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LORENTZ INVARIANCE, NONZERO MINIMAL UNCERTAINTY

IN POSITION, AND INHOMOGENEITY OF SPACE AT THE

PLANCK SCALE

ARKO BOSE

Abstract. The suspicion that the existence of a minimal uncertainty in po-
sition measurements violates Lorentz invariance seems unfounded. It is shown
that the existence of such a nonzero minimal uncertainty in position is not only
consistent with Lorentz invariance, but that the latter also fixes the algebra
between position and momentum which gives rise to this minimal uncertainty.
We also investigate how this algebra affects the underlying quantum mechani-
cal structure, and why, at the Planck scale, space can no longer be considered
homogeneous.

PACS number(s): 11.30.Cp, 03.65.Ca, 03.65.Ta, 02.40.Gh

1. Introduction

The possibility of the existence of a nonzero minimal uncertainty in position
measurements - whose effects are believed to be pronounced near the Planck scale
- has been widely studied. Such a minimal uncertainty in position measurements
is incorporated into theory by generalizing the algebra between position and mo-
mentum. Several formulations of this algebra exist, some which break Lorentz
invariance (see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), while others which respect it (see
e.g., [11, 12, 13]). The common feature of such generalized algebras is that they
render spacetime noncommutative. One pervasive notion is that the existence of
this nonzero minimal uncertainty in position measurements - an ultraviolet (UV)
cutoff in Nature - violates Lorentz invariance.

Rejection of Lorentz invariance seems premature, however, in light of recent
experiments ([14]) which show no evidence for Lorentz violation. As we shall see
in Section 2, a nonzero minimal uncertainty in position measurements is consistent
with Lorentz invariance. This is achieved by first deriving the most general Lorentz
contravariant representation of position in the momentum-space. This procedure
generates a nondenumerably infinite set of geometries. It will then be shown, in
Section 3, that among these nondenumerably infinite geometries, Snyder-geometry
is one of only two Lorentz invariant geometries which retain the symmetry of the
position operators. Finally, with the algebra between position and momentum thus
fixed, it will be seen that a nonzero minimal uncertainty in position measurements
emerges naturally.

It was Snyder ([15]) who first constructed a model of discrete spacetime which
respected Lorentz invariance. However, the model was flawed. Though it success-
fully predicted - a prediction to which Snyder did not pay attention, at least in the
paper - a minimal uncertainty in position measurements, it also assumed a lattice
structure of space - two mutually incompatible concepts.

One relevant issue here is that of translational invariance. As remarked by
Snyder himself (and later elaborated by Yang [16]), his theory lacks translational
invariance. It shall be argued in Section 2 that the existence of a nonzero minimal
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uncertainty in position measurements necessarily violates translational invariance,
thus rendering space inhomogeneous near the Planck scale.

There have been investigations into the possibility of minimal uncertainties in
both position and momentum measurements. However, in this paper, we restrict
ourselves to the case of nonzero minimal uncertainty in position measurements.
We discuss the possibility of a nonzero minimal uncertainty in momentum mea-
surements in Section 8.

Lastly, certain fundamental misconceptions in existing literature will be dis-
cussed (in sections 2, 6, and 7), and rectified.

2. Lorentz invariance and the generalized representation of position

in momentum space

As has been remarked in [5], the existence of a nonzero minimal uncertainty
in position measurements implies that position is no longer an observable, since
position can no longer have eigenstates.

It is a simple argument to show that the existence of a nonzero minimal uncer-
tainty in position measurements necessarily violates translational invariance. For
a theory to have translational invariance, the underlying algebra must permit a
representation of momentum in the position-space, allowing momentum to act as
the generator of infinitesimal spatial translations. However, the existence of such
a position-space representation of momentum presupposes the existence of posi-
tion eigenstates, which we have just seen do not exist, due to the nonzero minimal
uncertainty in position measurements. Thus, unless the theory can neglect effects
of this nonzero minimal uncertainty in position measurements, which is essentially
the low-energy limit, space can not be assumed to be homogeneous. (See e.g. [17],
wherein the generalized position-momentum commutation relation is claimed to
respect translational invariance. It is easy to see that this is not a correct claim:
the algebra does not permit a position representation of momentum.) Geometri-
cally, this small-scale inhomogeneity of space is a manifestation of the fact that -
owing to the nonzero minimal uncertainty - points lose their meaning as geomet-
rically localizable entities (see [12]). In Section 8, it will be shown that a nonzero
minimal uncertainty in momentum measurements is consistent with both Lorentz
invariance and translational invariance, owing to the fact that the algebra permits
a representation of momentum in the position-space.

In this connection see [16], wherein the theory maintains translational invariance
by permitting a representation of momentum in the position-space. However, in
Yang’s theory, position is an observable with a discrete spectrum. See also [18],
wherein a global counterpart of twisted Poincaré algebra is constructed, however,
on a spacetime controlled by a constant, antisymmetric matrix θµν : [xµ, xν ] = iθµν .
We note here that as long as θµν is constant, position acts as an observable.

At this point, we make two assumptions:

(1) Momentum is an observable. This assumption will be justified later, in
Section 8.

(2) All components of the momentum 4-vector commute:

[pµ, pν ] = 0 (2.1)

It follows from the above discussion that to obtain information about position,
one must work in the momentum representation, owing to the fact that position
no longer has eigenstates, while momentum is assumed to have eigenstates. Thus,
what we must seek is a generalized, Lorentz contravariant representation of posi-
tion in the momentum-space, which reduces to the ordinary quantum mechanical
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representation in the low-energy (large-scale) limit. This would be (we use the
Minkowski metric signature {+,−,−,−}):

x̂µ ≡ i~[−∂µp + bAµν
0 ∂p ν + b2Aµρσ

1 ∂p ρ∂pσ + b3Aµλγα
2 ∂p λ∂p γ∂p α + . . .] (2.2)

where ∂p ν ≡ ∂
∂pν , and A

µν
0 , Aµνσ

1 , Aµνσρ
2 , . . . are, as yet, arbitrary functions, and b

is a dimensionless parameter.
Lorentz contravariance of x̂µ gives:

x̂
′µ =i~[−∂′µ

p + bA
′µν
0 ∂′p ν + b2A

′µρσ
1 ∂′p ρ∂

′
p σ + b3A

′µλγα
2 ∂′pλ∂

′
p γ∂

′
p α + . . .]

=Λµ
τ x̂

τ + aµ

=aµ + i~Λµ
τ [−∂τp + bAτ ν̃

0 ∂p ν̃b
2Aτ ρ̃σ̃

1 ∂p ρ̃∂p σ̃ + b3Aτλ̃γ̃α̃
2 ∂p λ̃∂p γ̃∂pα + . . .]

