in which ordinary matter is localized
on a (3+1) dimensional subspace [2]. To this end, the
Randall-Sundrum (RS) models in five dimensions [3, 4]
could be viewed as the simplest brane-world configura-
tions with one extra dimension of space. The RS models
and their generalizations in higher spacetime dimensions
are known to have interesting consequences for gravita-
tional physics [5–8] and cosmology, see, e.g. [9–12]; we
refer to [13] for review and further references.

In the simplest Randall-Sundrum brane-world models,
one has a flat 3-brane (or a 4D Minkowski spacetime)
embedded in a five-dimensional anti-de Sitter spacetime,
known as an AdS5 bulk. In this simple setting there
exist a massless graviton (or zero-mode) and massive
gravitons (or Kaluza-Klein modes) of metric tensor fluc-
tuations. The massless graviton mode reproduces the
standard Newtonian gravity on the 3-brane, while the
Kaluza-Klein modes, which arise as the effect of gravi-
ton fluctuations in extra dimension(s), give corrections
to the Newton’s force law [6]. The 5D bulk geometry is
extremely warped in these models, as is reflected from a
typical size of the 5D curvature radius, ℓAdS < 0.1 mm.
Consequently the Newtonian gravity is recovered at dis-
tances larger than O(0.1 mm).

The requirement of an AdS5 bulk spacetime in the orig-
inal RS brane-world models may not be something that
is totally unexpected since certain versions of 10D string
theory, particularly, type IIB string theory, is known to
contain AdS5 space as a sub-background space of the full
spacetime, which is AdS5×S5, and string theory itself is
viewed as the most promising candidate for the unified
theory of everything. However, the original RS models
also predict a zero cosmological constant on the brane or
the 4D spacetime. This result is not supported by re-
cent cosmological observations, which favour a positive
cosmological constant-like term in four dimensions.

To construct a natural theory of brane-world, we shall
replace the flat 3-brane of the original RS setup by a
dynamical brane or a physical 3 + 1 dimensional hy-
persurface with a nonzero Hubble expansion parame-
ter, for instance, by a Friedmann-Lamâıtre-Robertson-
Walker metric. With such a simple modification of the
original RS brane-world model, the zero mode graviton
fluctuation is not guaranteed to be localised on the brane,
if the 5D bulk spacetime is anti-de Sitter. However, if the
5D bulk spacetime is de Sitter or positively curved, then
there always exists a normalizable zero mode graviton
localised on a de Sitter brane. In such theories the small-
ness of the 4D cosmological constant term can be related
to an infinitely large extension of the fifth dimension.

There is another motivation for considering a positively
curved 5D background spacetime. When we consider
compactifications of string/M theory or classical super-
gravity theories with more than one extra dimensions,
then in a cosmological setting, and under the dimen-
sional reduction from D dimensions to five, we generally
find that the 5D spacetime is de Sitter, if we also insist
on the existence of a four-dimensional de Sitter solution.
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Even though AdS5 is well motivated from some aspects
of type IIB supergravity, for its role in the AdS/CFT cor-
respondence, it is difficult to realise an AdS5 background,
while at the same time we also obtain a dS4 solution (or
an inflating FRW universe in four dimensions) by solving
the full D-dimensional Einstein equations.
In this paper we show how brane-world models with

a positively curved bulk spacetime (dS5) can generate
a four-dimensional cosmological constant in the gravity
sector of the effective 4D theory with a finite 4D New-
tons constant and also help explain the localization of a
normalizable zero mode graviton in four dimensions. We
also present some new insights on localization of gravity
on a de Sitter brane embedded in a higher dimensional
bulk spacetime with a nonzero bulk cosmological term,
Λb. In dimensions D ≥ 7, we find that Λb term can
take either sign (< 0,= 0 or > 0), though a negative
Λb may be preferred over a positive Λb for regularity of
the metric. Our approach is motivated also from the fact
that models with an expanding universe embedded in
a higher-dimensional bulk spacetime naturally take into
account the effects of self-gravity on the 3-brane.
The standard mass reduction formula (MRF) M2

Pl =

Mn+2
Pl(4+n)L

n relates the four-dimensional effective Planck

mass MPl with the (4 + n)-dimensional Planck mass
MPl(4+n) (with L being the average size of the n extra di-
mensions). Here we show that this result, also known as
Gauss formula, gets naturally modified in the presence of
a bulk cosmological term and also due a nonzero Hubble
expansion parameter in four dimensions.

