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Abstract

This is a companion paper of our previous work [1] where we studied the ther-

modynamics and phase structure of asymptotically flat black p-branes in a cavity in

arbitrary dimensions D in a canonical ensemble. In this work we study the thermo-

dynamics and phase structure of the same in a grand canonical ensemble. Since the

boundary data in two cases are different (for the grand canonical ensemble bound-

ary potential is fixed instead of the charge as in canonical ensemble) the stability

analysis and the phase structure in the two cases are quite different. For the case of

grand canonical ensemble, in some situation, the phase structure of charged black

p-branes have some similarities as well as dissimilarities with that of the zero charge

black p-branes in canonical ensemble. So, in the grand canonical ensemble there

is an analog of Hawking-Page transition, even for the charged black p-brane, as

opposed to the canonical ensemble. Our study applies to non-dilatonic as well as

dilatonic black p-branes in D space-time dimensions.
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1 Introduction

Black holes in asymptotically AdS space have attracted a lot of attention in recent years.

The reason is partly due to the AdS/CFT correspondence proposed by Maldacena [2]

and its consequences [3, 4, 5]. Black holes in AdS space are thermodynamically stable [6]

and so, the equilibrium states and the phase structure of such space-times can be easily

studied. By AdS/CFT correspondence this in turn will provide us with the information

about the similar states and phase structure on the CFT or gauge theory side [7, 8].

Black hole space-time is naturally associated with a Hawking temperature [9], so the

gauge theory will also be at a finite temperature [10]. In particular, AdS black holes are

well-known to undergo a Hawking-Page transition [6] and by AdS/CFT, this corresponds

to the confinement-deconfinement phase transition [10] in SU(N) gauge theory at large

N .

However, it is well-known that the phase structure just mentioned is not unique to

the AdS black holes, but similar structure also arises in suitably stabilized flat as well as

dS black holes [11, 12]. Higher dimensional theories like string or M-theory are known to

admit higher dimensional black objects in the form of black p-branes [13, 14, 15] which are

asymptotically flat and so, it would be interesting to see what kind of equilibria and phase

structure they give rise to. With this motivation we obtained the equilibrium states and

the phase structure of the black p-branes in the canonical ensemble in the previous work

[1]. In this paper we study the same for the black p-branes in grand canonical ensemble.

Since the boundary data in these two ensembles are quite different, their phase structures

are also expected to be different and it is of interest to see how they differ with the change

of the boundary data.

We will consider the dilatonic black p-branes (in D dimensions) which are the solutions

of D-dimensional gravity coupled to a dilaton (a scalar field) and a (p + 1)-form gauge

field [14]. These are asymptotically flat and so are thermodynamically unstable as an

isolated black p-brane would radiate energy in the form of Hawking radiation [9]. In

order to restore thermodynamic stability so that equilibrium thermodynamics and phase

structure can be studied we must consider ensembles that include not only the branes

but also their environment. As self-gravitating systems are spatially inhomogeneous, any

specification of such ensembles requires not just thermodynamic quantities of interest but

the place at which they take the specified values. In other words, we place the black brane

in a cavity a la York [16] and its extension in the charged case. The wall of the cavity is

fixed at a radial distance ρB, and we will keep the temperature and the gauge potential

at the wall of the cavity (at ρB) fixed. This will define a grand canonical ensemble (Note
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that for the canonical ensemble, the charge enclosed in the cavity is fixed instead.) So,

for the grand canonical ensemble charge can vary. We will study the phase structure of

black p-branes in this ensemble. Charged black holes in the grand canonical ensemble

have been studied in [17, 18]

We will employ the Euclidean action formalism [19, 16, 20] to the dilatonic black p-

brane geometry in D space-time dimensions. We first write the Euclidean action contain-

ing the gravitational part including a Gibbons-Hawking boundary term [19], the dilatonic

part and the form-field part. By using the equation of motion we simplify the action and

then evaluate it for the given black p-brane geometry. To the leading order this action

is related to the grand potential or Gibbs free energy of the system and is an essential

entity for the stability analysis. The stationary point of this action will determine the

relevant configuration with the temperature and potential fixed at the wall of the cavity.

The second derivative or derivatives of the action at the stationary point can be used to

give us the information about the stability of the black brane at that point. We find the

condition which determines at least the local stability of the black brane phase. In the

case when there is a stable black brane phase, we find that there exists a minimum tem-

perature below which there is only ‘hot flat space’ phase and no black brane phase. But

above this temperature there exist two black brane phases with two different radii. The

smaller one is unstable which corresponds to the local maximum of the free energy and

the larger one is locally stable and corresponds to the local minimum of the free energy.

This local minimum becomes a global one only after the temperature rises above a certain

value. Below this value and above minimum temperature, the locally stable black brane

eventually makes a transition to the ‘hot flat space’ by a topological phase transition.

But above this value, the large black brane is globally stable. Upto this point the picture

is very similar to the chargeless black brane case in the canonical ensemble [1]. But now

for the grand canonical ensemble as the temperature rises more, the globally stable black

brane phase disappears after a certain value and at this point there is only one unstable

black brane phase and the stable phase here would be the ‘hot flat space’. Also note that

unlike in the case of canonical ensemble, here we do not have a situation where we have

two locally stable black brane phases and so there is no such phase transition similar to

the van der Waals-Maxwell liquid-gas phase transition or even a transition from one black

brane phase to the other.

This paper is organized as follows. In section 2, we discuss the dilatonic black p-brane

solution and evaluate the action in Euclidean signature. Then we discuss the stability

of various equilibrium states from this action in section 3. The phase structure of the

black p-brane is discussed in section 4. Then we conclude in section 5. A more general

3



two-variable stability analysis (as opposed to one-variable stability analysis performed in

section 3) is presented in the Appendix.