(2.3)

We get aµ = 0. Also, comparing the coefficients of differential operators of same
order, we get

A
′µν
0 Λ ν1

ν ∂p ν1 = Λµ
τA

τ ν̃
0 ∂p ν̃

⇒A
′µν
0 Λ ν1

ν Λν
ν̃∂p ν1 = Λµ

τΛ
ν
ν̃A

τ ν̃
0 ∂p ν̃

⇒A
′µν
0 δν1ν̃∂p ν1 = Λµ

τΛ
ν
ν̃A

τ ν̃
0 ∂p ν̃

⇒A
′µν
0 ∂p ν̃ = Λµ

τΛ
ν
ν̃A

τ ν̃
0 ∂p ν̃

⇒A
′µν
0 = Λµ

τΛ
ν
ν̃A

τ ν̃
0

(2.4)

Therefore, Aµν
0 transforms as a second rank tensor. Similarly, it can be shown that

Aµρσ
1 transforms as a third rank tensor, Aµλγα

2 transforms as a fourth rank tensor
and so on.

Further, simple dimensional analysis shows that Aµν
0 must be dimensionless,

while Aµνσ
1 must have the dimensions of momentum, Aµνσρ

2 the dimensions of mo-
mentum squared, and so on. Thus, Lorentz invariance and dimensional analysis
give us:

Aµν
0 =

G

~c3
Ωµνσρ

0 pσpρ + Pµν
0 ; Aµνσ

1 =
G

~c3
Ωµνσρδλ

1 pρpδpλ + Pµνσ
1 ;

Aµνσρ
2 =

G

~c3
Ωµνσρδλγκ

2 pδpλpγpκ + Pµνσρ
2 ; . . .

(2.5)

where Ωµνσρ
0 , Ωµνσρδλ

1 , Ωµνσρδλγκ
2 , etc. are all dimensionless scalars of ranks 4, 6,

8, etc., and Pµν
0 , Pµνσ

1 , Pµνσρ
2 , etc. are all scalars, of dimensions, respectively, p0,

p1, p2, etc.
Following above arguments, we thus find that Lorentz invariance fixes the gen-

eralized momentum representation of position to be:

x̂µ ≡ i~

[

−∂µp + b

(

G

~c3
Ωµνσρ

0 pσpρ + Pµν
0

)

∂p ν+

b2

(

G

~c3
Ωµνσρδλ

1 pρpδpλ + Pµνσ
1

)

∂p ν∂pσ

+b3

(

G

~c3
Ωµνσρδλγκ

2 pδpλpγpκ + Pµνσρ
2

)

∂p ν∂p σ∂p ρ + . . .

]

(2.6)
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Now from definition (2.6), up to all orders in b, the following algebra between
position and momentum immediately follows:

[x̂µ, p̂ν ] = i~

[

−ηµν + b

(

G

~c3
Ωµνσρ

0 p̂σp̂ρ + Pµν
0

)]

= i~[−ηµν + bAµν
0 ] (2.7)

Since b and Pµν
0 are both constants, we can liberally redefine bPµν

0 = P̃µν
0 .

Snyder-geometry is, thus, a special case wherein Ωµνσρ
0 is identically ηµσηνρ, whereas

P̃µν
0 is identically zero.
Since we can only work in the momentum representation, it is clear that the

entire phenomenology will be governed only by the algebra defined by equations
(2.1) and (2.7). Also, since terms of order higher than one in b identically vanish in
equation (2.7), we conclude that the exact, generalized momentum representation
of position is defined by equation (2.6), by terms up to first order in b. Henceforth,
we define β = bG/~c3. Therefore, the exact, Lorentz contravariant, generalized
momentum representation of position is given by:

x̂µ = i~[−ηµν + βΩµνσρ
0 pσpρ + P̃µν

0 ]
∂

∂pν
(2.8)

We can also compute the algebra between the position operators now:

[x̂µ, x̂ν ] = −~
2β

[

[−ηµα + βΩµασρ
0 pσpρ + P̃µα

0 ]Ωµλκγ
0 (ηκαpγ + ηγαpκ)

∂

∂pλ

−[−ηνλ + βΩµλκγ
0 pκpγ + P̃µλ

0 ]Ωµασρ
0 (ησλpρ + ηρλpσ)

∂

∂pα

] (2.9)

In order to derive an uncertainty relation, we require the position and momentum
operators to have real expectation values. The sufficient condition for this is that
both the operators be symmetric (see [5, 19]). Since momentum is self-adjoint, it
is obviously symmetric. In the next section, it is shown that the requirement of
symmetry of the position operator forces Ωµνσρ

0 and P̃µν
0 to have specific values.

3. Symmetry of the position operator

The symmetry of the position operator is expressed as:

(〈φ|xµ)|ψ〉 = 〈φ|(xµ|ψ)〉 (3.1)

where both φ and ψ are L2 functions.
Let F ≡ F(βησρp

σpρ) be a dimensionless, scalar function which, from equation
(3.1), gives us:

∫

d4pF(xµφ)∗ψ =

∫

d4pFφ∗(xµψ) (3.2)

It follows that the above equation is satisfied if and only if

−2
F ′

F = 2
[βΩ

′µνρσ
0 pσpρ + (P̃µν

0 − ηµν)′]pν

[βΩµνρσ
0 pσpρ + (P̃µν

0 − ηµν)]pν
+

bΩµνσρ(ησνpρ + ηρνpσ)

[βΩµνρσ
0 pσpρ + (P̃µν

0 − ηµν)]pν
(3.3)

where the prime denotes differentiation with respect to G
~c3 pαp

α. Since F ≡
F( G

~c3 pσp
σ), it follows that the two numerators on the R.H.S of the above equation
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must satisfy:

βΩ
′µνρσ
0 pσpρpν + (P̃µν

0 − ηµν)′pν = {[βΩµνρσ
0 pσpρ + (P̃µν

0 − ηµν)]pν}′;

[βΩµνρσ
0 pσpρ + (P̃µν

0 − ηµν)]pν = bΩµνσρ(ησνpρ + ηρνpσ)[M
G

~c3
pαp

α + L];

(P̃µν
0 − ηµν)pν = bLΩµνσρ

0 (ησνpρ + ηρνpσ)pαp
α

(3.4)

where M and L are constants. The solutions are

Ωµνσρ
0 = ηµσηνρ;

P̃µν
0 = bηµν , 0

(3.5)

Thus, Snyder-geometry (Ωµνσρ
0 = ηµσηνρ, P̃µν

0 = 0) is one of only two Lorentz-
invariant geometries which retain the symmetry of the position operators, under
the assumptions that momentum is an observable and that the momenta commute
among themselves. From hereon, we work with the case of Snyder-geometry.