II. DE SITTER BRANE-WORLDS

Five-dimensional de Sitter brane-worlds characterized
by a single extra dimension where the bulk space-time
is positively curved (instead of being flat or negative
curved) are among some highly plausible approaches to
explaining the smallness of the observed cosmological
vacuum energy density and localization gravity.
The basic idea behind the existence of a four-

dimensional de Sitter space solution (dS4) supported by
warping of extra spaces can be illustrated by considering
a curved five-dimensional ‘warped metric’,

ds25 = e2A(φ)
(

ds24 + ρ2dφ2
)

, (1)

where ρ is a free parameter with dimension of length
and e2A(φ) is the warp factor as a function of φ. Mod-
els with warped extra dimension(s) provide a new geo-
metrical approach of dimensional reduction based on a
strongly curved (rather than flat) extra dimension.
We look for solutions for which the four-dimensional

line element takes the standard Friedmann-Lamâıtre-
Robertson-Walker (FLRW) form

ds24 ≡ gµνdx
µdxν

= −dt2 + a2(t)

[

dr2

1− κr2
+ r2dΩ2

2

]

, (2)

where κ is the 3D curvature constant with the dimen-
sion of inverse length squared, and the 5D background
Riemann tensor satisfies

(5)RABCD =
Λ5

6

(

(5)gAC
(5)gBD − (5)gAD

(5)gBC

)

. (3)

The 5D Einstein-Hilbert action takes the form

Sgrav =M3
(5)

∫

d5x
√
−g (R− 2Λ5) , (4)

where M(5) is the 5D Planck mass and Λ5 ≡ 6/ℓ2 and ℓ
is the radius of curvature of the 5D bulk spacetime.
The gravitational action (4) may be supplemented with

the following 3-brane action

Sbrane =

∫

∂M

√−gb (−τ), (5)

where τ denotes the brane tension. The 5D Einstein field
equations are given by

GAB = −τ
2

√−gb√−g g
b
µνδ

µ
Aδ

ν
Bδ(φ− φ0)− Λ5gAB. (6)

The three independent equations of motion are

6A′2

ρ2
= 6

(

ȧ2

a2
+

κ

a2

)

− Λ5 e
2A, (7)

6A′′

ρ2
= −Λ5 e

2A − τ

ρM3
(5)

δ(φ− φ0)e
A, (8)

ä

a
=

ȧ2

a2
+

κ

a2
. (9)

Here we are interested in studying a theory without the
orbifold boundary condition, that is a theory with infi-
nite extent in both the positive and negative φ direction.
We allow both even and odd functions of φ rather than
the restriction to purely even functions demanded by the
orbifold conditions in RS brane-world models.

A. A spatially flat universe

First, we take κ = 0 (spatially flat universe): The 5D
Einstein equations are solved with the scale factor

a(t) = a0 e
Ht (10)

and the warp factor

A(φ) = ln(2ℓ0H)− ln

(

exp(ρHφ) +
ℓ20
ℓ2

exp(−ρHφ)
)

,

(11)
where ℓ0 and H are two integration constants. The stan-
dard results in AdS5 space, see, for example [14–16], are
obtained by replacing ℓ2 by −ℓ2AdS or 6/Λ5.
From the explicit solution given above, we derive

S
(D=4)
eff =M2

Pl

∫

d4x
√−g4R4 −

∫

d4x
√−g4K, (12)
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where

M2
Pl = 8ρM3

(5)ℓ
3
0H

3

∫ ∞

−∞

(

e ρHφ +
ℓ20
ℓ2

e−ρHφ

)−3

dφ

= 8M3
5 ℓ

3
0H

2 tan
−1(ℓ0/ℓ) + cot−1(ℓ0/ℓ)

8ℓ30/ℓ
3

=
π

2
M3

(5)ℓ
3H2, (13)

K ≡
M3

(5)

ρ

∫ +∞

∞

e3A
(

12A′2 + 8A′′ +
12ρ2

ℓ2
e2A
)

dφ

= 8M3
(5)ℓ

3
0H

4

∫ ∞

−∞

4
(

3 e2ϕ + 3λ2 e−2ϕ − 2λ
)

(eϕ + λ e−ϕ)
5 dϕ

≡ 8M3
(5)ℓ

3
0H

4

∫ ∞

−∞

Λ(ϕ), (14)

where we defined ϕ ≡ ρHφ and λ ≡ ℓ20/ℓ
2. This yields

K = 8M3
(5)ℓ

3
0H

4 3π

8λ3/2
= 6H2M2

Pl. (15)

A similar result was obtained in [17], taking λ = 1 and
ρ = 1. We find interest only on smooth brane-world
solutions, so we take λ ≡ ℓ20/ℓ

2 > 0.

-3 -2 -1 1 2
j

0.5

1

1.5

2

ßHjL

FIG. 1: The plot of the function Λ(ϕ) with λ = 0.4, 0.6 and
0.8 (from top to bottom) (online: black, blue and pink). Like
the warp factor eA, Λ(ϕ) is regular, has a peak at φ ≡ φ0 and
falls off rapidly away from the brane.

