Zhao Y, Zhang YJ, Dong W S, et al. Preliminary analysis of characteristics of lightning in the Nagqu area of the Qinghai-Xizang plateau. *Chinese J*. *Geophys*. (in Chinese), 2004, 47(3): $405 \sim 410$

青藏高原那曲地区雷电特征初步分析

赵阳张义军董万胜张鸿发陈成品张彤 中国科学院寒区旱区环境与工程研究所、兰州 73000

摘 要通过对 2002 年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构 具有多样性和复杂性,地闪明显偏少.对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯 级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主.与中低纬度地区相比,高原地闪中正地闪比 例明显要高,为 33%;负地闪为 67%;正、负地闪回击后常常伴随短时间的连续电流.

关键词 青藏高原 电荷结构 电场变化

文章编号 0001 - 5733 (2004) 03 - 0405 - 06 中图分类号 P427 收稿日期 2003 - 06 - 17,2004 - 01 - 16收修定稿

PRELIMINARY ANALYSIS OF CHARACTERISTICS OF LIGHTNING IN THE NAGQU AREA OF THE QINGHAI - XIZANG PLATEAU

ZHAO Yang ZHANG Yi-Jun DONG Wan-Sheng ZHANG Hong-Fa CHEN Cheng-Pin ZHANG Tong

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract We analyzed the data of electric field and electric field changes produced by lightning on the ground in the Nagqu area of the Qinghai-Xizang plateau in the summer of 2002. The results showed that the charge structure in thunderstorms was multiformity and complication. Little cloud-to-ground (CG) lightning flashes occurred in the thunderstorm. A long time discharge process in cloud occurred just before the step leader of positive and negative CG lightning. Most of CG lightning discharges only involved one return-stroke. The proportion of positive CG lightning discharges was 33 % and negative 67 % in thunderstorms. It was obviously higher than that in lower and middle latitude area. A continuing current process with short lasting time occurred just after the return-stroke.

Key words Qinghai-Xizang plateau, Charge structure, Electric field change.

1 引 言

青藏高原是我国雷暴多发区之一,由于特殊的 地理条件,在夏季雨季来临之后高原地区常有频繁 的对流活动发生,并进而发展成强烈的雷暴天气过 程,这是青藏高原区别于内陆地区最大的特点之 一^[1].这些雷暴过程常常伴随有雷电、降雹等灾害 性天气现象的发生,然而目前对青藏高原雷暴及其 闪电的认识还很少.为了保证青藏铁路的安全建设 和正常运行,有针对性的防护雷电灾害,对其进行观 测研究是十分必要的.因此,2002年7~8月我们在 青藏高原那曲地区进行了为期两个月的雷暴及闪电 的观测研究.

基金项目 中国科学院知识创新工程重大项目(KZCXI-SW-04)和国家自然科学基金项目(40375004).

作者简介 赵 阳,男,1977年生,硕士生.主要从事大气电学研究. E-mail: zhaoyang. zz @sohu. com

2 观测和仪器

历史资料统计结果显示那曲平均年雷暴日为 86天,其中夏季(6~8月)为59天^[2].观测点设在那 曲地区气象局观测场内,海拔4507m,周围地势平 坦,无显著电磁干扰源. 探测仪器主要有:地面电场 仪,用来探测实时变化的地面大气平均电场强度,测 量范围为 ±50V/m,响应时间为 0.1s,探测范围为 20km;快天线和慢天线(电场变化仪),用来探测闪电 引起的地面电场变化大小和极性,其时间常数分别 为 2ms 和 6s,频率响应范围分别为 1 KHz~5 MHz 和 10Hz~3MHz,输出动态范围均为 ±10V,并采用八通 道数字化示波器记录,其采样率为1Ms/s,记录长度 为1MW;单站雷电定位系统,可探测地闪的方位、极 性、回击数和相对强度等参数,探测范围为 180km; 雷暴警报器,用来监测 30km 范围内的雷电活动状况 以及闪电频数:宽带干涉仪系统,可探测闪电辐射源 的时空发展特征,其设置及精度介绍见文献[3].观 测期间共有 12 次雷暴天气过程.