We obtain
F = Υ[1− βηµνp

µpν ]−5/2 (3.6)

where Υ is a dimensionless constant, which, for convenience, can be taken to be 1.

4. The generalized uncertainty relation

We have seen that the symmetry of the position operator implies that Ωµνσρ
0 =

ηµσηνρ and P̃µν
0 = 0. With these values, equation (2.8) gives

x̂µ ≡ i~[−ηµν + βpµpν ]
∂

∂pν
(4.1)

from where we obtain
[x̂µ, p̂ν ] = i~[−ηµν + βpµpν ] (4.2)

Further, the algebra between the position operators is, as shown in [15],

[x̂µ, x̂ν ] = i~β(p̂µx̂ν − p̂ν x̂µ) (4.3)

Snyder’s motivation was the construction of a lattice space based upon the as-
sumption of a minimal length in Nature, which is, as the existence of the minimal
uncertainty in position measurements shows, a flawed premise to work upon. While
the theory is sound both in being Lorentz invariant and in lacking translational in-
variance, it is an incorrect assumption that we are working in a lattice space.

The algebra given by equation (4.2) immediately gives us the following general-
ized uncertainty relation:
√

〈(∆xµ)2〉
√

〈(∆pν)2〉 ≥ ~

2
| − ηµν + β

√

〈(∆pµ)2〉
√

〈(∆pν)2〉+ β〈pµ〉〈pν〉| (4.4)

Considering the space operators, from inequality (4.4), we can write (hereon, we

simply write ∆x for
√

〈(∆x)2〉, keeping in mind the distinction from the operator
∆x = x− 〈x〉):

(∆px)
2 − 2

~β
∆x∆px +

1 + β〈px〉2
β

≤ 0 (4.5)

⇒ ∆px ≤ ∆x

~β
±

√

√

√

√

(

∆x

~β

)2

− 1

β
− 〈px〉2 (4.6)

See [5]. Thus, we must have

∆x =
√

〈(∆x)2〉 ≥ ~
√

β
√

1 + β〈px〉2 (4.7)

Thus, the absolute minimal uncertainty in position measurements is ~
√
β, for

〈px〉 = 0. Since the same arguments hold for the y- and z-coordinates, we see
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that the absolute minimal uncertainty in measuring xj is given by ∆xj0 = ~
√
β, for

〈pj〉 = 0. Since ~
√
β = lP

√
b, where lP is the Planck length, we see that there is

a cube of absolute minimal uncertainty, of scale-dependent side-length, which can
not be breached.

We now discuss in detail the implications of the above conclusions.
Since the equality in (4.6) only holds when ∆pj = 1/

√
β and ∆xj = ~

√
β,

it follows that at any other value, only the strict inequality will hold. Now, for
〈pj〉2 = 0 one gets 〈(pj)2〉 = 〈(∆pj)2〉. We therefore have, in an inertial frame:

〈E2〉 = 〈(∆p)2〉c2 +m2c4 (4.8)

Now, let us assume that the uncertainty in position measurements could be lowered
below the absolute minimal uncertainty ~

√
β. That is, let us assume that the side-

length of the cube of absolute minimal uncertainty falls below ~
√
β: 〈(∆xj)2〉 =

~2β − ε, where ε > 0. We immediately see that 〈(∆pj)2〉 becomes imaginary. This
implies, from equation (4.8) above, that 〈E2〉 ceases to exist. We thus conclude
that in any inertial frame, a region defined by a cube of side-length less than ~

√
β

is forbidden from access. Thus, if we try to measure the position of a particle with
a photon of wavelength less than ~

√
β, this photon will be scattered by the cube of

absolute minimal uncertainty. As explained in [5], this does not mean that we are
working in a lattice space, since the position of the particle is not known within the
cube of absolute minimal uncertainty.

At this point, the reason why momentum can no longer be considered the gener-
ator of momentum, becomes readily amenable to comprehension. Once a particle
is maximally localized - i.e. localized with an uncertainty of ~

√
β in its position

- it can freely move about within the cube of absolute minimal uncertainty: its
momentum is no longer a generator of its translation because it can be localized no
further.

We recognize that the minimal uncertainty in position is not a physically measur-
able “length”: it is minimum when 〈px〉 is zero, and increases with 〈px〉 (however,
we can not say that translation leads to an increase in the uncertainty, since mo-
mentum is no longer the generator of translation). Thus, the existence of a nonzero
minimal uncertainty does not violate Lorentz invariance: a result consistent with
recent experiments ([14]) which have found no evidence for Lorentz violation down
to the Planck scale.

We also observe that multiplying the inequality (4.5) throughout by ~β and
letting β → 0, we regain the large scale (low energy) uncertainty relation.

A pertinent question at this point would be: how do we know a priori that
a momentum representation of position operators, of the form given by equation
(4.1), exists? Indeed, we have been able to derive a representation of position in
momentum-space only because of the assumption that momentum is an observable.
To elaborate, let us, hypothetically speaking, write a generalized representation of
momentum in the position space, which, following the exact same arguments as
above, will be (we only study one of the two possible representations, both of which
yield the same qualitative result):

p̂µ ≡i~[ηµν + αxµxν ]∂ν (4.9)

where α = ac3/~G, and a is a dimensionless parameter. It is trivial to see
that the above representation is not consistent with the representation (4.1); it
leads to nonzero minimal uncertainty in momentum measurements, and last but
not the least, allows a commutative spacetime, while making the momentum-space
noncommutative. In fact, such a representation is rendered possible only by the
assumption that position is an observable, and therefore has eigenstates. As will be
shown in Section 8, this assumption, together with the representation in equation
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(4.9), makes the theory Lorentz invariant while maintaining homogeneity of space.
It is also clear that both representations maintain unitarity.

The question is: which do we choose? It is clear that the choice must be dic-
tated by physical considerations. As has been explained in [4], it is probable that
Nature exhibits minimal uncertainties in both position and momentum measure-
ments. Thus in general, we may require mutually consistent Lorentz contravariant
representations of both position and momentum. For the purpose of this paper, we
maintain the assumption that momentum does not exhibit nonzero minimal uncer-
tainty in measurements. This will allow us to retain the hermiticity of momentum
operators. In Section 6, we briefly discuss the implications of nonzero minimal
uncertainty in momentum measurements.

In the next section, we shall construct the Hilbert of the algebra defined by
equations (2.1) and (4.2).

5. The Hilbert Space

The Hilbert space has to satisfy the following familiar requirements:

(1) Physical states are normalizable. In particular, the norm has to be positive
definite.

