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Abstract

It is shown that the IIB matrix model compactified on a six-dimensional torus

with a nontrivial topology can provide chiral fermions and matter content close

to the standard model on our four-dimensional spacetime. In particular, gen-

eration number three is given by the Dirac index on the torus.
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1 Introduction

Matrix models are a promising candidate to formulate the superstring theory

nonperturbatively [1, 2], and they indeed include quantum gravity and gauge

theory. One of the important subjects in such studies is to connect these mod-

els to phenomenology. Spacetime structures can be analyzed dynamically in

the IIB matrix model [3], and four dimensionality seems to be preferred [3, 4].

Assuming four-dimensional spacetime is obtained, we next want to show the

standard model of particle physics on it. An important ingredient of the stan-

dard model is the chirality of fermions. Chirality also ensures existence of

massless fermions, since otherwise quantum corrections would induce mass of

order of the Planck scale or of the Kaluza-Klein scale in general.

A way to obtain chiral spectrum in our spacetime is to consider topologically

nontrivial configurations in the extra dimensions1. Owing to the index theo-

rem [7], topological charge of the background provides the index of the Dirac

operator, i.e., the difference of the numbers of chiral zero modes, which then

produce massless chiral fermions on our spacetime. Generalizations of the index

theorem to matrix models or noncommutative (NC) spaces were provided by

using a Ginsparg-Wilson (GW) relation2 developed in the lattice gauge theory

[11].

In M4 × S2 × S2 embeddings in the IIB matrix model, however, we could

not obtain chiral spectrum on M4, even though the IIB matrix model is chiral

in ten dimensions, and topological configurations give chiral zero modes on

S2 × S2, since the remainder dimensions M10/(M4 × S2 × S2) interrupt [12].

This obstacle arises generally in the cases with remainder dimensions, such as

the coset space constructions. We thus have to consider the situations where

topological configurations are embedded in the entire six extra dimensions3.

We then consider torus compactifications, such as M4 × T 6 embeddings in

the IIB matrix model. A matrix model formulation for gauge theories with

adjoint matter in nontrivial topological sectors on a NC torus was given by us-

ing the Morita equivalence [13]. For the fundamental matter, since the Morita

equivalence is not satisfied in this case, the matrix model formulation was pro-

1Having this mechanism in mind, we analyzed dynamics of a model on a fuzzy 2-sphere

and showed that topologically nontrivial configurations are indeed realized [5]. Models of

four-dimensional field theory with fuzzy extra dimensions were studied in [6].
2GW Dirac operators on a fuzzy 2-sphere and a NC torus were given in [8] and [9], respec-

tively. A general formulation for constructing GW Dirac operators on general geometries and

defining the corresponding index theorem was provided in [10].
3In the case of spheres, if we also embed topological structures in the direction for the

thickness of the sphere shell, the problem is resolved.
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vided in a purely algebraic way [14].

In this paper, we begin with a gauge theory with adjoint matter in the trivial

topological sector, and then introduce block-diagonal matrix configurations as

topologically nontrivial gauge field backgrounds. The off-diagonal blocks of

the adjoint matter field, which are in the bifundamental representations of the

gauge group produced by the background, thus obtain nonzero Dirac indices.

We show that such configurations, when embedded in the IIB matrix model,

indeed give chiral spectrum on our spacetime. We also study dynamics of these

configurations by investigating their classical actions, and find that they appear

in the continuum limit as in the gauge theories on the commutative spaces. We

finally present an example of configuration which gives matter content close to

the standard model.

In section 2, we briefly review the finite matrix formulation of gauge theory

with adjoint matter on a NC torus, including the formulation of the GW Dirac

operator and the index theorem. Then in section 3, we introduce block-diagonal

configurations as topological backgrounds. Explicit forms of the configurations

on 2-dimensional and 6-dimensional tori are given in section 4 and section 5,

respectively. Dynamics of the configurations are studied in section 4.1. In

section 6, we show an example of configuration which gives matter content close

to the standard model. Section 7 is devoted to conclusions and discussions. In

appendix A, we calculate the index of the GW Dirac operator.