3 资料分析和结果

对 12 次雷暴过程所产生的地面平均电场进行统计分析,结果表明雷暴过程持续时间最长的近 2h,最短的约 30min,平均为 65min.这些雷暴都发生在北京时间 13:30~22:30 之间.其中有 5 次出现降雹,降雹过程一般不超过 15min,雹粒直径约 5~7mm.

3.1 雷暴及其地面电场特征

约定:当地面电场受雷暴内正电荷控制时,地面 电场为正;一次闪电中和了负电荷,则对应地面电场 产生正向变化;反之亦然.大量观测结果表明雷暴 云内的电荷分布多为偶极性或三极性结构,偶极性 指在雷暴云的中部(海拔高度5~8km)为负电荷,在 其上部为正电荷;三极性指在雷暴云中部主负电荷 区下部还存在正电荷区.

对具有偶极性电荷结构的雷暴,在地面产生的 垂直电场 E可表示为

$$E = \frac{1}{2} \begin{bmatrix} \frac{Q_{\rm P} Z_{\rm P}}{D^2 + Z_{\rm P}^2} & \frac{Q_{\rm N} Z_{\rm N}}{D^2 + Z_{\rm N}^2} \end{bmatrix}, \quad (1)$$
$$\text{M具有三极性电荷结构的雷暴, E 可表示为}$$
$$E = \frac{1}{2} \begin{bmatrix} \frac{Q_{\rm P} Z_{\rm P}}{D^2 + Z_{\rm P}^2} & \frac{Q_{\rm N} Z_{\rm N}}{D^2 + Z_{\rm P}^2} \end{bmatrix}$$

$$\frac{Q_{\rm SP} Z_{\rm SP}}{\left[D^2 + Z_{\rm SP}^2\right]^{1.5}} , \qquad (2)$$

其中 D 为电偶极轴与测站之间的距离; Q、Z 分别为 电荷量和距离地面的高度,下标 P、N 和 SP 分别表示 雷暴上部正电荷区、中部负电荷区和下部正电荷区. 由方程(1,2)可知,随着雷暴的发展以及与测站距离 的不同,地面垂直电场波形将随之呈现出不同大小 和极性的变化.不同雷暴过程的地面电场的极性及 其变化趋势的差异较大,有的甚至完全相反.例如7 月 20 日 17:00 左右发生的雷暴过程地面电场始终 为正电场,而7 月 16 日 18:30 左右发生的雷暴其电 场几乎全是负电场.

图 1 是 7 月 19 日一次过顶雷暴天气过程的地 面电场变化情况. 由图可见,整个雷暴过程中地面 电场主要为负电场,特别是雷暴当顶时,电场达到 -5~-6kV/m,即负电荷起主要作用,但在地面电场 记录的开始阶段,电场为小的正值;随着雷暴云移近 测站,受到雷暴云中负电荷的作用,使得电场逐渐转 为负值,而在最后阶段随着雷暴远离测站地面电场 又逐渐向正值转变. 根据方程(1)推测这个雷暴的 电荷结构为偶极性结构. 值得注意的是,雷暴当顶 时地面电场波形中有两个阶段从负电场转变为正电 场,持续时间为几分钟,根据实况记录,发现两个正 值区恰好对应着较强的降雨过程(图中 FEAWP). Moore 和 Vonnegut^[4]利用地面电场和降雨电流密度 以及降雨强度的同步测量揭示了这种现象的发生过 程,并将这种由于降雨的作用而使得地面电场的偏 移称作 FEAWP. 这是由于雷暴中水成物粒子在起电 过程中带有不同极性的电荷,这些粒子的降落将影 响云中电荷区对地面电场的作用,从而使地面电场 改变极性.