(2) Expectation values of position (〈xµ〉) and momentum (〈pµ〉) are well de-
fined.

(3) Uncertainties in position (∆xµ =
√

〈(xµ)2〉 − 〈xµ〉2) and momentum (∆pµ =
√

〈(pµ)2〉 − 〈pµ〉2) are well defined.

Thus, physical states must lie in the common domain Dx,x2,p,p2

⋂

Dt, t2, pt, p2
t
,

where ∀µ xµ, x2µ, pµ, p2µ are symmetric.
The representation theoretic consequences of the uncertainty relations similar

to the one given by inequality (4.4) have been analyzed before ([5]), and shall
not be reviewed in complete detail here. However, we note the most important
consequence of all: a nonzero minimal uncertainty in position measurements implies
that the position operators have no eigenstates. This means that the position
operators, though still symmetric, are no longer self-adjoint. Thus all information
about position must be obtained in the momentum space.

5.1. Representation on momentum space. Momentum operators are evidently
self-adjoint. However, as has been hinted by Snyder ([15]), it can be shown (see
Section 3) that the position operators are symmetric (but not self-adjoint) only
with respect to the “scaled” scalar product:

〈ψ|ϕ〉 =
∫

d4p

[1 + β(p2 − p2t )]
5/2

ψ∗(p)ϕ(p) (5.1)

Thus, owing to the requirement that all physical states must lie in the common
domain Dx,x2,p,p2

⋂

Dt, t2, pt, p2
t
, we take equation (5.1) as the definition of scalar

product, since both momentum and position are symmetric with respect to it.
The momentum eigenstates are mutually orthogonal:

〈p|p′〉 = δ(p− p′) (5.2)

From the above orthogonality, we get the usual completeness relation (we do
not require the factor of [1+ β(p2− p2t )]

−5/2, since the momentum eigenstates, not
being normalizable, are not physical states):

∫

dp|p〉〈p| = 1 (5.3)
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Using equation (4.1), we can write:

p̂µψ(p) = pµψ(p) (5.4)

x̂σψ(p) = i~(−ησν + βpσpν)
∂

∂pν
ψ(p) = λσψ(p) (5.5)

Though equation (5.5) can be solved for formal position eigenstates, we see im-
mediately why they are of no consequence. Such formal eigenstates will yield a
vanishing uncertainty in position measurements, which, as we have seen in inequal-
ity (4.7) (and the discussion that follows it), is forbidden.

In the next section, we calculate the state which represents the state of maximal
localization, i.e., the state with the absolute minimal uncertainty in position. As
we will see, these are the only states which yield useful information about position.
Though maximal localization states have been calculated before (see [5]), most
existing calculations attempt to calculate the maximal localization state by solving
the eigenvalue equation ∆xψ = ~

√
βψ. As will be argued in the next section, this

practice is fundamentally wrong.

6. The maximal localization states

As we saw in the last section, formal eigenstates of the position operator (in
momentum representation) are forbidden by the relation (4.7). This means that
the only information which we can obtain about position is, so to say, the region
of maximal proximity around any given point λ. This region is defined by a circle
centered at λ:

〈(x − λ)2〉 ≥ ~
2β (6.1)

Since 〈∆x〉 = 0 identically, and in general is not equal to
√

〈(∆x)2〉, whose
minimum, as we have seen, is nonzero, it is clear that we must use (∆x)2 to find
the minimal localization states. Another reason for this is that [∆x, x] = 0, imply-
ing that eigenstates of ∆x are the same as the formal eigenstates of the position
operator, which we know are of no consequence since they always yield a vanish-
ing uncertainty (see e.g., [5] wherein ∆x, instead of (∆x)2, is incorrectly used to
compute the maximal localization states).

Now, since the lowest eigenvalue of an observable is equal to the minimum
of the expectation value of that observable, we conclude that the lowest eigen-
value of (∆x)2 is ~2β. Thus, the maximal localization state will be the state
with this eigenvalue for (∆x)2. Further, if 〈(∆x)2〉 = ~2β around the point λ, we
can denote the corresponding maximal localization state by |~2β〉λ. We also have

λ〈~2β|x|~2β〉λ = λ.
Thus, the maximal localization state is the solution of the following equation:

(∆x)2|~2β〉λ = (x2 − 2x〈x〉+ 〈x〉2)|~2β〉λ = (x2 − 2xλ+ λ2)|~2β〉λ = ~
2β|~2β〉λ

(6.2)
where, following equation (4.1),

xψ(p) = i~

[

(1 + βp2x)
∂

∂px
+ βpxpy

∂

∂py
+ βpxpz

∂

∂pz
+ βpxpt

∂

∂pt

]

ψ(p) (6.3)

The solution, derived in the Appendix, is:

|~2β〉λ = Πpζ0t p
ζ2
y p

ζ3
z 2−(α1+γ1)(1 + βp2x)

α1+γ1
2 ei(α1−γ1)ArcTan(

√
βpx)

2F1(1 − n, β2 − α1 − γ1; 1− α1 − α2 − 2γ1;
√

1 + βp2xe
iArcTan(

√
βpx)/2)

(6.4)
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where, ζ0, ζ2, and ζ3 are constants (see equation (11.15)), Π is a normalization
constant, αi, βi and γi are exponents defined in the Appendix (equations (11.11)),
and n is a natural number.

As is shown in the Appendix, the maximal localization states are not orthogonal,
except in the limit β → 0. The physical interpretation of this is rather simple.
Since the maximal localization state denotes the state in which the square of the
uncertainty in position of a particle, around a point x = λ, is ~2β, we immediately
see that this particle is also maximally localized around any of the infinitely many
points x = λ′ for which |λ−λ′| < ~

√
β. The question of orthogonality of two states

when |λ− λ′| ≥ ~
√
β will be discussed in a future publication.

In the next section, we investigate the Schrödinger equation for a simple har-
monic oscillator. It will be shown that, except in the limit β → 0, one can not find
creation and annihilation operators which can provide a representation-free basis
of states.

7. The harmonic oscillator

Before we proceed, we prove an important lemma:

Lemma 1. No physical state may depend on the free-particle/-field energy cp0 =
cpt. By a physical state, we mean here a solution of the equation Hψ = Eψ

Proof : Consider the formal energy eigenvalue equation:

Hψ = Eψ = [T + U(r)]ψ (7.1)

where U(r) is the interaction energy. Let us assume that ψ = ψ(p, pt). Since each
component of r has a pt-dependence through the operator pt

∂
∂pt

, we can write in

the momentum representation

Hψ(p, pt) = Eψ(p, pt) = [T + U(r(p, pt))]ψ(p, pt) (7.2)

However, the free-particle energy cpt = H − U . Therefore, we get:

Hψ(p, U) = Eψ(p, U) = [T + U(r(p, U))]ψ(p, U) (7.3)

It is clear that the self-recursion in equation (7.3) can not be removed, and hence
no ψ = ψ(p, pt) can be found which is a solution of equation (7.1). However, if
ψ = ψ(p), then equation (7.1) gets rid of its dependence on pt (since each derivative
of ψ with respect to pt vanishes), and hence has solutions.