2 Black p-brane solution and the action

The black p-brane solution was originally constructed [13] as a solution to the ten di-

mensional supergravity containing a metric, a dilaton and a (p+ 1)-form gauge field and

was generalized to arbitrary dimensions in [14]. These solutions are given in Lorentzian

signature, but for the purpose of studying thermodynamics, we write the black p-brane

solution in Euclidean signature as (see for example [21]),

ds2 = ∆+∆
−

d
D−2

− dt2 +∆
d̃

D−2

−

d−1
∑

i=1

(dxi)2 +∆−1
+ ∆

a2

2d̃
−1

− dρ2 + ρ2∆
a2

2d̃
− Ω2

d̃+1
,

A[p+1] = −ieaφ0/2

[

(

r−
r+

)d̃/2

−
(

r−r+
ρ2

)d̃/2
]

dt ∧ dx1 ∧ . . . ∧ dxp,

F[p+2] ≡ dA[p+1] = −ieaφ0/2d̃
(r−r+)

d̃/2

ρd̃+1
dρ ∧ dt ∧ dx1 ∧ . . . ∧ dxp,

e2(φ−φ0) = ∆a
−
, (1)

Here we have defined

∆± = 1−
(

r±
ρ

)d̃

(2)

where, r± are the two parameters characterizing the solution and are related to the mass

and the charge of the black brane. In the metric (1) the Euclidean time is periodic and

so, the metric has an isometry S1 × SO(d−1) × SO(d̃+2) indicating that it represents a

(d−1) ≡ p-brane in Euclidean signature. The total space-time dimesion is D = d+ d̃+2,

where the space transverse to the p-brane has the dimensionality d̃ + 2. φ is the dilaton

and φ0 is its asymptotic value and related to the string coupling as gs = eφ0 . a is the

dilaton coupling and is given for the supergravity theory with maximal supersymmetry

by,

a2 = 4−
2dd̃

D − 2
. (3)

It is clear from the Lorentzian form of the above metric that when r− = 0, and a = 0, it

reduces to theD-dimensional Schwarzschild solution which has an event horizon at ρ = r+,

whereas, at ρ = r−, there is a curvature singularity. So, the metric in (1) represents a

black p-brane only for r+ > r−, with r+ = r−, being its extremal limit [13]. A p-brane
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naturally couples to the (p+1)-form gauge field whose form and its field strength are given

in (1). Note that we have defined the gauge potential with a constant shift, following [18],

in such a way that it vanishes on the horizon so that it is well-defined on the local inertial

frame. The black p-brane will be placed in a cavity with its wall at ρ = ρB. It is clear

from the metric in (1) that the physical radius of the cavity is

ρ̄B = ∆
a2

4d̃
− ρB (4)

while ρB is merely the coordinate radius. So, it is ρ̄B which we should fix in the following

discussion and not ρB. Note that when the black brane is non-dilatonic a = 0 and in

that case ρB = ρ̄B. Also we fix the dilaton 4 at ρ̄B, which indicates that the asymptotic

value of the dilaton is not fixed for the present consideration and this is crucial for our

discussion in expressing relevant quantities in ‘barred’ parameters. By this argument we

also have

r̄± = ∆
a2

4d̃
− r± (5)

and r̄± are the proper parameters which we should use in the present context. In terms

of the ‘barred’ parameters ∆± remain the same as before,

∆± = 1−
rd̃
±

ρd̃B
= 1−

r̄d̃
±

ρ̄d̃B
. (6)

Since the Euclidean time coordinate in (1) is periodic so, for the metric to be well-defined

without a conical singularity at ρ = r+, the Euclidean time must have a periodicity,

β∗ =
4πr+

d̃

(

1−
rd̃
−

rd̃+

)
1
d̃
−

1
2

, (7)

which is the inverse temperature at ρ = ∞. The local β(ρ̄B) is given as

β = β(ρ̄B) = ∆
1
2
+∆

−
d

2(d+d̃)

− β∗ (8)

which is the inverse of local temperature at ρ̄B when in thermal equilibrium contact with

the environment (the wall of cavity) at the inverse of temperature β. Note that in terms

of the ‘barred’ parameters the inverse of temperature β can be expressed from (8) and

(4) as,

β =
4πr+

d̃
∆

1
2
+∆

−
d

2(d+d̃)

−

(

1−
rd̃
−

rd̃+

)
1
d̃
−

1
2

=
4πr̄+

d̃
∆

1
2
+∆

−
1
d̃

−

(

1−
r̄d̃
−

r̄d̃+

)
1
d̃
−

1
2

, (9)

4This enables us to obtain its correct equation of motion from the corresponding action in the presence

of a boundary.
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where in the second equality ∆± are also expressed in terms of ‘barred’ parameters. Also

the charge is defined as,

Qd =
i

2
√
κ

∫

e−a(d)φ ∗ F[p+2] =
Ωd̃+1

2
√
κ
e−aφ0/2d̃(r+r−)

d̃/2

=
Ωd̃+1d̃√

2κ
e−aφ̄/2(r̄+r̄−)

d̃/2. (10)

In (10), κ is a constant with 1/(2κ2) appearing in front of the Hilbert-Einstein action in

canonical frame but containing no string coupling gs, ∗F[p+2] denotes the Hodge dual of

the (p + 2)-form field given in (1). Also, Ωn denotes the volume of a unit n-sphere. In

the last line of (10) we have expressed the asymptotic value of the dilaton by the fixed

dilaton φ̄ ≡ φ(ρ̄B) at the wall of the cavity from the relation (1) and then expressed r±

by r̄± from (5).

In the grand canonical ensemble, the fixed quantities are the physical radius of the

wall of cavity ρ̄B, the temperature, the brane volume Vp = ∆
d̃(d−1)
2(D−2)

− V ∗

p with V ∗

p =
∫

dpx

and the potential, all at the wall of cavity. The potential in the local inertial frame at the

wall of cavity can be obtained from A[p+1] and the metric in (1) as,

A[p+1] = −ieaφ̄/2 (∆−∆+)
−

1
2

(

r−
r+

)
d̃
2

(

1−
rd̃+

ρd̃B

)

dt̄ ∧ dx̄1 . . . ∧ dx̄p

≡ −i
√
2κΦdt̄ ∧ dx̄1 . . . dx̄p (11)

where (t̄, x̄1, . . . , x̄p) are the coordinates in the local inertial frame and is related to the

original coordinates as t̄ = ∆
1
2
+∆

−
d

2(D−2)

− t and x̄i = ∆
d̃

2(D−2)

− xi for i = 1, 2, . . . , p as can be

seen from the metric in (1). So, Φ is the potential conjugate to the charge and is fixed.