图 1 7月 19日雷暴过程的地面电场变化情况

Fig. 1 The electric field on ground for thunderstorm on July 19

图 2 是 8 月 1 日一次过顶雷暴天气的地面电场 变化及其闪电频数记录.由图 2a 可见,雷暴当顶时

图 2 8 月 1 日雷暴过程产生的地面电场变化 (a) 及闪电频数 (b) *n_t* 为闪电数.

Fig. 2 The electric field (a) on ground of the thunderstorm on August 1 and flash rate (b)

地面电场值达到正的最大并有闪电频繁发生. 在雷 暴距离测站较远时,地面电场为较小负电场;随着雷 暴移近 ,地面电场逐步转变为正电场 ,且开始有闪电 发生;当雷暴当顶时,地面电场值达到最大正值(约 8kV/m);之后随着雷暴云远离测站,地面电场又逐步 减小并转变为负电场. 根据方程(2)确定该雷暴云 内为三极性电荷结构. 从图 2a 中还看到,在 17:50 以后,地面电场出现较大正值,这是 EOSO^[5]作 用的结果,即在雷暴成熟阶段后期,并逐步减弱趋向 于消散时,在雷暴云下部出现较强的下沉气流,上部 正电荷大量被拖曳带向云下部,使地面出现较大的 正电场. 注意到在雷暴当顶及闪电频繁发生时段 内,地面电场为负电场(图 2a 中 H 段),由实况记录: 在 17:35 开始有较强的降雨,并且降雹,降雹过程持 续了约 6~7min. 地面电场受到这些粒子的影响,并 且频繁的闪电中和了云下部正电荷,因此产生了 H 段负电场,而其后的负电场则是由于雷暴的远离,中 部负电荷区的作用所致.

3期

通过上述分析表明高原雷暴电荷结构具有多样 性和复杂性,这与其他地区所呈现的基本单一的电 荷结构明显不同.例如在我国南方及青藏高原东部 地区,雷暴主要为偶极性电荷结构^[6],而在北方主要 为三极性结构^[7].那曲地区雷暴电荷结构的复杂性 原因有待深入研究,一般与局地层结和系统影响有 关,也与非感应起电机制条件有关^[8].

由于地面电晕放电的影响,那曲雷暴天气过程 中地面电场峰值一般不超过10kV/m. 但雷暴云当顶 时,由闪电引起的地面电场变化很大,一般在 12~16kV/m,有的甚至达到24kV/m. 图2b是8月1日 雷暴过程中闪电频数随时间的分布,由图可见闪电 频数随时间基本呈正态分布,最高值可达到47次/ 5min,出现时间与地面电场达到峰值的时间一致. 地闪多发生在闪电频繁期,但在雷暴的初始阶段也 有少量的地闪发生.对比7次完整的雷暴过程的地 面电场波形及其闪电频数,发现更多地闪发生在地 面电场达到峰值之后或者说雷暴的结束阶段,这与 其他地区观测结果相符^[5],不同的是每个雷暴过程 中地闪数明显偏少,最多只占总闪电的10%,有的甚 至没有地闪发生.

3.2 地闪参量统计特征

利用单站闪电定位仪共记录到 135 个地闪,其 中正地闪45个,负地闪90个.夏季雷暴中正地闪的 发生比例一般较低,但这个比例会随着纬度和地面 海拔高度的增加而增加.Lewis和 Foust^[9]发现随着 海拔高度的增加,正地闪发生的比例也增加.在海 平面上,正地闪比例为3%;在海拔高度约为2km的 地区(以甘肃为例)为15%~20%^[10];在海拔高度2 ~4km的地区为30%.图3是对这135个地闪回击 数进行的统计,82%(74个)的负地闪只有一次回击, 91%(45个)正地闪只有一次回击.这与海拔较低的 地区地闪回击数较多的情况明显不同.