The one-dimensional harmonic oscillator Hamiltonian, with mass m and fre-
quency ω reads:

H =
mω2

2
x2 +

p2x
2m

(7.4)

From equation (4.1), the representation of x is:

x ≡ i~

[

(1 + βp2x)
∂

∂px
+ βpxpt

∂

∂pt

]

(7.5)

However, due to Lemma 1 above, the Schrödinger equation in momentum repre-
sentation, for the Hamiltonian (7.4), becomes:

d2ψ

dp2x
+

2βpx
1 + βp2x

dψ

dpx
+

2

m~2ω2(1 + βp2x)
2

[

E − p2x
2m

]

ψ = 0 (7.6)

For details of the solution of the above equation, see [5]. It might be hoped that
a representation-free solution for the harmonic oscillator could be found in the
Bargmann-Fock space of generalized creation and annihilation operators.

To find generalized creation and annihilation operators consistent with the al-
gebra given by equation (4.2), we first note that two arbitrary operators A ≡
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a1x + ia2f(px) and B ≡ b1x + ib2f(px), with a1, a2, b1, and b2 all real constants,
can be called creation and annihilation operators, respectively, if and only if they
satisfy both of the following requirements:

(1) [A,B] = 1.
(2) [H,AB] = [H,BA] = 0. Thus B creates, while A annihilates, the eigen-

states of the Hamiltonian. Further, this also means that the operator BA
functions as the number operator.

If the first requirement is violated, then the vacuum state can not be uniquely
identified, as a result of which states above the vacuum can not be defined. If
the second requirement is violated, then the eigenstates of BA are no longer the
eigenstates of the Hamiltonian. See the result derived in [8], in which the operator
a†a violates this second requirement, and is thus not the number operator of the
oscillator, as is incorrectly reported.

Any two operators A and B satisfying both of the above requirements then allow
the Hamiltonian (7.4) to be written in the form:

H = ~ω

[

BA+
g

2

]

(7.7)

where g is a dimensionless constant, such that g = 1 if and only if β = 0. We also
have the following constraints:

lim
β→0

B =

√

mω

2~

(

x− i
px
mω

)

(7.8)

lim
β→0

A =

√

mω

2~

(

x+ i
px
mω

)

(7.9)

We now prove that unless β = 0, such operators A and B, satisfying both of the
above two requirements, do not exist.

To see this, we note that the Hamiltonian defined by equation (7.7) is:

H = ~ω

[

a1b1x
2 − a2b2f

2 + i(a2b1xf + a1b2fx) +
g

2

]

(7.10)

Therefore, we get, from (7.4):

a1b1 =
mω

2~
(7.11)

−a2b2f2 + i(a2b1xf + a1b2fx) +
g

2
=

p2x
2m

(7.12)

It is clear from equation (7.12) that a1b2 = −a2b1. Further, it is clear that the
above two equations complete the second requirement: [H,BA] = 0.

Now, the first requirement gives

[A,B] = i(a1b2 − a2b1)[x, f ] = i2a1b2[x, f ] = 1 (7.13)

which is nothing but the first order partial differential equation:

(1 + βp2x)
∂f

∂px
= − 1

2~a1b2
(7.14)

The solution is:

f = − 1

2~
√
βa1b2

ArcTan(
√

βpx) + C (7.15)
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where C is an arbitrary constant. This solution is the same as reported in [8], with
C = 0. However, substituting f from equation (7.15) into equation (7.12) gives:

1

a2b2

[

p2x
2m~ω

+
1− g

2

]

+
1

4~2βa21b
2
2

ArcTan2(
√

βpx) + C2

=
C

2~
√
βa1b2

ArcTan(
√

βpx)

⇒ C =
1

2

[

1

~
√
βa1b2

ArcTan(
√

βpx)±
√

2

a2b2

√

g − 1− p2x
m~ω

]

(7.16)

If C is a constant, then dC/dpx = 0 identically. Thus, for all px, we must have

2β2p6x + 4βp4x +

[

2 +
a2mω

a21b2~

]

p2x +
a2m

2ω2

a21b2
(1− g) = 0 (7.17)

Since coefficients of all powers of px must individually vanish, we get β = 0, and
g = 1, which is just the result of ordinary, low-energy quantum mechanics.

8. Nonzero minimal uncertainty in momenta

and homogeneity of space

A note about the possibility of nonzero minimal uncertainty in momentum mea-
surements is in order. We saw in Section 2 that the existence of a nonzero minimal
uncertainty in position measurements necessarily renders space inhomogeneous, be-
cause points lose their meaning as geometrically localizable entities. However, if we
assume that position is an observable, then what can we say about the possibility
of a nonzero minimal uncertainty in momentum measurements?

Translational invariance in quantum mechanics is generally expressed by

ψ′(x− δx) ≅ ψ(x)− ηµνδxµ∂νψ(x) (8.1)

where δxµ is an infinitesimal translation. We observe that equation (8.1) is man-
ifestly Lorentz invariant. However, on using equation (4.9) (keeping in mind that
it results in a nonzero minimal uncertainty in momentum measurements), we find
that it is just an approximation to the more general statement:

ψ′(x − δx) ≅ ψ(x) − δxµ[η
µν + αxµxν ]∂νψ(x) (8.2)

Therefore, we find that homogeneity of space simply hinges on whether or not po-
sition is an observable. Conversely, if space is exactly homogeneous, then position
is an observable. In addition, a nonzero minimal uncertainty in momentum mea-
surements too is consistent with Lorentz invariance and translational invariance.
Algebraically, we see that this is because momentum now has a representation in
the position-space, which makes momentum act as the generator of infinitesimal
translations.

At this point, we see that one can generalize the notion of homogeneity to
momentum-space as well. Whereas the existence of a nonzero minimal uncertainty
in position measurements renders position-space inhomogeneous, the existence of
momentum eigenstates maintains the homogeneity of the momentum space. To see
this, we observe that the invariance of wavefunctions in momentum-space, under
infinitesimal variations of momenta, can be expressed as:

Ψ′(p− δp) ≅ Ψ(p)− ηµνδpµ∂p νΨ(p) (8.3)

which, using equation (4.1), may be generalized to:

Ψ′(p− δp) ≅ Ψ(p) + δpµ[−ηµν + βpµpν ]∂p νΨ(p) (8.4)
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which is manifestly Lorentz-invariant. We also observe that both equations (8.2)
and (8.4) preserve the norm for infinitesimal δx and δp.