2 Gauge theory with adjoint matter on a NC torus

In this section, we briefly review the finite matrix formulation of gauge theory

with adjoint matter on a noncommutative (NC) torus. For details, see [13],

for instance. We here consider a simple setting that gives topologically trivial

sector, however.

An action for the gauge fields on a d-dimensional NC torus was given by

the twisted Eguchi-Kawai model [15, 16]

Sb = −Nβ
∑

µ6=ν

Zνµtr
(

Vµ Vν V
†
µ V

†
ν

)

+ d(d− 1)βN 2 , (2.1)

with µ, ν = 1, . . . , d. Here Vµ are U(N ) matrices representing the link variables

on the lattice, β stands for the lattice gauge coupling constant, and Zνµ are

ZN factors which are assumed to be specified to give the topologically trivial

sector. The constant term is added to make the action vanish at its minimum.

Actions for adjoint matter are given by using covariant forward and back-
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ward difference operators

∇µψ =
1

ǫ

(

Vµ ψ V
†
µ − ψ

)

,

∇∗
µψ =

1

ǫ

(

ψ − V †
µ ψ Vµ

)

, (2.2)

with Vµ ∈ U(N ) introduced above. ǫ is an analog of the lattice spacing. For

instance, a Wilson-Dirac operator DW is defined as

DW =
1

2

d
∑

µ=1

{

γµ
(

∇∗
µ +∇µ

)

− ǫ∇∗
µ∇µ

}

, (2.3)

where γµ are d-dimensional Dirac matrices.

One can also define a Ginsparg-Wilson (GW) Dirac operator as

DGW =
1

ǫ
(1− γγ̂) , (2.4)

where γ is an ordinary chirality operator on the d-dimensional space, and γ̂ is

a modified one defined by

γ̂ =
H√
H2

, (2.5)

H = γ (1− ǫDW) , (2.6)

with DW given in (2.3). By the definition (2.4), the Dirac operator satisfies a

GW relation

γDGW +DGWγ̂ = 0 . (2.7)

Hence, the index, i.e., the difference of the numbers of chiral zero modes, is

given by the trace of the chirality operators as

index(DGW) =
1

2
T r [γ + γ̂] , (2.8)

where T r is the trace over the whole configuration space. Since the definition

of γ̂ depends on the link variables Vµ, the right-hand side (rhs) of (2.8) is a

functional of the gauge field configurations. It also takes only integer values.

Moreover, it is shown to become the Chern character with star product in the

continuum limit for the fundamental matter [17]. It then gives a noncommu-

tative generalization of the topological charge for the gauge field backgrounds.

Thus, eq. (2.8) gives an index theorem on the NC torus.

We expect, however, that the rhs of (2.8) vanishes for any configurations Vµ

that survive in the continuum limit because of the following reasons: First, the

rhs of (2.8) is thought to have an appropriate continuum limit, as shown for the

fundamental matter case in [17]. Since the adjoint matter is chiral anomaly free
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in 2 (mod 4) dimensions, it must vanish. Second, since we now begin with the

matrix model (2.1) describing the trivial module, only the topologically trivial

sector appears in the continuum limit, as shown in [18, 19]. We therefore need

some modifications in order to have nontrivial topologies, which we will study

in the next section.

3 Topological configurations

As topologically nontrivial gauge configurations, we introduce the following

block-diagonal matrices:

Vµ =













V 1
µ

V 2
µ

. . .

V h
µ













, (3.1)

with h blocks and µ = 1, . . . , d.

We also introduce the following projection operators P a with a = 1, . . . , h,

which pick up the space that ath block acts:

P a =



















. . .

0

11

0
. . .



