We will now evaluate the action with these boundary data.

The Euclidean action for the dilatonic black branes in the canonical ensemble has

already been evaluated in the Appendix of our previous work [1]. We will use that result

to evaluate the action for the grand canonical ensemble. The relevant action for the

gravity coupled to the dilaton and a (p+1)-form gauge field in the canonical ensemble is,

ICE = ICE (g) + ICE (φ) + ICE (F ) (12)

where, ICE (g) is the gravitational part of the action which has a Hilbert-Einstein term

and a Gibbons-Hawking boundary term [19], ICE (φ) is the dilatonic part and ICE (F ) is the

form-field part. The first two terms remain exactly the same as given in the first two lines
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in eq.(101) of [1] in the grand canonical ensemble, however, the form-field part which in

the canonical ensemble has the form,

ICE (F ) =
1

2κ2

1

2(d+ 1)!

∫

M

dDx
√
g e−a(d)φ F 2

d+1

−
1

2κ2

1

d!

∫

∂M

dD−1x
√
γ nµ e

−a(d)φ F µµ1µ2···µdAµ1µ2···µd
, (13)

will differ in the grand canonical ensemble since the potential at the wall of the cavity

is fixed and so, the last term in (13) will be absent in the grand canonical ensemble.

Therefore, the action for the grand canonical ensemble can be obtained from that of the

canonical ensemble by the relation,

IGC
E = ICE +

1

2κ2

1

d!

∫

∂M

dD−1x
√
γ nµ e

−a(d)φ F µµ1µ2···µdAµ1µ2···µd
. (14)

Here ∂M denotes the boundary of the whole space-time M and nµ is a space-like vector

normal to the boundary. γ is the determinant of the boundary metric. Evaluating the

last term in (14) for the black p-brane configuration given in (1) we get,

IGC
E = ICE −

β∗V ∗

p

2κ2
Ωd̃+1d̃r

d̃
−
∆+ = ICE − βVpQdΦ, (15)

where we have used the charge expression and the potential from (10) and (11) as,

Qd =
Ωd̃+1d̃√

2κ
e−aφ̄/2(r̄+r̄−)

d̃
2 ,

Φ =
1

√
2κ

eaφ̄/2
(

r̄−
r̄+

) d̃
2
(

∆+

∆−

) 1
2

. (16)

Now using the form of the Euclidean action for the canonical ensemble given in eqs.(110)

and (114) in [1] we write (15) as

IE(β,Φ, ρ̄B;Qd, r̄+) = −
βVpΩd̃+1

2κ2
ρ̄d̃B

[

(d̃+ 2)

(

∆+

∆−

)1/2

+ d̃(∆+∆−)
1/2 − 2(d̃+ 1)

]

−
4πVpΩd̃+1

2κ2
r̄d̃+1
+ ∆

−
1
2
−

1
d̃

−

(

1−
r̄d̃
−

r̄d̃+

)
1
2
+ 1

d̃

− βVpQdΦ. (17)

Since this is the Euclidean action for the black p-brane in the grand canonical ensemble

we will be working with, for brevity, we have removed the superscript ‘GC’ from IE

in writing (17). Note that we have expressed everything on the r.h.s. in terms of the

‘barred’ parameters showing that the formalism works for both the non-dilatonic as well
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as dilatonic branes. In (17) β, ρ̄B, Φ are the inverse of temperature, the physical radius

and the potential of the cavity, therefore are all fixed, and Qd, r̄+ are variables. Note that

r̄− is not independent and can be expressed in terms of Qd and r̄+ from (16) as,

r̄d̃
−
=

(√
2κQd

Ωd̃+1d̃
eaφ̄/2

)2
1

r̄d̃+
. (18)

Substituting (18) in (17) we can express the action in terms of two variables Qd and r̄+.

Then varying the action with respect to Qd and putting that to zero, i.e., at the stationary

point we obtain (after some simplification),

∂IE
∂Qd

= 0

⇒ Φ =
Qde

aφ̄

d̃Ωd̃+1r̄
d̃
+

(

∆+

∆−

)
1
2











1 +
d̃+ 2

d̃
∆−1

−











4πr̄+∆
1
2
+∆

−
1
d̃

−

βd̃

(

1− r̄d̃
−

r̄d̃+

) 1
2
−

1
d̃

− 1





















. (19)

Similarly, varying the action with respect to the other variable r̄+ and setting that to

zero, i.e., at the stationary point we obtain,

∂IE
∂r̄+

= 0 ⇒ β =
4πr̄+

d̃
∆

1
2
+∆

−
1
d̃

−

(

1−
r̄d̃
−

r̄d̃+

) 1
d̃
−

1
2

. (20)

This is the correct form of β we had given earlier in (9). Using this (20) in (19) and

substituting the form of Qd given in the first equation of (16) we recover the correct form

of the potential given in the second equation of (16). This is a verification that the action

IE given in (17) is indeed correct. We will use this form of the action in the next section to

study the stability of the equilibrium states of the black p-branes in the grand canonical

ensemble.

3 Stability analysis of the black p-branes

For the purpose of the stability analysis we will define some new parameters following

refs.[18, 12, 11] and rewrite the action, the potential and the inverse temperature in terms

of those parameters. Let us first define the reduced charge as,

Q∗

d =

(√
2κQd

Ωd̃+1d̃
eaφ̄/2

)
1
d̃

(21)
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Then from (18) we have

r̄− =
(Q∗

d)
2

r̄+
(22)

Next we define the following parameters,

x =

(

r̄+
ρ̄B

)d̃

, b̄ =
β

4πρ̄B
, q =

(

Q∗

d

ρ̄B

)d̃

(23)

where the dimensionless parameter b̄ is fixed, but the other two parameters x and q vary.