The four-dimensional effective action is given by

S
(D=4)
eff =M2

Pl

∫

d4x
√−g4 (R4 − Λ4) , (16)

where the 4D effective cosmological constant

Λ4 = 6H2. (17)

These results are different from that in the simplest RS
brane worlds at least in two aspects. Firstly, the cosmo-
logical mass reduction formula (cMRF)

M3
(5) =

2M2
Pl

πℓ3H2
(18)

is clearly different from that obtained in a static AdS5
brane-world configuration [4], for which

M3
(5) =

M2
Pl

ℓAdS
. (19)

Secondly, and perhaps more importantly, no parameter
of the action would have to be tuned to keep Λ4 posi-
tive. The cosmological constant problem of the original
RS brane world proposal, which is the question of why
the background warps in the appropriate fashion with-
out introducing an effective 4D cosmological constant,
does not arise here. In fact, in a dynamical spacetime,
the vacuum energy on the brane can naturally warp the
bulk spacetime and introduce a nontrivial curvature in
the bulk while maintaining a 4D de Sitter solution.

B. Inclusion of brane action

In the presence of a brane action, we have to consider
the metric a step function in φ, while computing deriva-
tives of A(φ) (with respect to φ). The solution valid for
−∞ ≤ φ ≤ +∞ then implies that

A′′ +
4λρ2H2

Φ2
+

+
ρHΦ−

Φ+
(2δ(φ− φ0)) = 0, (20)

where ′ ≡ d
dφ and Φ± ≡ eρHφ±λ e−ρHφ. One could think

of a de Sitter brane as the location φ = φ0 (z = zc) where
the zero-mode graviton wave-function is peaked.
The µν-components of the 5D Einstein equations yield

A′′ +
4λρ2H2

Φ2
+

+
2ρHℓ0
3M3

5 Φ+
(τδ(φ − φ0)) = 0. (21)

By comparing eqs. (20) and (21), we get

τ =
3M3

5

ℓ0

(

eρHφ0 − λ e−ρHφ0

)

. (22)

Particularly, in the limit λ → 0, the 5D spacetime be-
comes spatially flat and gravity is not localised in this
case. Indeed, λ > 0 is required to keep the warp factor
bounded from the below and above.
For λ > 0, by writing

φ ≡ 1

ρ

(

z + ln
ℓ0
ℓ

)

.

the solution for warp factor, Eq. (11), and the brane ten-
sion can be written in standard forms, i.e.

eA(z) =
ℓH

coshHz
, τ =

6M3
(5)

ℓ
sinhHzc, (23)

where zc > 0. The scale of warped compactification is

rc ≡ ρ eA =
2ℓ0ρH

(eρHφ + λe−ρHφ)
=

ρHℓ

coshHz
. (24)

The ρ → ∞ limit gives rise to a theory with a semi-
infinite extra dimension.
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C. Non-flat universe

In a spatially non-flat universe (κ 6= 0), the 5D Einstein
equations are explicitly solved when

a(t) =
c2
0
+ κρ2

2c0
cosh

(

t

ρ

)

+
c2
0
− κρ2

2c0
sinh

(

t

ρ

)

(25)

and

A(φ) = ln

(

2ℓ0
ρ

)

− ln

(

exp(φ) +
ℓ20
ℓ2

exp(−φ)
)

, (26)

The Hubble-like parameter H (appeared in the κ = 0
case above) is no more arbitrary but it is fixed in terms of
the length parameter ρ, i.e. H → 1/ρ. The 4D effective
action still takes the form of (12), but now

M2
Pl =

π

2

M3
(5)ℓ

3

ρ2
, K =

3πM3
(5)ℓ

3

ρ4
. (27)

Note that, unlike in the simplest RS brane-world models,
we do not require the Z2 symmetry in order to get a finite
4D Planck mass, as long as λ > 0 or ℓ20/ℓ

2 > 0.
In the κ 6= 0 case, equation (22) is modified as

τ =
3M3

5

ℓ0

(

eφ0 − λ e−φ0

)

. (28)

The scale of warped compactification is now

rc ≡ ρ eA =
2ℓ0

(eφ + λe−φ)
≡ 2ℓ

cosh y
, (29)

where y ≡ φ− ln(ℓ0/ℓ). This is exponentially suppressed
as y → ±∞. Clearly, there is no problem with taking the
ρ→ ∞ limit of the background solution given above.

III. LINEARIZED GRAVITY

Brane-world models with one or more non-compact ex-
tra spaces are known to require the trapping of gravita-
tional degrees of freedom on the brane [4, 8]. To de-
termine whether the spectrum of linearized tensor fluc-
tuations δ(5)gAB is consistent with four-dimensional ex-
perimental gravity, we shall consider the perturbations
around the background solution given above.