. (3.2)

Since P a commute with the chirality operator (2.5) and the Dirac operator

(2.4), the index theorem (2.8) is satisfied in each space projected by P a as

index(P aLP bRDGW) =
1

2
T r [P aLP aR(γ + γ̂)] , (3.3)

where the superscript L (R) means that the operator acts from left (right) on

matrices: OLM ≡ OM, ORM ≡ MO. P aLP bR picks up the following block

ψab from the matter field ψ in the adjoint representation:

ψ =













ψ11 ψ12 · · · ψ1h

ψ21 ψ22 · · · ψ2h

...
...

. . .
...

ψh1 ψh2 · · · ψhh













, (3.4)

if we decompose ψ into blocks in the same way as (3.1). The diagonal blocks ψaa

are in the adjoint representations under the gauge group, while the off-diagonal
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blocks ψab with a 6= b are in the bifundamental representations. As shown in

the following sections, the index of each block (3.3) can have nonzero values,

although the total matrix ψ has a vanishing index.

In the remainder of this section, we show that, by embedding the config-

urations (3.1) with d = 6 in the IIB matrix model, chiral fermions on our

four-dimensional spacetime are obtained. See [12] for detailed arguments. For

d = 2 (mod 4), topological charge becomes the (d/2)th Chern character, with

d/2 being an odd integer. Hence, ψab and ψba, which are in the conjugate rep-

resentations under the gauge group, have the opposite indices. We denote the

corresponding chiral zero modes as ψab
R and ψba

L , where the subscripts R and L

stand for the chirality. (Choosing ψab
L and ψba

R instead would give the identical

results.) Taking spinors ϕ on our four-dimensional spacetime as well, we obtain

the following possible Weyl spinors:

ϕR ⊗ ψab
R , (3.5)

ϕL ⊗ ψba
L , (3.6)

ϕL ⊗ ψab
R , (3.7)

ϕR ⊗ ψba
L . (3.8)

The spinors (3.5) and (3.6) are in the charge conjugate representations to each

other. So are (3.7) and (3.8).

Since the IIB matrix model has the ten-dimensional Majorana-Weyl spinor,

we now impose these conditions. By the Weyl condition, (3.5) and (3.6) are

chosen. (Choosing (3.7) and (3.8) gives the identical results.) Since ϕR in (3.5)

and ϕL in (3.6) are in the different representations under the gauge group, they

give chiral spectrum on our spacetime, although we have a doubling of (3.5) and

(3.6). Furthermore, by the Majorana condition, (3.5) and (3.6) are identified.

(So are (3.7) and (3.8).) Then, the unwanted doubling of (3.5) and (3.6) is also

resolved.

4 2-dimensional torus

In this section, we show explicit forms of the configurations (3.1) with d = 2. In

the context ofM4×T 6 embeddings in the IIB matrix model, this T 2 corresponds

to the one in T 6 = T 2 × T 2 × T 2.
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We consider the configurations

Vµ =













Γ1
µ ⊗ 11p1

Γ2
µ ⊗ 11p2

. . .

Γh
µ ⊗ 11ph













, (4.1)

with µ = 1, 2. Γa
µ with a = 1, . . . , h are the shift operators on the dual tori

specified by a set of integers na,ma, ja, k′a. See ref. [14] for detail. In fact, the

configurations (4.1) are classical solutions for the action (2.1), as shown in [18].

The integers satisfy the Diophantine equation

maja + nak′a = 1 (4.2)

for each a. The integers specifying the original torus also satisfy the Diophantine

equation

2rs− kN = −1 . (4.3)

The dual tori and the original torus are related by integers qa, which specify

magnetic fluxes on the dual tori, as4

ma = −s+ kqa , na = N − 2rqa . (4.4)

Equations (4.4) can be inverted as

1 = 2rma + kna , qa = Nma + sna . (4.5)

Explicit forms of the coordinate and the shift operators on the dual tori are

given, for instance, as

Za
1 =Wna , Za

2 = (Vna)j
a

,

Γa
1 = Vna , Γa

2 = (Wna)−ma

, (4.6)

in terms of the shift and clock matrices

Vn =



















0 1 0

0 1
. . .