Note that the parameter b̄ is related to the inverse of temperature of the environment, q

is related to the charge and x is related to the horizon size. In terms of these parameters

we have

∆+ = 1−
r̄d̃+

ρ̄d̃B
= 1− x

∆− = 1−
r̄d̃
−

ρ̄d̃B
= 1−

(Q∗

d)
2d̃

r̄d̃+ρ̄
d̃
B

= 1−
q2

x

1−
r̄d̃
−

r̄d̃+
= 1−

q2

x2
(24)

Using (24) the two equations at the equilibrium (at the stationary point) giving the

constant temperature and the potential at the wall of the cavity given in (20) and (19)

can be written as

b̄ = b(x, q), ϕ̄ = ϕ(x, q) (25)

where we have defined ϕ̄ =
√
2κe−aφ̄/2Φ and

b(x, q) =
1

d̃

x
1
d̃ (1− x)

1
2

(

1− q2

x2

)
1
2
−

1
d̃

(

1− q2

x

)
1
d̃

, ϕ(x, q) =
q

x

(

1− x

1− q2

x

)
1
2

. (26)

The two equations in (25) can also be derived from the following reduced action in a

similar fashion as (20) and (19) but now with respect to variables x and q, respectively,

ĨE(x, q) ≡
2κ2IE

4πρ̄d̃+1
B VpΩd̃+1

= −b̄



(d̃+ 2)

(

1− x

1− q2

x

)
1
2

+ d̃(1− x)
1
2

(

1−
q2

x

)
1
2

− 2(d̃+ 1) + d̃qϕ̄





−x1+ 1
d̃

(

1− q2

x2

1− q2

x

)
1
2
+ 1

d̃

, (27)
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where IE is as given in (17). These two equations, for given b̄ and ϕ̄, determine x and

q completely. However, in the presence of two variables, the analysis of stability at the

extremal points determined by these two equations is a bit more complicated than that

given in [1], in the canonical ensemble. There the relation at the charge equilibrium

for fixed charge has been employed to reduce the two variables to only one5. While the

analysis of stability with two variables, which we will perform in the Appendix, is more

complete, there actually exists an analogous simpler analysis as in canonical case. But

for this we need to employ the potential relation at the equilibrium for fixed potential,

as given in the second equation of (25), to reduce the two variables to one variable. In

what follows, we will first perform the simpler one-variable analysis and find the stability

condition. We will perform the more complete yet more complicated two-variable analysis

in the Appendix and show that these two approaches give the same stability condition.

Note that since x/q = (r̄+/Q
∗

d)
d̃ = (r̄+/r̄−)

d̃/2 > 1, so, x > q and since x = (r̄+/ρ̄B)
d̃ <

1, so, x has the range q < x < 1. We have excluded the two end points x = 1 and x = q

from our consideration. The former corresponds to taking ρ̄B = r̄+, i.e., the cavity

is placed on the horizon where the ensemble temperature is infinity. While the latter

corresponds to the BPS case for which the temperature is zero. In either case, strictly

speaking, the current description using zero order approximation breaks down. So, we

limit ourselves to the relevant region of 0 ≤ q < x < 1 in what follows. Also note from

ϕ expression in (26) that since 1 − q2/x = 1 − (q2/x2)x > 1 − x, so we have 0 ≤ ϕ < 1,

with ϕ = 0 corresponding to the chargeless (q = 0) case.

Let us now consider the one-variable case first, i.e., when the second equation in (25)

0 ≤ ϕ̄ = ϕ(x, q) < 1 is satisfied. We can now solve this equation to get,

q2

x2
=

ϕ̄2

1− (1− ϕ̄2)x
. (28)

Now substituting (28) in b(x, q) equation in (26) we have,

bϕ̄(x) ≡ b(x, q) =
x

1
d̃ [1− (1− ϕ̄2) x]

1
2

d̃ (1− ϕ̄2)
1
2
−

1
d̃

, (29)

and in the reduced action in (27), we have

Ĩ ϕ̄E(x) ≡ ĨE(x, q) = −2b̄
(

d̃+ 1
) [

(

1−
(

1− ϕ̄2
)

x
)1/2 − 1

]

− x1+1/d̃
(

1− ϕ̄2
)1/2+1/d̃

. (30)

5While the one-variable analysis of stability given in [1] appears natural in canonical ensemble, there

exists also a more general two-variable analysis which is more complete yet more complicated and gives

the same stability condition. For the present case, the two-variable analysis seems more natural but as

we will show in the text that when the second equation in (25) for the fixed potential is used to reduce

the two variables to only one, the same stability condition can be reached.
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One can easily check that

dĨ ϕ̄E(x)

dx
=

(1 + d̃)(1− ϕ̄2)

[1− (1− ϕ̄2)x]1/2
[

b̄− bϕ̄(x)
]

, (31)

where bϕ̄(x) is defined in (29). This vanishes at the stationary point of the action, i.e.,

b̄ = bϕ̄(x̄), (32)

which is the first equation in (25) under the present consideration. The local stability at

the stationary point is determined by requiring it to be a local minimum of the action,

i.e.,
d2I ϕ̄E(x)

dx2

∣

∣

∣

∣

x=x̄

= −
(1 + d̃)(1− ϕ̄2)

[1− (1− ϕ̄2)x̄]1/2
dbϕ̄(x̄)

dx̄
> 0. (33)

In other words, we need to have (since the other factors are all positive)

dbϕ̄(x̄)

dx̄
=

x̄1/d̃−1
[

2− (2 + d̃)x̄(1− ϕ̄2)
]

2d̃2(1− ϕ̄2)1/2−1/d̃ [1− (1− ϕ̄2)x̄]1/2
< 0, (34)

which gives the local stability condition as

2− (2 + d̃)x̄(1− ϕ̄2) < 0. (35)

In the above, x̄ is a solution of the present equation of state as given in (32).

As we will show in detail in the Appendix that the above local stability condition (35)

continues to hold when we consider the more general yet more complicated two-variable

situation and this justifies the simplified one-variable analysis of stability performed above.