The κ 6= 0 solutions discussed in the subsection are
slightly more restrictive than the κ = 0 solution. So,
henceforth, we focus our discussions to the κ = 0 case,
for which ρ is arbitrary. The perturbations of the 5D
metric δ(5)gAB ≡ hAB may be written as

δ (5)gAB =











−2e2Aψ e2Aa2(∂iB − Si) eAξ

e2Aa2(∂jB − Sj) e2Aa2
{

2Rδij + 2∂i∂jC + 2∂(iVj) + hij
}

e2Aa2(∂iβ − χi)

eAξ e2Aa2(∂jβ − χj) 2ρ2e2Aζ











, (30)

where ψ,R, C, ζ, β, ξ are metric scalars, while Si, Vi, χi are transverse 3D vector fields, and hij represent transverse
traceless tensor modes. Here we focus on the analysis of tensor modes (we refer to [18] for the analysis of gauge-
invariant scalar and vector perturbations of maximally symmetric spacetimes), see also [19].

The transverse-traceless tensor modes hij ≡ δgij =
δµi δ

ν
j hµν(x, φ) satisfy the following wave equation

e−2A

(

1

ρ2
∂

∂φ2
+

3A′

ρ2
∂φ − ∂2t − 3

ȧ

a
∂t +

~∇2

a2

)

hij

+
τ

2M3
(5)

e−A

ρ
δ(φ− φ0)hij = 0. (31)

The last term above has arisen from the first term on the
right hand side in Eq. (6). By separating the variables
as

hij(x
µ, φ) ≡

∑

αm(t)um(φ) eik·x êij , (32)

where eij(x
i) is a transverse, tracefree harmonics on the

spatially flat 3-space, ~∇2êij = −k2êij , we get

α̈m + 3
ȧ

a
α̇m +

(

k2

a2
+m2

)

αm = 0,

(33a)
(

1

ρ2
d2

dφ2
+

3A′

ρ2
d

dφ
+

3HΦ−

ρΦ+
δ(φ− φ0) +m2

)

um = 0,

(33b)

where m is a 4D mass parameter and k is the co-moving
wavenumber along the 4D hypersurface.
Let us first consider Eq. (33a). If we write αm =

ϕm/a(η) and use conformal time η = −
∫

(dt/a), then
the wave equation on the brane reads as

d2ϕm

dη2
+

[

−1

a

d2a

dη2
+ a2m2 + k2

]

ϕm = 0. (34)
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With a ∝ etH(and hence η = −1/(aH)), we get

d2ϕm

dη2
+

[

− 2

η2
+

m2

η2H2
+ k2

]

ϕm = 0. (35)

The general solution is

ϕm(η;~k) =
√

ηk Z(λ, ηk), ν ≡
√

9

4
− m2

H2
, (36)

where Z(ν, ηk) is a linear combination of Bessel functions
of order ν. One recovers the RS solution in the limit
a(η) → const ≡ 1, in which case ϕm = exp(±iωt), with
ω2 = k2+m2. The perturbations are over-damped for all
light modes with 0 < m < 3H/2, while all heavy modes
with m > 3H/2 oscillate and decay more rapidly and the
modes with m2 < 0 do not exist. In a 4D de Sitter space,
the eigen modes satisfying m2 > 0 are not localised on
an inflating (de Sitter) brane, see below.
Defining um ≡ e−3A/2 ψm, it is possible to rewrite

Eq. (33b) in a Schrödinger-like form

d2ψm

dφ2
− V ψm +m2ρ2ψm = 0 (37)

with the scalar potential

V ≡ 9

4
A′2 +

3

2
A′′ − 3HρΦ−

Φ+
δ(φ − φ0)

=
9ρ2H2

4
− 15λρ2H2

Φ2
+

− 6HρΦ−

Φ+
δ(φ− φ0), (38)

where we used the solution (11) and Φ± = eρHφ ±
λe−ρHφ. Introducing a new coordinate variable

z ≡ ρφ− ln
√
λ,

we get

d2ψm

dz2
− V ψm = −m2ψm, (39)

where

V =
9H2

4
− 15H2

4 cosh2(Hz)
− 6H tanh(Hz)δ(z − zc). (40)

The brane is now located at z = zc. The zero-mode
solution (m2 = 0) is given by

ψ0(z) =
b0

(cosh(Hz))3/2
, (41)

which is clearly normalizable since

∫ ∞

−∞

|ψ0(z)|2dz =
πb2

0

2H
.