. . .

. . . 1

1 0



















, Wn =



















1

e2πi/n

e 4πi/n

. . .

e 2πi(n−1)/n



















,

(4.7)

4In [14], the dual torus is determined by the two integers p and q, which specify the gauge

group U(p) and the abelian flux. The present case corresponds to p = pa, q = paqa, and hence

p0 = pa, p̃ = 1, q̃ = qa.
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which are U(n) matrices obeying the commutation relations

VnWn = e 2πi/nWnVn . (4.8)

The off-diagonal block ψab in (3.4) can be interpreted as in the fundamental

representation, if we identify the bth block as an original torus. The corre-

sponding integer q is thus given by (4.5), with N and s replaced by nb and

−mb, respectively. Substituting (4.4) and using (4.3), we obtain

nbma −mbna = qa − qb . (4.9)

Then, the index for the block ψab (3.3) should become

1

2
T r [P aLP aR(γ + γ̂)] = papb(qa − qb) . (4.10)

Indeed, as shown by the explicit calculations in appendix A, eq.(4.10) is satisfied

in general, except for the rare cases with |r| = 1, na = 1, and nb = 2|qa−qb|+1,

or the cases with na and nb reversed. As far as we consider the cases with

the block sizes na greater than one, eq.(4.10) is satisfied. The Monte Carlo

results in [20] also support (4.10). Equation (4.10) means that the index of each

component in the (pa, p̄b) representation under the gauge group U(pa)× U(pb)

is qa − qb. By using a relation

na − nb = −2r(qa − qb) (4.11)

given by (4.4), eq.(4.10) is rewritten as

1

2
T r [P aLP aR(γ + γ̂)] = − 1

2r
papb(na − nb) . (4.12)

The same equation was given for the fuzzy 2-sphere case in eq.(5.4) of [12]5,

except for the factor 2r.

4.1 Classical actions

We now study dynamics of the configurations (4.1) by evaluating their classical

actions (2.1). Similar analyses were given in [18], but the present case cor-

responds to the situation where all the configurations are in the topologically

trivial sector in the sense of [18], where topology was defined in terms of the

total matrix. Now, the nontrivial topologies arise from the blocks, as explained

in section 3.

5The case with the fundamental matter was studied in [21, 22, 23]. The formulation was

further extended to S2
× S2 in [24].
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Figure 1: The classical action (4.17) as a function of n is displayed. We here

take N = 153 and n3 = 51.

We take p1 = · · · = ph = 1 without loss of generality. We also choose the

integers r and k specifying the original torus to be r = −1, k = −1, which

give s = N+1
2 from (4.3), following the previous works [18, 19, 20]. From (4.4),

na = N +2qa and ma = −na+1
2 are determined. It then follows form (4.6) that

Γa
1Γ

a
2 = e 2πin

a
+1

2na Γa
2Γ

a
1 . (4.13)

Choosing the phase Zµν in the action (2.1) as

Z12 = e 2πiN+1

2N , (4.14)

the actions for the configurations (4.1) become

S = −2Nβ

h
∑

a=1

na cos

(

π

(

1

N − 1

na

))

+ 2βN 2 . (4.15)

For h blocks with the same sizes, n1 = . . . = nh, (4.15) becomes

Sh = βπ2(h− 1)2 − 1

12
βπ4(h− 1)4

1

N 2
+O

(

(1/N )4
)

. (4.16)

We now study the cases where the block sizes are different. For simplicity,

we consider the cases with h = 3 and N and n3 fixed. They correspond to the

cases where we focus on the two blocks with the other h− 2 blocks fixed. The

action (4.15) for n = n1 becomes

S(n) = −2Nβ

[

n cos

(

π

(

1

N − 1

n

))

+ (N − n3 − n) cos

(

π

(

1

N − 1

N − n3 − n

))]

,

(4.17)

where we did not write the constant terms. The action S(n) has its minimum

at n = N−n3

2 with a flat plateau around it, as shown in figure 1. The function
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S(n) is in fact symmetric at n = N−n3

2 and convex downwards. Moreover, by

expanding in 1/(N − n3), we obtain

S

(N − n3

2
+m

)

− S

(N − n3

2

)

= 16π2β
m2

(N − n3)2
+O

(

1/(N − n3)3
)

.