47	卷

Table 1 Comparability of some characteristic parameters of CG flash with other regions						
				正地闪		
	个问TF有反地区的工TF	样本数	平均值	偏差	(4个,平均值)	
放电时间(ms)	那曲,2002	65	513	230.6	503	
云内过程持续时间(ms)	那曲,2002	65	203	127.2	122	
首次回击前先导持续	Kawasaki , 日本 , 1992	6	17			
时间(ms)	Rakov, 佛罗里达, 1994	70	35			
	那曲,2002	65	5.3			
首次回击慢前沿持续	郄秀书,兰州,1998	85	9.4	3.9		
时间(µs)	Master, et al, 1984	105	2.9	1.3		
	Weidman 和 Krider, 1978	62	4.0	1.7		
	那曲,2002	65	10.2	10.7		
首次回击持续时间(µs)	Master, et al, 1984	105	2.6	1.2		
	那曲,2002	65	4.9	1.96	5.2	

表1 地闪部分特征参数及与其他地区对比

那曲地闪部分特征参数与其他地区对比的详细 情况见表 1. 可以看到,那曲地闪持续时间平均约为 500ms. 与其他地区相比,负地闪首次回击慢前沿持 续时间较长,梯级先导持续时间较短,回击过程基本 一致. 但无论正地闪还是负地闪,梯级先导前都具 有较长时间的云内过程,负地闪中云内过程持续时 间平均为 203ms,占闪电整个放电过程约 39.6%;正 地闪中的持续时间平均为 122ms,占整个放电过程 约 24.3%,这与其他地区明显不同.

3.3 地闪电场变化特征

图 4 是 7 月 28 日 21:18:01 发生的一次负地闪 (闪电号为 728025)的电场变化记录. 图 4a 中 I 为地 闪回击前的云内过程(215.67ms), B 为预击穿过程 (58.96ms) .L 为先导过程(5.2239ms). 可以看出该 闪电回击前云内放电过程产生大量的较强且连续的 辐射脉冲. 从图 4c 可以看到,辐射记录段主要集中 在云内放电过程前期,而在后期几乎没有(图中 H 段). 预击穿过程也只是在前 17ms 有较多辐射记录 段,之后一直到先导发生的约41ms内都无记录,快 电场变化记录中也没有脉冲. 地闪首次回击前的梯 级先导过程持续时间较短,约为5.2ms. 回击发生之 后有持续时间约为 3.2ms 的连续电流 (见图 4a 中的 放大图),按 Shindo 和 Uman^[11]对连续电流的划分标 准,该电流属短连续电流过程(持续时间1~10ms). 值得注意的是回击后无辐射记录.

图 5 是 7 月 24 日 17:40:31 发生的一次正地闪 (闪电号为 724016) 的电场变化记录. I 为云内过程 (185.1ms),这个正地闪之前的云内过程较弱,只有 很少的脉冲记录,从图中可以看到,在回击发生前

Fig. 4 Slow antenna, fast antenna and electromagnetic radiation signals of negative CG flash (No. 728025)

约 67ms 内有密集的辐射记录段,而在回击前 3.3ms 内没有辐射记录段,回击后又出现密集的辐射记录 段,这与 Shao 等^[12]的结果一致,进一步证明了正先 导辐射很弱.回击之后的连续电流(图中C段波形) 持续了约 23.8ms,属中等连续电流过程(持续时间 $10 \sim 40 \text{ms}$).