There is one more bound state solution, i.e.,

ψ1(z) = b1

√

cosh2(Hz)− 1

(cosh(Hz))3/2
, (42)

which is obtained by taking m2 = 2H2. This solution is
also normalizable. However, only the zero-mode solution
(m2 = 0) is localised on the de Sitter brane. This can
be seen by substituting (41) into Eq. (39) and comparing
the delta-function terms.

-4 -2 2 4
Hz

0.2

0.4

0.6

0.8

HÙ ÈΨ0È2

FIG. 2: The plot of the function H
∫
|ψ0|

2 with b
0
= 1.

-4 -2 2 4
Hz

0.2

0.4

0.6

0.8
HÙ ÈΨ1È2

FIG. 3: The plot of the function H
∫
|ψ1|

2 with b
1
= 1.

We also find that

∫ |ψ0|2
b2
0

dz =
tan−1 tanh |Hz|

2

H
+

sech(Hz) tanh |Hz|
2

2H
,

(43a)
∫ |ψ1|2

b2
1

dz =
tan−1 tanh |Hz|

2

H
− sech(Hz) tanh |Hz|

2

2H
,

(43b)

The zero-mode graviton is localised on the brane. The
first excited state with mass m2 = 2H2 is normalizable
but this mode is not localised on the brane.
The general solution to Eq. (39) is given by

ψ(z) = c1X
5/2

2F1

(

5 + 2iµ

4
,
5− 2iµ

4
;
1

2
; 1−X2

)

+ c2

√

X2 − 1X5/2

2F1

(

7 + 2iµ

4
,
7− 2iµ

4
;
3

2
; 1−X2

)

, (44)

where X = cosh(Hz) and µ ≡
√

m2

H2 − 9
4 = ±iν. The

allowed values of m are quantised in units of H or the
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index γ ≡ m2/H2. Around the brane’s position at z ≡
zc, satisfying Hz ≪ 1, we have

ψ(z) = c1Pµ + c2Qµ, (45)

where

Pµ = 1− 3 + 2γ

4
(Hz)2 +

39 + 12γ + 4γ2

96
(Hz)4 + · · · ,

(46a)

Qµ = Hz − 3 + 2γ

12
(Hz)3 +

99 + 12γ + 4γ2

480
(Hz)5 + · · · .

(46b)

The inequality Hz ≪ 1 signifies a cosmological scale for
which H−1 ≫ z, i.e. the Hubble radius is much larger
than the radial extension of the fifth dimension.

-0.2 -0.1 0.1 0.2
Hz

-1

-0.5

0.5

1

PΜ

FIG. 4: The plot of the function Pµ(z) with γ = 9/4, 30, 100
(top to bottom).

-0.2 -0.1 0.1 0.2
Hz

-0.2

-0.1

0.1

0.2

QΜ

FIG. 5: The plot of the function Qµ(z) with γ = 9/4, 30, 100
(top to bottom, in the range Hz > 0).

Using the following property

2F1(a, b; c; z) = (1− z)−b
2F1(c− a, b; c;

z

z − 1
),

the eigenfunctions for the massive continuous modes with

m2 ≥ 2H2 may be given by

ψm(z) = c1 X
iµ

× 2F1

(

−3 + 2iµ

4
,
5− 2iµ

4
;
1

2
,
X2 − 1

X2

)

+ c2

√
X2 − 1

X
X iµ

× 2F1

(

−1 + 2iµ

4
,
7− 2iµ

4
;
3

2
,
X2 − 1

X2

)

,

(47)

where X = cosh(Hz). In the large zH limit, we get

ψHz→∞ = c1 e
iµzH + c2 e

−iµzH , (48)

where µ ≡
√

m2

H2 − 9
4 . With c1 = 0, all heavy modes

with µ > 0 become oscillating plane waves, which rep-
resent the de-localised KK massive gravitons. The time-
evolution of the mode functions of these heavy modes (cf
Eq. (36)) shows that they remain underdamped at late
times |η| → 0.

A. Linearized bulk equation

The perturbations of the 5D metric can be analysed
also by considering a wave equation for a master variable
Ω ≡ Ω(xµ;φ) introduced in [18], which in a 5D de Sitter
background defined by (1) reads as

1

ρ2

(

e−3A

a3
Ω′

)′

−
(

e−3A

a3
Ω̇

)·

+

(

~∇2

a2
− e2A

ℓ2

)

e−3A

a3
Ω = 0.