Now we address the larger question: how likely is Nature to exhibit a nonzero
minimal uncertainty in momentum measurements? For the purpose of generality of
argument, let us include the possibility that Nature may exhibit nonzero minimal
uncertainties in measurements of both position and momentum. The generalized
uncertainty relation, with nonzero minimal uncertainties in both position and mo-
mentum measurements, will take the following form:

∆xµ∆pν ≥ ~

2

∣

∣

∣

∣

−ηµν + a
c3

~G
∆xµ∆xν + a

c3

~G
〈xµ〉〈xν 〉+O(a2)

+b
G

~c3
∆pµ∆pν + b

G

~c3
〈pµ〉〈pν〉+O(b2)

∣

∣

∣

∣

(8.5)

Though one may write an uncertainty relation which breaks Lorentz symmetry,
what is important to realize is that the factors G/~c3 and c3/~G will always be
present.

We observe that the constant G/~c3 is of the order of 10−1kg-2m-2s2. Since the
nonzero minimal uncertainty in position measurements is expected to be observable
only at extremely small scales, it is plausible that the dimensionless constant b is
an decreasing function of lP /L, where L represents the size of the object whose
position is being measured, and lP is the Planck length. Thus we see that unless L
becomes comparable to lP , b remains negligible.

On the other hand, the constant c3/~G, which is 1/l2P , is of the order of 10
69m-2.

Since the nonzero minimal uncertainty in momentum measurements is expected to
be observable only at large scales, it becomes extremely difficult to explain how,
at laboratory scales, this nonzero minimal uncertainty in momentum eludes obser-
vation. This may be an indication, as suggested by the incompatibility between
representations (4.1) and (4.9) (unless a = b = 0), that Nature may exhibit a
nonzero minimal uncertainty only in position measurements.

9. Concluding remarks

By simply deriving the most general Lorentz contravariant representation of
position in momentum space, and then imposing the condition of symmetry on
it, we have shown that the notion of a nonzero minimal uncertainty in position
measurements is consistent with Lorentz invariance. Lorentz invariance alone does
not predict the existence of the nonzero minimal uncertainty in position: it merely
presents us with two alternate - and mutually incompatible - cutoffs, one in position
measurements and the other in momentum measurements. The question of the
existence of one cutoff, and the absence of the other, seems to be arbitrated by the
magnitudes of the constants G/~c3 and c3/~G.

Though Lorentz invariance itself allows nondenumerably infinite geometries, as
is evident from the arbitrary scalars Ωµνσρ

0 and P̃µν
0 in equation (2.8), we have

seen how the symmetry of position operators uniquely picks up two geometries,
one among which is the Snyder-geometry (coefficients of correction terms, in any
generalized algebra, must be similarly determined by imposing the nontrivial con-
dition of symmetry on the operator, instead of using the Jacobi identity, which,
being an identity, will always be satisfied. E.g., see [20, 17], wherein the position
operator is not symmetric.). Further, we have seen that the uncertainty in position
is an increasing function of momentum. Thus, minimal uncertainty is not physi-
cally analogous to a measurable length. Lastly, whether or not Lorentz invariance
breaks down at, or below, the Planck scale, we have seen why the existence of a
nonzero minimal uncertainty necessarily renders space inhomogeneous.
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Owing to the fact that position no longer is an observable, we have been forced to
content ourselves with measuring position with the absolute minimal uncertainty,
instead of arbitrary accuracy. We have seen, in Section 4, how this leads to the
maximally localized wavefunctions, which are in general not orthogonal, but are
normalizable. This result has been reported before too ([5]), however, as explained
in Section 6, the calculations used in that paper are fundamentally incorrect. The
concept of maximal localization states is nothing new, and has been investigated
before. However, as has been argued in Section 6, most existing calculations suffer
from a fundamental error of computing the maximal localization state from the
eigenvalue equation ∆xψ = ~

√
βψ, instead of the correct equation (∆x)2ψ = ~2βψ.

The usual method of doing quantum field theory in a noncommutative spacetime
is by defining an associative *-product of fields. However, with a nonzero minimal
uncertainty in position measurements, we can no longer integrate over a smooth
manifold, but, as explained in [6], over the space of position expectation values of
the maximal localization states. Once the *-product is defined this way, as shown in
[6], the normalizability of the maximal localization state (shown in the Appendix),
which is a consequence of the nonzero minimal uncertainty in position, regularizes
the ultraviolet divergence of the Feynman tadpole diagram. Thus, the nonzero
minimal uncertainty in position measurements effectively acts as a UV cutoff.

It is worthwhile here to note that the result shown in [21], that noncommuta-
tivity of spacetime does not necessarily regularize UV divergences, does in no way
contradict the results shown in the current work. This is because in the geometry
we have considered, [x̂µ, x̂ν ] ∝ (x̂µp̂ν − x̂ν p̂µ), which is not a constant. This makes
the transformation to phase space operators, of the type considered in [21], which
follow the algebra of ordinary quantum mechanics, impossible.
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11. Appendix

We now derive the solution (6.4) of equation (6.2). Since the equation is linear
and homogeneous, we can find a variable separable solution of the form

|~2β〉λ = ψ0(pt)ψ1(px)ψ2(py)ψ3(pz) (11.1)

On dividing equation (6.2) throughout by ψ0ψ1ψ2ψ3, with x represented as in
equation (6.3), we obtain, after collecting all terms with dependence on px:

d2ψ1

dp2x
+

2

~(1 + βp2x)
[~βpx(1 + ζ) + iλ]

dψ1

dpx
+

~2β2p2x(2ζ + θ) + i2~βλζpx + ~2β(1 + ζ) − λ2

~2(1 + βp2x)
2

ψ1 = 0

(11.2)

where

ζ ≡ pt
ψ0

dψ0

dpt
+
py
ψ2

dψ2

dpy
+
pz
ψ3

dψ3

dpz
(11.3)

and

θ =
p2t
ψ0

d2ψ0

dp2t
+
p2y
ψ2

d2ψ2

dp2y
+
p2z
ψ3

d2ψ3

dp2z
+

2
pt
ψ0

py
ψ2

dψ0

dpt

dψ2

dpy
+ 2

py
ψ2

pz
ψ3

dψ2

dpy

dψ3

dpz
+ 2

pz
ψ3

pt
ψ2

dψ3

dpz

dψ0

dpt

(11.4)
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from where we get

θ = ζ2 − ζ + pt
∂ζ

∂pt
+ py

∂ζ

∂py
+ pz

∂ζ

∂pz
(11.5)