We therefore conclude that for the local stability of the system we must have (35) to

be satisfied. To understand the meaning of the stability condition (35) we rewrite it as

x̄
(

1− ϕ̄2
)

>
2

d̃+ 2
(36)

which further implies,

2

d̃+ 2
< x̄ < 1, and 0 < ϕ̄ <

√

d̃

d̃+ 2
. (37)

In other words, for given ϕ̄ satisfying the above constraint, only x̄ which is in the range

specified in (37), gives at least a locally stable system. Otherwise the system is not stable.

This concludes our discussion on the stability of asymptotically flat black p-branes

in the grand canonical ensemble. Using this information we will construct the phase

structure of the equilibrium states of the black p-branes in this ensemble and compare

with that in the canonical ensemble.
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4 Phase structure of black p-branes

We have seen in the previous section that the stability condition for the black p-branes

is given by (35). When we use the potential condition at the equilibrium, ϕ̄ = ϕ(x, q), to

eliminate q and obtain (29), i.e,

bϕ̄(x) =
x

1
d̃ [1− (1− ϕ̄2) x]

1
2

d̃ (1− ϕ̄2)
1
2
−

1
d̃

, (38)

we have the range of x as 0 < x < 1. This is different from the fixed charge case of

the canonical ensemble where the range is q < x < 1, since here we are considering the

grand canonical ensemble where the potential ϕ̄ is fixed and not the charge q. Even

for the zero charge case of the canonical ensemble, where the range of x in the two

cases are the same the phase structure in these two cases, as we will see, will be quite

different due to the different boundary data in the two ensembles. Note that as x → 0,

bϕ̄(x → 0) → bϕ̄(0) = 0, exactly as in the canonical case, but as x → 1, bϕ̄(x → 1) → bϕ̄(1),

where it has the value,

bϕ̄(1) =
ϕ̄

d̃ (1− ϕ̄2)
1
2
−

1
d̃

> 0 (39)

and this is different from the fixed charge canonical case including the zero charge case.

The local temperature at this point has the value

Tϕ̄(1) =
d̃ (1− ϕ̄2)

1
2
−

1
d̃

4πρ̄Bϕ̄
. (40)

Also note from (38) that in the range 0 < x < 1, bϕ̄(x) > 0 and so, if we plot bϕ̄(x)

vs. x curve it will start from zero when x → 0 and then it rises and ends at bϕ̄(1) > 0

given above when x → 1. In between there can be extrema for bϕ̄(x) and in fact, it is not

difficult to check from

dbϕ̄(x)

dx
=

bϕ̄(x)
[

2− (d̃+ 2)x(1− ϕ̄2)
]

2d̃ x [1− x(1 − ϕ̄2)]
, (41)

that there can be only one extremum and that is a maximum if it exists at all. This

maximum is not always guaranteed to exist unlike the chargeless case of canonical ensem-

ble. However, when it exists indeed, the characteristic behavior of bϕ̄(x) vs. x is given in

Figure 1. The plot of Tϕ̄(x) vs. x curve will have opposite behavior. It will start from

infinity when x → 0 then the curve will drop and end at Tϕ̄(1) as x → 1. In between

there can be an extremum and in this case it is a minimum. Let us now determine the
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condition for the existence of the maximum in bϕ̄(x) or minimum of Tϕ̄(x). Equating (41)

to zero gives us the maximum of x as,

xmax =
2

(2 + d̃)(1− ϕ̄2)
. (42)

Now substituting this value in (38) we determine the maximum value of bϕ̄(x) and from

there the minimum value of Tϕ̄(x) as,

(bϕ̄)max =

(

2

2 + d̃

)
1
d̃
[

d̃(d̃+ 2)
(

1− ϕ̄2
)

]−
1
2 ⇒

(Tϕ̄)min =

(

2 + d̃

2

) 1
d̃

[

d̃(d̃+ 2) (1− ϕ̄2)
]

1
2

4πρ̄B
. (43)

The condition for the existence of maximum is xmax < 1, which gives ϕ̄ < (d̃/(d̃+ 2))1/2,

i.e., the same constraint we obtained earlier in (37), as expected. From this we have the

following constraint on (bϕ̄)max or (Tϕ̄)min,

(bϕ̄)max <
1
√

2d̃

(

2

2 + d̃

)
1
d̃

⇒ (Tϕ̄)min >

√

2d̃

4πρ̄B

(

2 + d̃

2

)
1
d̃

(44)

where we have used the constraint on ϕ̄ given in (37). So, when (bϕ̄)max ((Tϕ̄)min) given in

eq.(43) satisfy the constraint (44) we will have the maximum (minimum). From Figure 1,

we can see that when xmax < x < 1, dbϕ̄/dx < 0 and we have a locally stable system and

when 0 < x < xmax, dbϕ̄/dx > 0 and we have an unstable system consistent with what we

discussed earlier.

For any given ϕ̄ and b̄, satisfying bϕ̄(1) < b̄ < (bϕ̄)max with bϕ̄(1) as given in (39), one

expects two black brane solutions with radii x1 and x2, where x1 < x2 from b̄ = bϕ̄(x) as

shown in Figure 1 and only the large one (x2) will give a locally stable phase. The small

one (x1) will be unstable. Since here for each given ϕ̄ and b̄, we have only one locally

stable phase, we don’t have a thermodynamical phase transition like in the canonical

ensemble6, even though x1 = x2 = xmax seems to appear as a critical point. When ϕ̄ > 1

and/or b̄ > (bϕ̄)max (T̄ < (Tϕ̄)min) no black brane phase is possible in the grand canonical

ensemble and the only possible thermally stable phase here is the ‘hot flat space’. Also

for 0 = bϕ̄(0) < b̄ < bϕ̄(1), assuming ϕ̄ < 1 from now on, no stable black brane phase

6In the canonical ensemble there is a phase transition between two stable black brane phases, one

of which is locally stable and the other is globally stable. Which one is locally stable and which one is

globally stable depend on the temperature of the environment in contact with the system [1].