(49)
By using the following change of variable

Ω ≡ a(t)3e3A(φ) Ω̃, (50)

Eq. (49) can be written as

1

ρ2

(

Ω̃′′ + 3A′Ω̃′ + 3A′′Ω̃
)

−
(

¨̃Ω + 3
ȧ

a
˙̃Ω

)

+

(

~∇2

a2
− e2A

ℓ2

)

Ω̃ = 0. (51)

By separating the newly defined master variable as
Ω̃(xµ, φ) ≡∑αm(t)um(φ) eik·x, we get

α̈m + 3
ȧ

a
α̇m +

(

k2

a2
+m2

)

αm = 0,

(52a)

d2um
dφ2

+ 3A′u′m +

(

3A′′ +m2ρ2 − ρ2

ℓ2
e2A
)

um = 0.

(52b)

The first equation above is the same as (33a), so we only
have to consider the second equation.
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Defining um ≡ e−3A/2 Φm, we get

d2Φm

dφ2
− V Φm +m2ρ2Φm = 0, (53)

with the off-brane potential V of the form

U ≡ 9

4
A′2 − 3

2
A′′ +

ρ2

ℓ2
e2A

=
9ρ2H2

4
+
λρ2H2

Φ2
+

, (54)

where we used the solution (11) and Φ± = eρHφ ±
λe−ρHφ. Defining z ≡ ρφ− ln

√
λ, as before, we get

− d2Φm

dz2
+ V Φm = m2Φm, (55)

with the scalar potential V of the form

V =
9H2

4
+

H2

4 cosh2(Hz)
. (56)

This equation can also be obtained directly from Eq. (49)
but using Ω ≡∑αm(t)um(φ) and um ≡ e−3A/2Φm, see,
e.g. [18]. The main difference, as compared to the result
in AdS5 spacetimes, is the sign of the second term above.
The general solution to (55) is given by

Φm(z) = c1 (cosh(Hz))
1/2

× 2F1

(

1 + 2ν

4
,
1− 2ν

4
;
1

2
;− sinh2(Hz)

)

+ c2 | sinh(Hz)| (cosh(Hz))1/2

× 2F1

(

3 + 2ν

4
,
3− 2ν

4
;
3

2
;− sinh2(Hz)

)

,(57)

where ν ≡
√

9
4 − m2

H2 . Again, there are two bound state

solutions: (i) ν = 3/2 (m2 = 0) and

Φ0(z) = c1
√
X
√

X2 − 1

+ c2
√
X

(

1−
√

X2 − 1 tan−1 1√
X2 − 1

)

, (58)

(ii) ν = 1/2 (m2 = 2H2) and

Φ1(z) =
√
X

(

c1 + c2 tan
−1 1√

X2 − 1

)

, (59)

where X ≡ cosh(Hz). Both these solutions are non-
normalisable. This result is desirable as it implies that
a massless bulk scalar mode may not be localised on a
de Sitter brane. Note that there are no any tachyonic or
growing modes localised on the brane either.

B. Projected Weyl tensor

The non-existence of arbitrarily light KK excitations
can be seen also by considering the wave equation for a
projected 5D Weyl tensor, which is given by [14]

[

eA
∂

∂z
e−A ∂

∂z
+�4 − 4H2

]

Êµν = 0, (60)

where Êµν ≡ e2AEµν , Eµν ≡ CA
µBνn

AnB is the
projected 5D Weyl tensor, nA is the vector unit nor-
mal to the brane, �4 ≡ gµνDµDν is the 4-dimensional
d’Alembertian with respect to the metric gµν and Dµ is
the covariant derivative. With a separation of variable

Êµν = Ψ(φ)Y
(m)
µν (xµ), Eq. (60) yields

[

eA
∂

∂z
e−A ∂

∂z
− 2H2

]

Ψm = −m2Ψm, (61a)

[

�4 −m2 − 2H2
]

Y (m)
µν = 0, (61b)

where m is a 4D mass parameter, which has been intro-
duced here as a separation constant. In this formalism,
we clearly see that there is a mode Ψ = constant with
m2 = 2H2 that trivially satisfies the equation.
Defining Ψm ≡ eA/2Φm, we can rewrite the off-brane

wave equation (61a) as

− d2Φm

dz2
+ V Φm = m2Φm, (62)

where

V ≡ A′2

4
− A′′

2
+ 2H2 =

9H2

4
+

H2

4 cosh2(Hz)
. (63)

This is the same potential as in (55). The mode m2 =
2H2 translates to Φm ∝ e−A/2 ∝ cosh(Hz), and it is the
first eigenmode and is obtained from (59) with c2 = 0.