On making the substitution χ = (1 + i
√
βpx)/2, equation (11.2) becomes the

hypergeometric equation ([22]):

d2ψ1

dχ2
+
[2(1 + ζ)χ− (1 + ζ + λ

~
√
β
)]

χ(χ− 1)

dψ1

dχ
+

[

(2ζ + θ)χ2 − (2ζ + θ + ζ
λ

~
√
β
)χ

+
1

4

(

ζ + θ + 2ζ
λ

~
√
β
+

λ2

~2β
− 1

)]

ψ1

χ2(χ− 1)2
= 0

(11.6)

The above equation has three regular singularities at 0, 1 and ∞, at which the
indicial equations are, respectively:

r2 +

[

ζ +
λ

~
√
β

]

r +
1

4

[

ζ + θ + ζ
λ

~
√
β
+

λ2

~2β
− 1

]

= 0; (11.7)

r2 +

[

ζ − λ

~
√
β

]

r +
1

4

[

ζ + θ +
λ2

~2β
− 1

]

= 0; (11.8)

r2 − (2ζ + θ)r + 2ζ + θ = 0 (11.9)

with respective roots

α1, α2 =
1

2

[

−
(

ζ +
λ

~
√
β

)

±
√

ζ2 − ζ − θ + 1 + ζ
λ

~
√
β

]

;

γ1, γ2 =
1

2

[

−
(

ζ − λ

~
√
β

)

±
√

ζ2 − ζ − θ + 1− 2ζ
λ

~
√
β

]

;

β1, β2 =
1

2
[2ζ + 1±

√

4(ζ2 − ζ − θ) + 1]

(11.10)

We note in passing that the sum of the pairs of exponents with respect to the
singular points 0, 1 and ∞ is α1 + α2 + β1 + β2 + γ1 + γ2 = 1, just as required.
Now, ψ1 is independent of pt, py, and pz. It is clear from equation (11.5) that
unless ζ is a constant, this condition can not be satisfied, since all the exponents
will otherwise be functions of pt, py, and pz. Taking ζ to be a constant gives, from
equation (11.5), ζ2 − ζ − θ = 0. This reduces the exponents to:

α1, α2 =
1

2

[

−
(

ζ +
λ

~
√
β

)

±
√

1 + ζ
λ

~
√
β

]

;

γ1, γ2 =
1

2

[

−
(

ζ − λ

~
√
β

)

±
√

1− 2ζ
λ

~
√
β

]

;

β1, β2 =
1

2
[2ζ + 1±

√
1] = ζ + 1, ζ

(11.11)
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With the above values of the exponents, we can immediately write the solution
(up to a multiplicative constant) of equation (11.6) as the generalized hypergeo-
metric series ([23]):

ψ1(χ) = P







0 ∞ 1
α1 β1 γ1 ;χ
α2 β2 γ2







= χα1(1 − χ)γ1
2F1(α1 + β1 + γ1, β2 − α1 − γ1; 1− α1 − α2 − 2γ1;χ)

(11.12)

where 2F1(a, b; c;χ) is the Gauss hypergeometric function, which has the following
properties:

(1) For a − 1 = −n, or b − 1 = −n, with n ∈ N, the function reduces to a
polynomial, and for c a non-positive integer, the function is not defined.

(2) In all other cases, the function is convergent if |χ|2 < 1.

Since −∞ < px <∞, it follows that for ψ1(χ) to converge, 2F1(α1+β1+γ1, β2−
α1 − γ1; 1− α1 − α2 − 2γ1;χ) must reduce to a polynomial.

Thus, we impose the following conditions:

α1 + β1 + γ1 − 1 = −n, or
β2 − α1 − γ1 − 1 = −n (11.13)

for n ∈ N, and

1− α1 − α2 − 2γ1 6= −n, n ∈ N ∪ {0}

⇒ ζ 6= 1

4

[

−2(n+ 1)− λ

~
√
β
±

√

√

√

√

(

λ

~
√
β
+ 2

)2

+ 4n
λ

~
√
β

]

(11.14)

This also makes physical sense, since we require ζ to vanish in the limit β → 0. We
shall return to these considerations shortly. Meanwhile, from equation (11.3), with
ζ a constant, we can write:

pt
ψ0

dψ0

dpt
+
py
ψ2

dψ2

dpy
+
pz
ψ3

dψ3

dpz
− ζ =

(

pt
ψ0

dψ0

dpt
− ζ0

)

+

(

py
ψ2

dψ2

dpy
− ζ2

)

+

(

pz
ψ3

dψ3

dpz
− ζ3

)

= 0

(11.15)

where ζ = ζ0 + ζ2 + ζ3. Since the quantities within the three pairs of parentheses
are functionally independent, the solutions are

ψ0(pt) = Π0p
ζ0
t , ψ2(py) = Π2p

ζ2
y , ψ3(pz) = Π3p

ζ3
z (11.16)

where Π0, Π2, and Π3 are all constants. Since in the limit β → 0, ψ0, ψ2, and
ψ3 must all reduce to constants, we conclude

lim
β→0

ζν = 0 ∀ν ∈ {0, 2, 3} (11.17)

Thus, the solution to equation (6.2) is

|~2β〉λ = Πpζ0t p
ζ2
y p

ζ3
z χ

α1(1 − χ)γ1
2F1(α1+β1+γ1, β2−α1−γ1; 1−α1−α2−2γ1;χ)

(11.18)
where Π is a normalization constant. Since |~2β〉λ must not diverge for large
momenta and energies, we require Re(ζν) ≤ 0, ∀ν ∈ {0, 2, 3}. This in turn means
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that Re(ζ) ≤ 0. The first of conditions (11.13) yields a quadratic equation in ζ:

ζ2 +
8~

√
β(n+ δ)2

9λ
ζ +

16(n+ δ)2[(n+ δ)2 − 1]~2β

9λ2
= 0, δ ∈ {0, 1} (11.19)

⇒ ζ =
4~

√
β

9λ
(n+ δ)2

[

−1±
√

9

(n+ δ)2
− 8

]

(11.20)

whose solution, as we observe, has a non-positive real part, as required. The second
of conditions (11.13) yields a quartic equation in ζ whose solutions diverge in the
limit β → 0, and are thus, unacceptable. Thus we see that ζ is a function of a
natural number, which in turn implies that all the exponents in equations (11.11)
are functions of a natural number. With ζ given by equation (11.20), we get an
equivalent form of equation (11.18) (the subscript λ is appended to emphasize the
fact that ζ and all exponents depend explicitly on λ):

|~2β〉λ = Πpζλ0

t pζλ2
y pζλ3

z 2−(αλ1+γλ1)(1 + βp2x)
αλ1+γλ1

2 ei(αλ1−γλ1)ArcTan(
√
βpx)