13
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Figure 1: The typical behavior of bϕ̄(x) vs. x.

is possible and the ‘hot flat space’ is again the thermally stable phase. This clearly

shows that the thermodynamics and the phase structure are quite different for the grand

canonical ensemble than those in the canonical ensemble [1] and this is expected since the

boundary data are different in the two cases.

To the leading order, the Euclidean action is directly related to the grand potential or

Gibbs free energy as βΩ = IE . So, for a given temperature, smaller the value of IE , the

more stable the system is. We will consider the reduced action ĨE. For a given b̄ and ϕ̄

satisfying their respective constraints such that the system is locally stable, if the reduced

action is positive at the stationary point, it is metastable since the reduced action has

smaller value, i.e., zero, for the ‘hot flat space’ with the same boundary data and will

make a transition to this phase. In other words, if the system is initially at the locally

stable black brane phase, after some time, a topological phase transition would occur so

the black brane phase will become the ‘hot flat space’ phase with a different topology via a

topological phase transition. So, for making sure that we have a stable black brane phase,

we need to look for condition such that the minimum of the reduced action is actually

a global minimum. This can be simply realized by conditions such that the stationary

action at the minimum is negative.

The reduced action at the stationary point is described by bϕ̄(x̄) = b̄ in the action (30)

and is given as,

Ĩ ϕ̄E = −
b̄

y
(d̃+ 2)(y − 1)

(

y −
d̃

d̃+ 2

)

(45)

where y =
√

1− x̄(1− ϕ̄2). Given the fact that y < 1, so a negative reduced action
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requires,

y <
d̃

d̃+ 2
(46)

which in turn gives,

x̄
(

1− ϕ̄2
)

>
4(d̃+ 1)

(d̃+ 2)2
, (47)

where we have used the expression of y given above. Note that this condition is consistent

with the local stability condition given in (36) since 4(d̃+ 1)/(d̃+ 2)2 > 2/(d̃ + 2). Also

note that 4(d̃ + 1)/(d̃ + 2)2 < 1 for all d̃ and therefore, there is no contradiction. If we

denote

x̄g =
4(d̃+ 1)

(d̃+ 2)2 (1− ϕ̄2)
> xmax (48)

then for 0 < ϕ̄ < d̃/(d̃+ 2) and bϕ̄(1) < b̄ < (bϕ̄)g ((Tϕ̄)g < T̄ < Tϕ̄(1)), where,

(bϕ̄)g =

(

4(d̃+ 1)
)

1
d̃

(d̃+ 2)1+
2
d̃

√

1− ϕ̄2
< (bϕ̄)max (49)

and

(Tϕ̄)g =
(d̃+ 2)1+

2
d̃

√

1− ϕ̄2

4πρ̄B

(

4(d̃+ 1)
)

1
d̃

(50)

the reduced action has a global minimum at x̄g < x2 < 1. In other words, this ensemble

can give a sensible description of black brane thermodynamics only when the above con-

ditions are satisfied. We would like to point out that when the maximum of bϕ̄(x) exists

(or minimum of Tϕ̄(x) exists), the grand canonical ensemble is in some sense similar to

the chargeless case of canonical ensemble except around x = 1.

5 Conclusion

To conclude, in this paper we have studied the equilibria and the phase structure of the

asymptotically flat dilatonic black p-branes in a fixed cavity in arbitrary dimensions D

in a grand canonical ensemble. For this, we have considered both the temperature and

the potential fixed at the wall of the cavity and compared with our previous study of the

same system in a canonical ensemble [1] for which the charge enclosed in the cavity, rather

than the potential at the wall of the cavity, is fixed. We computed the Euclidean action

corresponding to the dilatonic black p-brane solution of D-dimensional supergravity with

maximal supersymmetry with proper consideration of the above fixed quantities at the
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wall of cavity in this ensemble. To the leading (or zeroth-loop) order this action is related

to the grand potential or Gibbs free energy of the system and is an essential entity for

the stability analysis. This action has two variables, namely, the horizon size r+ (related

to the variable x) and the charge Qd (related to the variable q). At the stationary point

of this action, we derived the expected equations for which x and q have to satisfy with

both the temperature and the potential fixed at the wall of cavity. The second derivatives

of the action with respect to x and q at the stationary point can be used to analyze the

local thermal stability of the system in this ensemble.

Unlike in the canonical case, the directly obtained action here is a function of two

variables and this makes the stability analysis a bit involved. However, there exists also

an analog of one-variable analysis as in the canonical case and we have shown in the text

that the condition so obtained for the stability of the equilibrium states as given in (35)

is the same as that of the rather complicated two-variable case. For the two-variable

analysis given in the Appendix, we have made use of a trick to use the b, ϕ variables as

defined in (26) instead of origianl x, q variables. This makes the analysis a bit simpler

and straightforward. The stability condition can also be expressed as those given in (37).

So, for a given potential satisfying the constraint given in (37), only the horizon size lying

in the range also given in (37) gave locally stable system.

We then obtained the phase structure of the black p-branes in this ensemble. We

found that locally stable black brane phase exists only when the minimum temperature

of the system given in (43) satisfies the constraint (44). In this case, below the minimum

temperature, there is no stable black brane phase and only stable phase is the ‘hot flat

space’. Above this temperature, and below the value Tϕ̄(1) given in (40), there are two

black brane phases, the larger one is locally stable and the smaller one is unstable. The

locally stable black brane phase becomes globally stable only above the temperature (Tϕ̄)g

given in (50) and below Tϕ̄(1). Below (Tϕ̄)g and above (Tϕ̄)min (given in (43)), the stable

black brane is only locally stable and will eventually make a transition to the ‘hot flat

space’. Finally, above Tϕ̄(1) there is only one black brane phase, but this is unstable

and will eventually decay to the stable ‘hot flat space’ phase. We also commented on

the similarity of this phase structure with that of the zero charge canonical case except

at one end of the x variable, namely, near x = 1. This structure is reminiscent of the

Hawking-Page phase transition of the AdS, dS and flat black holes discussed in [7, 11, 12].

However, unlike in the canonical case, here we found that at a given temperature when

the stable phase exists it does not come in pairs – only a single stable phase appears.