C. Correction to Newton’s law

In order to estimate the correction to Newton’s force
law, generated by a discrete tower of Kaluza-Klein
modes, one may go to the thin brane limit, i.e. H−1 → 0,
but keeping the ratio zc/H

−1 finite. One also assumes
that the matter fields in the four-dimensional theory
is smeared over the width of the brane and the brane
thickness is smaller compared with the bulk curvature,
H−1 < ℓ, so Hℓ > 1. Under this approximation, the
gravitational potential between two point-like sources of
masses M1 and M2 located on the brane is modified via
exchange of gravitons living in five-dimensions as

U(r) = G4
M1M2

r
+M−3

(5)

∫ ∞

m

dm
M1M2 e

−mr

r
|Φm(zc)|2

≃ G4M1M2

r

[

1 +
H2ℓ3

αr

∑

i

e−mir

(

1 +O
(

1

Hr

))

]

,

(64)
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where mi ≥
√
2H , r is the distance between the two

point-like sources and α is a constant of order unity. This
result qualitatively agrees with that given in [17]. Note
that, as compared to the results one has with a static
3-brane, the corrections are suppressed by a factor of
e−mr. There is no restriction in taking ℓ ≫ r, provided
that the KK modes are sufficiently heavy. For instance,
with mi & TeV ∼ 10−15 cm, α ∼ O(1), the correction
term may not show up unless we probe a sufficiently small
distance scale, like r ∼ 10−12 cm.
In the presence of matter or gauge fields, one may re-

quire a more complete analysis, involving the effects of
the overlap of the gravitational modes with the matter
modes, but we will not consider this case here.

IV. GENERALIZATION TO HIGHER

DIMENSIONS

For a consistent description of gravity plus gauge field
theories, one may require models with more than one
extra extra dimensions, and the world around us could
have up to n = 7 extra spatial dimensions, if our universe
is described by string/M theory. In the following, as
some canonical examples, we will consider the n = 2
and n = 3 cases, but it is straightforward to generalise
the discussion below to D = 10 or D = 11 dimensions.
First, we allow two extra dimensions (n = 2) and write

the 6D action as

Sgrav =M4
(6)

∫

d6x
√−g R, (65)

where M(6) is the 6D Planck mass. It is not difficult to
check that the metric ansatz

ds26 =
1

K2p

(

−dt2 + a(t)2d~x23,k +
p2K ′2

H2K2
dz2 + L2K2pdθ2

)

(66)
where K ′ = dK/dz and 0 ≤ θ ≤ 2π, solves the 6D Ein-
stein equations with the 4D scale factor

a(t) =
c0
2
eHt +

k

2c0H
2
e−Ht. (67)

In the above, K(z) is an arbitrary function of z.
As a simple example, we takeK(z) ≡ cosh(Mz), where

M has a mass dimension of one. Then, under the dimen-
sional reduction, from D = 6 to D = 4, we get

M4
(6)

∫

d6x
√−gR =M2

Pl

∫

d4x
√

−ĝ4
(

R(4) − Λ4

)

,

(68)
where Λ4 = 6H2 and

M2
Pl =M4

(6)

pL

H

∫ 2π

0

dθ

∫ ∞

−∞

K ′ dz

K3p+1
=

4πLM4
(6)

3H
. (69)

Especially, in D = 6, if we introduce a bulk cosmological
term, then we will also require another source term, e.g.,

2-form gauge field, in order have an explicit solution. In
dimensions D ≥ 7, however, a bulk cosmological con-
stant can be introduced into the Einstein action without
considering other source terms.
The following seven-dimensional metric

ds27 =
1

F (z)

(

−dt2 + a(t)2d~x23,k +G(z)dz2 + EdΩ2
2

)

,

(70)
solves the Einstein field equations following from

S =M5
(7)

∫

d7x
√−g

(

R− 2Λb

)

, (71)

when

G(z) =
15F ′(z)

2

36H2F (z)2 − 4ΛbF (z)
, E =

1

3H2
, (72)

where F ′ = dF (z)/dz. There can exist a large class of
4D de Sitter solutions with different choices of F (z).
Below, we will consider two physically interesting ex-

amples.

Example 1

Take [20]

F (z) ≡ F 2
0
cosh2(Mz). (73)

The dimensionally reduced action reads as

M5
(7)

∫

d7x
√−g(R − 2Λb)

=M2
Pl

∫

d4x
√

−ĝ4
(

R(4) − Λ4

)

, (74)

where Λ4 = 6H2,

M2
Pl =M5

(7)

2πM
√
15

9F 5
0
H3

I(z) (75)

and

I(z) ≡
∫ ∞

−∞

√

cosh2(Mz)− 1 dz

cosh5(Mz)
√

cosh2(Mz)− β
, (76)

with

β ≡ Λb

9H2F 2
0

.