2F1(1− n,B
(1)
λ ;B

(2)
λ ;
√

1 + βp2xe
iArcTan(

√
βpx)/2)

(11.21)

where

B
(1)
λ = βλ2 − αλ1 − γλ1; B

(2)
λ = 1− αλ1 − αλ2 − 2γλ1 (11.22)

We observe that in the limit β → 0, the above state reduces to a plane wave.
The scalar product λ′〈~2β|~2β〉λ is given by

λ′〈~2β|~2β〉λ =|Π|2
∫

d4p

[1 + β(p2 − p2t )]
5/2

[

p
ζλ0+ζ∗

λ′0
t p

ζλ2+ζ∗
λ′2

y p
ζλ3+ζ∗

λ′3
z

(

√

1 + βp2x
2

)αλ1+γλ1+α∗
λ′1+γ∗

λ′1

ei[(αλ1−γλ1)−(α∗
λ′1−γ∗

λ′1)]ArcTan(
√
βpx)

2F1(1− n,B
(1)
λ ;B

(2)
λ ;
√

1 + βp2xe
iArcTan(

√
βpx)/2)

2F1(1− n,B
∗(1)
λ′ ;B

∗(2)
λ′ ;

√

1 + βp2xe
−iArcTan(

√
βpx)/2)

]

(11.23)

This integral converges only for Re(ζλ0 + ζ∗λ′0) > −1. We assume this to be true.
Then the integral becomes

λ′〈~2β|~2β〉λ =2ζλ+ζ∗
λ′−2|Π|2C

∫ ∞

−∞
dpx

[(

√

1 + βp2x
2

)Re(Nγ+Nα)−2

e
i[λ−λ′

~
√

β
+iIm(Nγ−Nα)]ArcTan(

√
βpx)

2F1(1− n,B
(1)
λ ;B

(2)
λ ;
√

1 + βp2xe
iArcTan(

√
βpx)/2)

2F1(1− n,B
∗(1)
λ′ ;B

∗(2)
λ′ ;

√

1 + βp2xe
−iArcTan(

√
βpx)/2)

]

(11.24)
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where

Nα = (−1)δα

√

√

√

√1 +
4

9
(n+ δ)2

[

−1 + (−1)δ0

√

9

(n+ δ)2
− 8

]

Nγ = (−1)δγ

√

√

√

√1− 8

9
(n+ δ)2

[

−1 + (−1)δ0

√

9

(n+ δ)2
− 8

]

δ0, δα, δγ ∈ {0, 1}

(11.25)

and

C =− i1−ζλ3−ζ∗
λ′3

3β(3+ζλ+ζ∗
λ′ )/2

√
π
[1 + (−1)ζλ0+ζ∗

λ′0 ][1 + (−1)ζλ2+ζ∗
λ′2 ][1 + (−1)ζλ3+ζ∗

λ′3 ]

Γ

(

1 + ζλ0 + ζ∗λ′0

2

)

Γ

(

1 + ζλ2 + ζ∗λ′2

2

)

Γ

(

1 + ζλ3 + ζ∗λ′3

2

)

Γ

(

2− ζλ − ζ∗λ′

2

)

(11.26)

Equation (11.24) reduces to

λ′〈~2β|~2β〉λ =2ζλ+ζ∗
λ′−2|Π|2C

n−1
∑

r=s=0

Crs
∫ ∞

−∞
dpx(1 + βp2x)

Re(Nγ+Nα)+r+s−2

2

e
i(λ−λ′

~
√

β
+r−s)−Im(Nγ−Nα)

(11.27)

where

Crs =
Γ(1− n+ r)Γ(1 − n+ s)Γ(B

(1)
λ + r)Γ(B

∗(1)
λ′ + s)

r!s!Γ(B
(2)
λ + r)Γ(B

∗(2)
λ′ + s)

(11.28)

The integral in equation (11.27) converges if Re(Nγ +Nα) + r + s < 1, which can
be shown to hold. Equation (11.27) then evaluates to

λ′〈~2β|~2β〉λ =2ζλ+ζ∗
λ′−2|Π|2

√

π

β
C

n−1
∑

r=s=0

Crs
Γ(A1)Γ(A2 + 1/2)

[

Γ(A1)Γ(A2)

2F1

(

A1

2
,
1 +A1

2
; 1−A2; 1

)

+ 2
2s−1−λ−λ′

~
√

β
+N∗

γ+NαΓ(A1 + 2A2)

Γ(−A2)2F1

(

A1 + 2A2

2
,
1 +A1 + 2A2

2
;A2 + 1; 1

)]

(11.29)

where

A1 = −λ− λ′

~
√
β

− r + s− iIm(Nγ −Nα);

A2 =
1

2

[

1 +
λ− λ′

~
√
β

− 2s− (Nγ +N∗
α)

] (11.30)
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Therefore, λ′〈~2β|~2β〉λ is not necessarily zero. However, we find that the max-
imal localization state is normalizable:

λ〈~2β|~2β〉λ =22[Re(ζλ)−1]|Π|2
√

π

β
C̃

n−1
∑

r=s=0

C̃rs
Γ(Ã1)Γ(Ã2 + 1/2)

[

Γ(Ã1)Γ(Ã2)

2F1

(

Ã1

2
,
1 + Ã1

2
; 1− Ã2; 1

)

+ 22s−1+N∗
γ+NαΓ(Ã1 + 2Ã2)

Γ(−Ã2)2F1

(

Ã1 + 2Ã2

2
,
1 + Ã1 + 2Ã2

2
; Ã2 + 1; 1

)]

= 1

(11.31)

where

C̃ =
−8i1−2Re(ζλ3)

3β3/2+Re(ζλ)
Γ
(1

2
+Re(ζλ0)

)

Γ
(1

2
+Re(ζλ2)

)

Γ
(1

2
+Re(ζλ3)

)

Γ(1 −Re(ζλ));

C̃rs =
Γ(1 − n+ r)Γ(1 − n+ s)Γ(B

(1)
λ + r)Γ(B

∗(1)
λ + s)

r!s!Γ(B
(2)
λ + r)Γ(B

∗(2)
λ + s)

;

Ã1 = s− r − iIm(Nγ −Nα);

Ã2 =
1

2
[1− 2s− (Nγ +N∗

α)]

(11.32)
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