So, there is no thermodynamical phase transition between two stable black brane phases

analogous to the van der Waals-Maxwell liquid-gas phase transition like that appeared in
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the canonical case.
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Appendix

In this appendix we perform the more general yet more complicated two-variable analysis

of the stability of black p-branes and show that the same local stability condition derived

from the simple one-variable consideration as given in (35) continues to hold.

It is clear from (26) that both b(x, q) and ϕ(x, q) are smooth functions of x and q and

so, in principle they can be inverted to give x and q as functions of b and ϕ. Although

we will not need their explicit form, however, we will need the form of b as a function of

x and ϕ. For that we will eliminate q from b(x, q)-equation given in (26) and express it

as a function of x and ϕ instead. From the ϕ equation in (26) we obtain q2/x2 as,

q2

x2
=

ϕ2

1− (1− ϕ2) x
(51)

Now substituting (51) in b equation in (26) we obtain,

b =
x

1
d̃ [1− (1− ϕ2)x]

1
2

d̃ (1− ϕ2)
1
2
−

1
d̃

. (52)

The reduced action (27) can now be re-expressed as,

ĨE(x, ϕ) = −b̄
[

(d̃+ 2)y + d̃ (1− x(1− ϕϕ̄)) y−1 − 2(d̃+ 1)
]

+ bd̃(y2 − 1)y−1, (53)

where we have used (51) and (52). In the above, we have also defined

y =
√

1− x (1− ϕ2), (54)

with x(b, ϕ) determined by (52). We will use both of (52) and (53) later.

We now expand the reduced action (27) at the stationary point determined by the

equation (25) with x = x̄ and q = q̄ to quadratic order as,

ĨE(x, q) = ĨE(x̄, q̄) + Ĩij

∣

∣

∣

zi=z̄i,zj=z̄j
(zi − z̄i)(zj − z̄j) + · · · (55)
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where z1 = x, z2 = q with i, j = 1, 2 and we have used the stationary conditions for the

first order terms. In the above

Ĩij ≡
∂2ĨE(x, q)

∂zi∂zj
(56)

The local stability of the system is determined by whether the quadratic terms in the

expansion are always positive definite. This can be easily understood if we diagonalize

the matrix Ĩij and demand that each of the two eigenvalues λ1 and λ2 is positive definite.

Now since,

λ1λ2 = det Ĩij, and λ1 + λ2 = Ĩxx + Ĩqq (57)

λ1, λ2 > 0 implies that both Ĩxx + Ĩqq > 0 and det Ĩij > 0. Now we will rewrite these two

conditions such that our analysis becomes simpler as7,

Ĩqq > 0, (58)

Ĩqq

det Ĩij
> 0 (59)

In order to understand the meaning of the condition (58) we have to evaluate Ĩqq and

then set it to greater than zero. From the form of ĨE in (27) we obtain the first condition

(58) as,

Ĩqq ≡
∂2ĨE
∂q2

∣

∣

∣

∣

∣

x=x̄,q=q̄

=
b̄d̃ϕ̄

q̄
(

1− q̄2

x̄

)



1 +
(d̃+ 2)ϕ̄2

[

1− 2
d̃
+ 2

d̃
x̄ (1− ϕ̄2)

]

d̃ (1− ϕ̄2) (1− x̄)



 > 0. (60)

Once this is satisfied the thermodynamic stability is completely determined by the con-

dition (59). A direct evaluation of Ĩqq/det Ĩij from the expression (in (x, q) variables) of

ĨE in (27) is complicated and tedious and we will make use of a trick in evaluating it.

This will make the analysis of stability much more elegant and simpler. For this, we will

instead evaluate the l.h.s. of (59) by first going to the (b, ϕ) variable and evaluate Ĩab,

where

Ĩab ≡
∂2ĨE(b, ϕ)

∂ξa∂ξb
(61)

7It is not difficult to see that the conditions given in (58) and (59) automatically implies det Ĩij > 0

and Ĩxx+ Ĩqq > 0 . To see this note that we first have to have Ĩqq > 0 (if Iqq < 0, the above two conditions

can never be satisfied), then (59) implies det Ĩij > 0 and so, det Ĩij = Ĩqq Ĩxx− Ĩ2qx = Ĩqq(Ĩxx− Ĩ2qx/Ĩqq) > 0

⇒ Ĩxx − Ĩ2qx/Ĩqq > 0 ⇒ Ĩxx > Ĩ2qx/Ĩqq > 0 and this in turn implies Ĩxx + Ĩqq > 0.
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with a, b = 1, 2 and ξ1 = ϕ, ξ2 = b and then relate this matrix to the original matrix Ĩij

in (x, q) variables by chain rules as follows,

Ĩab =

(

Ĩϕϕ Ĩϕb

Ĩbϕ Ĩbb

)

=

(

∂q
∂ϕ

∂x
∂ϕ

∂q
∂b

∂x
∂b

)

Ĩij

(

∂q
∂ϕ

∂x
∂ϕ

∂q
∂b

∂x
∂b

)T

, (62)

where ‘T ’ denotes the transpose of a matrix. After that we invert this matrix relation to

obtain,

Ĩ−1
ij =

(

∂q
∂ϕ

∂x
∂ϕ

∂q
∂b

∂x
∂b

)T

Ĩ−1
ab

(

∂q
∂ϕ

∂x
∂ϕ

∂q
∂b

∂x
∂b

)

, (63)

Again inverting (63) we will evaluate Ĩij/det Ĩij in terms of Ĩab and other known functions

given in (63). Now to evaluate Ĩab, we first calculate

(

∂ĨE
∂ϕ

)

b

=

(

∂ĨE
∂x

)

q

(

∂x

∂ϕ

)

b

+

(

∂ĨE
∂q

)

x

(

∂q

∂ϕ

)

b

=
[

b̄− b(x, q)
]

f(x, q)

(

∂x

∂ϕ

)

b

−

[

b̄d̃(ϕ̄− ϕ(x, q)) +
(d̃+ 2)ϕ(x, q)

1− q2

x

(b̄− b(x, q))

]