With Λb = 0, so β = 0, one can easily evaluate the
above integral and find that I(z) = 2/(5M). In the Λb >
0 case, we require 0 < β ≤ 1. With β = 1, we get
I(z) = 3π/(8M). That is, provided that 0 < β < 1, the
integral converges and its value ranges between 2/(5M)
and 3π/(8M).
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In the case the Hubble expansion parameterH is large,
or equivalently, when |β| < 1, the mass reduction formula
is well approximated by

M2
Pl ∼

M5
(7)

H3F 5
0

. (77)

However, when H becomes small, or one considers a large
cosmological distance scale, then one should allow a neg-
ative bulk cosmological term. The integral converges for
any negative value of β. In the limit |β| ≫ 1, the mass
reduction formula is approximated by [20]

M2
Pl ∼

M5
(7)

H2F 4
0

1

(−Λb)
1/2

. (78)

This result may be analysed further by taking H ∼
10−60 MPl, especially, if one wants to tune Λ4 to the
present value of 4D cosmological constant. To satisfy
phenomenological constraints, such as, M(7) & TeV and
(

−Λb

)1/2
. M(7), one then has to allow F0 to take a

reasonably large value, F0 & 1014 ≫ 1. A constraint like
this becomes much weaker when one applies the model
to explain the early universe inflation. For instance, with
H ∼ 10−5 MPl, we get MPl ∼ 10−3MPl(7)/F0, in which
case F0 may be taken to be small, say F0 ∼ O(1).
To say anything further in a concrete way, we need to

have some physical information about the constant F0,
which might actually be related to the D-dimensional
dilaton coupling constant, which is assumed (rather im-
plicitly) to be a constant in the present study.

Example 2

Take

F (z) ≡ F 2
0
exp

(

2 arctan
(

eMz
))

. (79)

The warp factor F (z) and the function G(z) are regular
everywhere. The integral (76) is now modified as

I(z) ≡
∫

(1− β(z))
−1/2

dz

4 cosh(Mz) exp (5 arctan (eMz))
, (80)

where

β(z) ≡ Λb

9H2F 2
0

exp
(

−2 arctan
(

eMz
))

. (81)

Since arctan(x) → ±π
2 as x → ±∞, the above integral

gives a finite result provided that Λb < 9H2F 2
0 e

π, lead-
ing to a dynamical mechanism of compactfication. The
choice Λb < 0 is pretty safe from the viewpoint of metric
regularity, or the smoothness of G(z).
All the results above can easily be generalised to higher

dimensions, including the 10 and 11 dimensional models
inspired by strong/M-theory [21, 22]. We refer to [20]

for further discussions on localization of gravity. The
method can also be extended to a class of thick domain
walls (or de Sitter brane solutions) in gravity coupled to
a bulk scalar field [23–25].

V. CONCLUSION

Finally, we summarise the main results in the paper.

Simple five-dimensional brane-world models defined
in an AdS5 spacetime have been known to provide a
rich phenomenology for exploring some of the intrigu-
ing ideas that are emerging from string/M-theory, such
as, AdS/CFT correspondence, AdS holography and mass
hierarchies.

The replacement of AdS5 spacetime by dS5 spacetime,
along with replacement of a flat 3-brane by a physical
4D universe, gives us new problems and new possibilities.
The problem is that the embedding of dS4 in dS5 may
be viewed as a O(4) symmetric bubble described by a
Coleman-De Luccia instanton [26], in which case the size
of the bubble may not exceed the radius of dS5. As a
result, a constraint like cH−1 ≤ ℓdS could bring the 5D
Planck mass down to TeV scale or even much lower. This
problem can easily be overcome by introducing two or
more extra dimensions, along with a higher dimensional
bulk cosmological term and background fluxes.

Another issue could be that dS5 allows a foliation by a
flat space but that is a spacelike hypersurface. There is
no way to cut dS5 by Minkowski spacetime. That is, in
a cosmological setting, a flat 4D Minkowski spacetime is
not a solution to 5D Einstein equations, if the background
(bulk) spacetime is de Sitter. This is contrast to the
results in Randall-Sundrum brane-world models in AdS5
spacetimes. But this is anyway not a real problem since
the universe has probably never gone through a phase of
being close to a static universe or a flat 3-brane.

There is perhaps no necessity of having a Minkowski
spacetime embedded in a dS5 spacetime as long as the
massless graviton wavefunction becomes normalizable on
a 4D de Sitter spacetime, which is indeed the case within
the model considered in this paper. We have shown that
the effective four-dimensional Planck mass derived from
the fundamental D-dimensional Planck mass can be finite
because of the large but finite warped volume and also the
large world-volume of a de Sitter brane (i.e. the physical
universe), implying that a Z2 symmetry available to 5D
brane-world models in an AdS background can be simply
relaxed.
We have followed the most general approach for ob-

taining a de Sitter solution from the higher dimensional
Einstein equations, which could yield characteristic linear
4-dimensional spacetime sizes of many orders of magni-
tude bigger than linear sizes in extra coordinates.
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