(4.18)

The difference of the block sizes n1 − n2 = 2m is also given as (4.11). Thus,

(4.18) becomes

∆S ≃ 16π2βr2
(q1 − q2)2

(N − n3)2
. (4.19)

Therefore, within the configurations with restricted number of blocks, the topo-

logical configurations appear in the continuum limit, since the continuum limit

is taken by sending β and N to infinity with β/N fixed [25].

This situation agrees with the cases in gauge theories on the commutative

spaces, where one has

∆Scom = 4π2β

(

q

(N − n3)/2

)2

, (4.20)

which becomes 4π2(q/gL)2 in the continuum limit, where L = ǫ(N − n3)/2

is the physical size of the torus, and g is the gauge coupling constant. This

is contrary to the cases in [18, 19], where topologies were defined by the total

matrix, not by the blocks as in the present case, on the NC torus. There, studies

by classical actions and Monte Carlo calculations gave ∆S ∼ β(N − n3), or

∆S ∼ β at best, and topologically nontrivial configurations did not survive in

the continuum limit [18, 19].
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5 6-dimensional torus

Extension of the configurations (4.1) to six dimensions is straightforward. They

are given as

Vµ =















Γ1
1,µ ⊗ 11n1

2
⊗ 11n1

3
⊗ 11p1

Γ2
1,µ ⊗ 11n2

2
⊗ 11n2

3
⊗ 11p2

. . .

Γh
1,µ ⊗ 11nh

2
⊗ 11nh

3
⊗ 11ph















,

V2+µ =















11n1
1
⊗ Γ1

2,µ ⊗ 11n1
3
⊗ 11p1

11n2
1
⊗ Γ2

2,µ ⊗ 11n2
3
⊗ 11p2

. . .

11nh

1
⊗ Γh

2,µ ⊗ 11nh

3
⊗ 11ph















,

V4+µ =















11n1
1
⊗ 11n1

2
⊗ Γ1

3,µ ⊗ 11p1

11n2
1
⊗ 11n2

2
⊗ Γ2

3,µ ⊗ 11p2
. . .

11nh

1
⊗ 11nh

2
⊗ Γh

3,µ ⊗ 11ph















,

(5.1)

with µ = 1, 2. In Γa
l,µ, n

a
l , and p

a, a = 1, . . . , h specifies block, and l = 1, 2, 3

specifies lth T 2 in T 6 = T 2 × T 2 × T 2.

The operators Γa
l,µ are shift operators on the dual tori specified by a set of

integers nal ,m
a
l , j

a
l , k

′a
l , while the original tori are specified by Nl, sl, rl, kl. The

integers satisfy the Diophantine equations

ma
l j

a
l + nal k

′a
l = 1 , (5.2)

2rlsl − klNl = −1 , (5.3)

for each a = 1, . . . , h and l = 1, 2, 3. The dual tori and the original tori are

related by integers qal as

ma
l = −sl + klq

a
l , nal = Nl − 2rlq

a
l , (5.4)

for each a and l. Equations (5.4) can be inverted as

1 = 2rlm
a
l + kln

a
l , qal = Nlm

a
l + sln

a
l . (5.5)

Explicit forms of the coordinate and the shift operators on the dual tori are

given, for instance, as

Za
l,1 =Wna

l
, Za

l,2 = (Vna

l
)j

a

l ,

Γa
l,1 = Vna

l
, Γa

l,2 = (Wna

l
)−ma

l , (5.6)
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in terms of the shift and clock matrices (4.7). As shown in [18] , the config-

urations (5.1) are classical solutions for the action (2.1). Note also that (5.1)

represents configurations with flux in each T 2, and does not exhaust all of

topological configurations in T 6.