图 5 正地内 /24016 慢电场变化(a)、快电场变化(b) 及 辐射情况(c)

Fig. 5 Slow antenna(a), fast antenna(b) and electromagnetic radiation signals(c) of positive CG flash (No. 724016)

上述分析表明高原地闪的梯级先导持续时间较 短,这是因为高原雷暴云底的相对高度较低. 回击 之后伴随有短时间的连续电流. 负先导的辐射较 强,没有观测到正先导产生的辐射,但是负地闪回击 后没有强的辐射发生,而正地闪回击后辐射较强且 连续. 无论正地闪还是负地闪在首次回击之前几乎 都存在持续时间较长的云内过程. 最近张义军等[13] 利用基于 GPS 时钟同步的闪电 VHF 辐射源到达时 间差(TOA) 定位技术 LMA (Lightning Mapping Array) 系统的观测资料,分析发现在所有的正地闪首次回 击之前均有一段持续时间较长的云内过程,但负地 闪中基本没有,正负地闪的发生发展特征有很大的 差异. 对负地闪首次回击前发生的持续时间较长的 云内过程的现象,在其他地区也曾观测到,但数量 较少. 那曲地区的负地闪大都存在这样的云内过 程,这可能与这一地区雷暴电荷结构有关. 对这个 过程产生的原因不同学者的观点不同, Clarence 和 Malan^[14]认为它是先导的激发过程,Thomson^[15]则认 为这种较长时间的电场变化是先导之前有一个独立 于地闪的云内放电过程. 闪电 728025 云内过程的末 期(图 4a 中 H 段),电场平缓变化并且持续了约

70ms,期间产生的辐射很少,因而该过程更可能是一个独立于其后地闪的放电过程,但这种长时间云内放电可能使局地电荷分布发生变化,而对地闪的发生起到一定激发作用.

3.4 云闪电场变化特征

图 6 是云闪 802025 的电场变化波形.整个放电 过程持续约 600ms.通过慢电场变化记录可以看到, 放电一开始电场就迅速增大,对应于快电场变化记 录中幅度相对较大的脉冲,由图 6c 可见表示辐射记 录段触发时刻的垂直短线较为密集,说明云闪初始 击穿过程对应于较强烈的辐射产生.根据电场变化 可将云闪划分为活跃阶段和结束阶段.由图可见活 跃阶段电场变化剧烈,快电场波形中有大量的脉冲, 并有大量的辐射记录段,但这些记录段都是分散的, 说明活跃阶段辐射具有间歇性;在结束阶段,由慢电 场变化可以看出,电场逐渐减小,这期间只有很少的 辐射记录段.在结束阶段有 3 次 K 变化产生(图 6a),KI,K2,K3 的持续时间分别为 820µs,522µs, 268µs,平均值为 536.7µs;时间间隔分别为 66.4ms 和 24.6ms,K 变化的持续时间以及时间间隔是逐渐减

情况 (c)

小的. Thottapillil 等¹¹⁶¹在 Florida 的测量发现地闪 K 变化持续时间的几何平均值是 0.7ms, K 变化的时间间隔的几何平均值是 13ms, 与本例所测值接近.

4 结论和讨论

4.1 青藏高原那曲地区雷暴云内电荷结构成多样 性和复杂性.有的雷暴电荷结构为偶极性,有的为 三极性.

4.2 那曲地闪的放电持续时间一般在 0.5s,回击发 生前有较长时间的云内放电过程,负地闪云内放电 持续时间占闪电整个放电过程约 39.6%;正地闪云 内放电持续时间占整个放电过程约 24.3%.

4.3 地闪以单次回击为主,与中低纬度地区相比, 地闪中正地闪比例明显要高,约33%;对负地闪而 言,与其他地区相比,梯级先导过程持续时间明显 短,首次回击前的慢前沿过程长,回击过程的特征一 致.地闪回击后常常伴随有连续电流,但持续时间 较短.

4.4 云闪的 K 变化特征与地闪观测值相当. 云闪 放电特征与其他地区相比没有明显差异.

由于雷暴过程及闪电发生的物理过程极为复 杂,短时期的观测资料难以揭示其全部特征,对其深 入的研究尚需更多的、更高精度的、长时间的观测资 料,这将有助于对高原雷暴及其闪电过程的深刻认 识.