(

∂q

∂ϕ

)

b

, (64)

and
(

∂ĨE
∂b

)

ϕ

=

(

∂ĨE
∂x

)

q

(

∂x

∂b

)

ϕ

+

(

∂ĨE
∂q

)

x

(

∂q

∂b

)

ϕ

=
[

b̄− b(x, q)
]

f(x, q)

(

∂x

∂b

)

ϕ

−

[

b̄d̃(ϕ̄− ϕ(x, q)) +
(d̃+ 2)ϕ(x, q)

1− q2

x

(b̄− b(x, q))

]

(

∂q

∂b

)

ϕ

, (65)

where we have used the form of ĨE given in (27) and the function f(x, q) is defined as,

f(x, q) = (1− x)−
1
2

(

1−
q2

x

)−
1
2

[

d̃+ 2−
d̃+ 2

2

(

1− q2

x2

1− q2

x

)

+
d̃

2

(

1−
q2

x2

)

]

> 0, (66)
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Thus we have from eqs.(64) and (65)

∂2ĨE
∂ϕ2

= b̄d̃
∂q

∂ϕ
,

∂2ĨE
∂ϕ∂b

= −f(x̄, q̄)
∂x

∂ϕ
+

(d̃+ 2)ϕ̄

1− q̄2

x̄

∂q

∂ϕ
,

∂2ĨE
∂b∂ϕ

= b̄d̃
∂q

∂b
,

∂2ĨE
∂b2

= −f(x̄, q̄)
∂x

∂b
+

(d̃+ 2)ϕ̄

1− q̄2

x̄

∂q

∂b
, (67)

where the second derivatives are evaluated at b = b̄ and ϕ = ϕ̄. So, from the above

equations (67) we obtain Ĩab as,

Ĩab =





b̄d̃ ∂q
∂ϕ

b̄d̃∂q
∂b

b̄d̃∂q
∂b

−f(x̄, q̄)∂x
∂b

+ (d̃+2)ϕ̄

1− q̄2

x̄

∂q
∂b



 , (68)

where we have used

b̄d̃
∂q

∂b
= −f(x̄, q̄)

∂x

∂ϕ
+

(d̃+ 2)ϕ̄

1− q̄2

x̄

∂q

∂ϕ
. (69)

From the form of Ĩab given in (68) we can calculate its inverse as,

Ĩ−1
ab =

1

det Ĩab





−f(x̄, q̄)∂x
∂b

+ (d̃+2)ϕ̄

1− q̄2

x̄

∂q
∂b

−b̄d̃∂q
∂b

−b̄d̃∂q
∂b

b̄d̃ ∂q
∂ϕ



 , (70)

with det Ĩab having the from (as can be seen from (68))

det Ĩab = f b̄d̃

(

∂q

∂b

∂x

∂ϕ
−

∂q

∂ϕ

∂x

∂b

)

(71)

where we have made use of (69). Now substituting (70) in (63) we obtain,

Ĩ−1
ij =





1
b̄d̃

∂q
∂ϕ

1
b̄d̃

∂x
∂ϕ

1
b̄d̃

∂x
∂ϕ

(d̃+2)ϕ̄

f b̄d̃
(

1− q̄2

x̄

)

∂x
∂ϕ

− 1
f
∂x
∂b



 , (72)

where we also made use of (69). Inverting (72) we get

Ĩij = det Ĩij





(d̃+2)ϕ̄

f b̄d̃
(

1− q̄2

x̄

)

∂x
∂ϕ

− 1
f
∂x
∂b

− 1
b̄d̃

∂x
∂ϕ

− 1
b̄d̃

∂x
∂ϕ

1
b̄d̃

∂q
∂ϕ



 . (73)

From (72) we also obtain, det Ĩ−1
ij = (det Ĩij)

−1 = det Ĩab/(f b̄d̃)
2. Now from (73) we finally

get,
Ĩqq

det Ĩij
=

(d̃+ 2)ϕ̄

f b̄d̃
(

1− q̄2

x̄

)

∂x

∂ϕ
−

1

f

∂x

∂b
, (74)
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We can compute ∂x/∂b and ∂x/∂ϕ at the stationary point from (52) and obtain,

∂x

∂b
=

2d̃x̄ [1− x̄(1− ϕ̄2)]

b̄
[

2− (d̃+ 2)x̄(1− ϕ̄2)
] ,

∂x

∂ϕ
= −

2d̃x̄ϕ̄
[

1− 2
d̃
+ 2

d̃
x̄(1− ϕ̄2)

]

(1− ϕ̄2)
[

2− (d̃+ 2)x̄(1− ϕ̄2)
] , (75)

Substituting (75) in (74) we have from the condition (59),

Ĩqq

det Ĩij
= −

2d̃x̄ [1− x̄(1− ϕ̄2)]

f b̄
[

2− (d̃+ 2)x̄(1− ϕ̄2)
]



1 +
(d̃+ 2)ϕ̄2

[

1− 2
d̃
+ 2

d̃
x̄(1− ϕ̄2)

]

d̃(1− ϕ̄2)(1− x̄)



 > 0. (76)

Thus for the stability of the system the above condition has to be satisfied. Now since

the second factor in the square bracket is positive definite by the first condition written in

(60) it is clear that for (76) to hold the denominator of the first factor has to be negative

definite. This gives, as promised, precisely the same condition as given in (35).

Now it can be checked that once (35) is satisfied the first condition written explicitly

in (60) is automatically satisfied. To see this we look at the numerator of the second term

in the square bracket in the expression of Ĩqq given in (60),

1−
2

d̃
+

2

d̃
x̄
(

1− ϕ̄2
)

=
1

d̃

[

d̃− 2
(

1− x̄
(

1− ϕ̄2
))

]

=
[

1− x̄
(

1− ϕ̄2
)]

+
1

d̃

[

(d̃+ 2)x̄
(

1− ϕ̄2
)

− 2
]

(77)

and this is positive definite since the first term is positive definite and the second term

is positive definite by (35). Therefore, Ĩqq is positive definite. This shows that (35) is

equivalent to both the stability conditions given in (58) and (59).
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