The index for the block ψab (3.3) should become

1

2
T r [P aLP aR(γ + γ̂)] = papb

3
∏

l=1

(qal − qbl ) . (5.7)

This can also be checked as in appendix A. Since numerical calculations take

much longer time for the six-dimensional case, we will report on it in a future

publication.

6 A standard model embedding in IIB matrix model

We now present an example of configuration (5.1) which, when embedded in

the IIB matrix model, gives matter content close to the standard model. The

number of blocks is taken to be h = 4. The integers qal are taken, for instance,

as

qab1 =













0 1 0 1

0 −1 0

0 1

0













, qab2 =













0 1 0 3

0 −1 2

0 3

0













, qab3 =













0 3 0 1

0 −3 −2

0 1

0













,

(6.1)

where we presented qabl = qal − qbl . The lower triangle part is obtained by the

upper one from the relation qabl = −qbal . Hence, qab =
∏3

l=1 q
ab
l becomes

qab =













0 3 0 3

0 −3 0

0 3

0













. (6.2)

The generation number three is obtained, as we will explain in detail below.

We next incorporate gauge group structure by specifying the integers pa as

Vµ =













Γ1
µ ⊗ 113

Γ2
µ ⊗ 112

Γ3
µ

Γ4
µ ⊗ σ3













, (6.3)

with µ = 1, . . . , 6. σ3 is the Pauli matrix. The gauge group given by this

background is U(3)× U(2)× U(1)3 ≃ SU(3)× SU(2)× U(1)5.
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Fermionic matter content of the standard model is obtained from the fermionic

matrix ψ as follows:

ψ =













0 q 0 ud

0 l̄ 0

0 νe

0













, (6.4)

where each block ψab is na1n
a
2n

a
3p

a × nb1n
b
2n

b
3p

b matrices. Here, q denotes the

quark doublets, l the lepton doublets, ud the quark singlets, νe the lepton

singlets. From (6.2), they all have qab three. Using (5.7), we find that they

have appropriate indices which give generation number three. The other blocks

in (6.4) denoted as 0 have a vanishing index and do not give massless particles

on our spacetime.

The hypercharge Y is given by a linear combination of five U(1) charges

presented below (6.3) as

Y =

5
∑

i=1

xiQi , (6.5)

where Qi = ±1 with i = 1, . . . , 5 is the charge of ith U(1) gauge group. From

the hypercharge of q, u, d, l, ν, and e, the following constraints are obtained:

x1 − x2 = 1/6 , x1 − x4 = 2/3 , x1 − x5 = −1/3 ,

−x2 + x3 = −1/2 , x3 − x4 = 0 , x3 − x5 = −1 . (6.6)

Their general solutions are given by

x1 = 2/3 + c , x2 = 1/2 + c , x3 = x4 = c , x5 = 1 + c , (6.7)

with c being an arbitrary constant.

7 Conclusions and Discussions

In this paper, we first introduced block-diagonal matrices for topologically

nontrivial gauge field configurations on a NC torus, and found that the off-

diagonal blocks of the adjoint matter can have nonzero Dirac indices. We then

showed that, by embedding these configurations in the IIB matrix model, chiral

fermions and matter content close to the standard model can be obtained on our

four-dimensional spacetime. In particular, generation number three was given

by the Dirac index on the torus. Lots of things remain to be clarified, some of

which we list below. We will report on these issues in future publications.

Our model close to the standard model gave five U(1) gauge fields. The

hypercharge UY (1) will remain massless, while the others become massive by
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some dynamics of the matrix model, or of the field theories which arise as low

energy effective theories of the matrix model. While we did not discuss the

Higgs field in the present paper, it should be introduced, and the mechanism

of electroweak symmetry breaking and values of the Yukawa couplings should

also be studied.