参考文献

- [1] 冯锦明. 青藏高原雷达回波特征及其三维对流云模拟[硕士论 文]. 兰州:中国科学院寒区旱区环境与工程研究所,2001
 Feng J M. The characteristics of radar echo and numerical simulation of three-dimensional convective cloud in Qinghai-Xizang Plateau [Master 's thesis] (in Chinese). Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,2001
- [2] 叶笃正,高由禧. 青藏高原气象学. 北京:科学出版社, 1979 Ye D Z, Gao Y X. Qinghai-Xizang Plateau Meteorology (in Chinese). Beijing: Science Press, 1979
- [3] 董万胜,刘欣生,陈慈萱等.用宽带干涉仪观测云内闪电通道 双向传输的特征.地球物理学报,2003,46(3):317~321
 Dong W S, Liu X S, Chen C X, et al. Broadband interferometer observations of the bi-directional breakdown process in natural lightning. *Chinese J. Geophys.* (in Chinese),2003,46(3):317~321

- [4] Moore C B , B Vonnegut. Thundercloud in lightning. In : R H Golde , eds. Physics of Lightning. San Diego : Academic Press , 1977. Vol. 1 , 64 ~ 98
- [5] Donald R MacGorman, W David Rust. The Electrical Nature of Storms. New York: Oxford University Press, 1998. 167 ~ 168
- [6] 张义军,葛正谟,陈成品等. 青藏高原东部地区的大气电特征. 高原气象,1998,17(2):135~141
 Zhang YJ, & ZM, Chen CP, et al. Electrical characteristics of atmosphere in east area of Qinghai-Xizang plateau. *Plateau Meteorology* (in Chinese),1998, 17(2):135~141
- [7] 张义军,刘欣生,肖庆复.中国南北方雷暴及人工触发闪电电特性对比分析.高原气象,1997,16(2):141~149
 Zhang Y J ,Liu X S,Xiao Q F. The contrastive analyses of electric characteristics of thunderstorm and triggered lightning in south and north China. *Plateau Meteorology* (in Chinese), 1997, 16(2): 141~149
- [8] 言穆弘,郭昌明,葛正谟. 积云动力和电过程二维模式研究 —计算结果. 地球物理学报, 1996, 39(增刊):65~77 Yan M H, Cuo C M, Ce Z M. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model —Calculation results. *Chinese J. Geophys.* (*Acta Geophysica Sinica*) (in Chinese), 1996, 39 (Suppl.):65~77
- [9] Lewis W W, Foust C M. Lightning investigation on transmission lines. Trans. AIEE, Pt 7, 1945, 64:107 ~ 115
- [10] 郄秀书,余 晔,张翠华等.中国内陆高原地闪特征的统计分析.高原气象,2001,20(4):395~401
 Qie X S, Yu Y, Zhang C H, et al. Analyses on some features of ground flashes in Chinese inland plateau. *Plateau Meteorology* (in Chinese), 2001,20(4):395~401
- Shindo T, Uman M A. Continuing current in negative cloud-to-ground lightning. J. Geophys. Res., 1989, 94: 5189 ~ 5198
- Shao X M, Rhodes C T, Holden D N. RF radiation observations of positive cloud-to-ground flashes. J. Geophys. Res., 1999, 104:9601 ~9608
- [13] 张义军, Paul R Krehbiel, 刘欣生等.闪电放电通道的三维结构 特征. 高原气象, 2003, 22(3):217~220
 Zhang YJ, Paul R Krehbiel, Liu X S, et al. Three dimensions structure of lightning discharge channel. *Plateau Meteorology* (in Chinese), 2003, 22(3):217~220
- [14] Clarence N D, Malan D J. Preliminary discharge processes in lightning flashes to ground. Q. J. R. Meteorol. Soc., 1957, 83: 161~172
- [15] Thomson E M. Characteristics of port moresby ground flashes. J. Geophys. Res., 1980, 85:1027 ~ 1036
- [16] Thottapillil R, Rakov V A, Uman M A. K and M changes in close lightning ground flashes in Florida. J. Geophys. Res., 1990, 95: 18631 ~ 18640