Our model is reminiscent of the intersecting D-brane models [26, 27]. There,

one can obtain four-dimensional chiral fermions by the same reason as ours, that

is, one has no remainder dimensions normal to all of the D-branes intersecting

to one another [28]. The model [26] gives the standard model matter content.

Since that setting is related to ours by the T-duality, it is interesting to compare

them to each other. These studies will give progress in both string theories and

matrix models.

In this paper we studied dynamics of the configurations by using the classical

actions in the two-dimensional case, and found that topologically nontrivial

configurations appear in the continuum limit, within the configurations with

restricted number of blocks, as in the commutative theories. This is contrast to

the cases in [18, 19], where topologies were defined by the total matrix, not by

the blocks, and only the topologically trivial sector survives in the continuum

limit. For studying higher dimensional cases, however, quantum corrections

become relevant and should be taken into account. Owing to the quantum

corrections with the noncommutativity of the torus, a topologically nontrivial

sector may arise with higher probability than the trivial sector, as shown in

[19]. Then, the generation number three might be chosen dynamically.

We hope to study dynamics in wider regions of the configuration space, in-

cluding various compactifications, in the IIB matrix model. From these studies,

we might be able to find that the standard model or its extension is obtained

as a unique solution from the IIB matrix model or its variants. Or, more com-

plicated structures of the vacuum, such as the landscape [29], might be found.

Even in this case, since the matrix model has the definite measure as well as the

action, we can define probabilities taking account of the measure, and discuss

entropy on the landscape. The matrix models make these studies possible.

A Calculations of the index

In this appendix, we calculate the index of the Dirac operator for the back-

grounds (4.1) and confirm that eq. (4.10) is indeed satisfied. It is sufficient to

consider the case with h = 2 and p1 = p2 = 1. For the off-diagonal block ψ12 of

the matter field ψ, the operation VµψV
†
µ becomes Γ1

µψ
12Γ2†

µ . We hereafter will
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write ψ12 simply as ψ. By using the explicit forms of Γa
µ in (4.6), we obtain

(Γ1
1ψΓ

2†
1 )i,j = ψi+1,j+1 ,

(Γ1
2ψΓ

2†
2 )i,j = (ωn1)−m1(i−1)(ωn2)m

2(j−1)ψi,j , (A.1)

with ωn = e 2πi/n. Here, ψij represent ij components of the matrix ψ.

The matrix ψ is n1×n2, and (A.1) is invariant under identifications i ∼ i+n1

and j ∼ j + n2. When n1 and n2 are coprime, ψi,j with i = 1, . . . , n1 and

j = 1, . . . , n2 are mapped one-to-one by the above identifications to ψi,i with

i = 1, . . . , n1n2, which we denote as ψi:

ψi,j ∼ ψi,i ≡ ψi . (A.2)

Then, (A.1) is rewritten as

(Γ1
1ψΓ

2†
1 )i = ψi+1 ,

(Γ1
2ψΓ

2†
2 )i = (ωn1n2)−q12(i−1) , (A.3)

with q12 = q1 − q2. In the second equation, we used the relation (4.9). Γ1†
1 ψΓ

2
1

and Γ1†
2 ψΓ

2
2 are similarly estimated. It then follows from (2.2) that

ǫ((∇∗
1 +∇1)ψ)i = ψi+1 − ψi−1 ,

ǫ((∇∗
2 +∇2)ψ)i = −2i sin(

2π

n1n2
q12(i− 1))ψi ,

ǫ2(∇∗
1∇1ψ)i = ψi+1 − 2ψi + ψi−1 ,

ǫ2(∇∗
2∇2ψ)i = 2[cos(

2π

n1n2
q12(i− 1)) − 1]ψi . (A.4)

The operator H in (2.6) is written as

H =

(

1 + ǫ2

2 (∇∗
1∇1 +∇∗

2∇2) − ǫ
2(∇∗

1 +∇1) + i ǫ2(∇∗
2 +∇2)

ǫ
2(∇∗

1 +∇1) + i ǫ2(∇∗
2 +∇2) −1− ǫ2

2 (∇∗
1∇1 +∇∗

2∇2)

)

(A.5)

by taking γµ = σµ for µ = 1, 2 and γ = σ3. Equations (A.4) and (A.5) give the

explicit operation of H on ψi,α where α = 1, 2 is spinor index. In particular,

the operator H depends only on the two integers n1n2 and q12.

The index of the GWDirac operator is given by the difference of the numbers

of the positive and negative eigenvalues of the operatorH. We thus diagonalized

it numerically. In figure 2, we plot the indices for various values of q12 with

n1n2 fixed. The result is periodic in q12 with periodicity n1n2, and asymmetric

under an exchange of q12 to −q12. The graphs have similar forms irrespective

of the values of n1n2. For n1n2 = 399, which is presented in the left figure,

we find that the index takes the identical value with q12, and thus eq.(4.10) is

15
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Figure 2: The indices are plotted for various values of q12 with n1n2 fixed. In

the left, we take n1n2 = 399, while in the right, we take n1n2 = 1295.

satisfied, in the region |q12| ≤ 113. For n1n2 = 1295, it is satisfied in the region

|q12| ≤ 367.

In figure 3, we plot the values of n1n2 and q12, where eq.(4.10) is not

satisfied. Because of the periodicity in q12, it is enough to survey the re-

gion −(n1n2 − 1)/2 ≤ q12 ≤ (n1n2 − 1)/2 for odd n1n2, and −n1n2/2 +

1 ≤ q12 ≤ n1n2/2 for even n1n2. From the left figure, we find that, within

n1n2 ≤ 21, eq.(4.10) is satisfied at least in the region |q12| < (2/7)n1n2. For

n1n2 ≤ 101, which is presented in the right figure, such safety region that

ensures (4.10) becomes |q12| < (23/81)n1n2. For n1n2 ≤ 201, it becomes

|q12| < (44/155)n1n2. For n1n2 ≤ 501, it becomes |q12| < (128/451)n1n2. The

coefficients 2/7, 23/81, 44/155, 128/451 slightly decrease as we increase n1n2.

They actually take
(22 + 1)l + (20 + 1)m

(77 + 4)l + (70 + 4)m
(A.6)

with l = 1 andm = 0, 1, . . . , 24 up to n1n2 = 1857 6, and thus they are bounded

from below by 21/74. We then conclude that, for any values of n1n2, eq.(4.10)

is satisfied at least in the region |q12| < (1/3.53)n1n2.

In fact, from the constraint (4.11), n1n2 and q12 are required to satisfy

n1n2 = 2|rq12|n+ (n)2 , (A.7)

for some positive integer n. Then, only the cases with |r| = 1 and n = 1, which

give n1n2 = 2|q12|+1, are really allowed in the dotted region in figure 3, where

eq.(4.10) is not satisfied. They correspond to the highest and lowest points for

odd n1n2 in figure 3. We therefore find that eq.(4.10) is satisfied in general,

except for the rare cases with |r| = 1, n1 = 1, and n2 = 2|q12|+ 1, or the cases

with n1 and n2 reversed.
6 The pattern (A.6) further continues as with l = 2 and m = 24, 25, . . ., though the safety

region does not change unless m goes beyond 48. We have checked this pattern until m = 45,

that is, n1n2 = 3492.
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Figure 3: The values of n1n2 and q12, where eq.(4.10) is not satisfied, are

plotted. Because of the periodicity in q12, we survey the region −(n1n2−1)/2 ≤
q12 ≤ (n1n2 − 1)/2 for odd n1n2, and −n1n2/2 + 1 ≤ q12 ≤ n1n2/2 for even

n1n2. In the left, the region 3 ≤ n1n2 ≤ 21 is shown, while in the right,

the region 3 ≤ n1n2 ≤ 101 is shown. The lines in the left figure represent

q12 = ±(2/7)n1n2.
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