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Abstract

Using the bottom-up approach in a holographic setting, we attempt to study both the
transport and thermodynamic properties of a generic system in 3 + 1 dimensional bulk
spacetime. We show the exact 1/T and T 2 dependence of conductivity and Hall angle, as
seen experimentally in most copper-oxide systems, which are believed to be close to quantum
critical point. This particular temperature dependence of conductivities are possible for
two different cases: (1) Background solutions with scale invariant and broken rotational
symmetry, (2) solutions with pseudo-scaling and unbroken rotational symmetry but only
at low density limit. Generically, the study of transport properties in a scale invariant
background solution, using the probe brane approach, at high density and at low temperature
limit suggests us to consider only metrics with two exponents. More precisely, the spatial
part of the metric components should not be same i.e., gxx 6= gyy. In doing so, we have
generated the above mentioned behavior to conductivity with a very special behavior to
specific heat which at low temperature goes as: CV ∼ T 3. However, if we break the scaling
symmetry of the background solution by including a nontrivial dilaton, axion or both and
keep the rotational symmetry then also we can generate such a behavior to conductivity
but only in the low density regime. As far as we are aware, this particular temperature
dependence to both the conductivity and Hall angle is being shown for the first time using
holography.

http://arxiv.org/abs/1011.3117v2


1 Introduction

There are interesting model building calculations that are being put forward using gauge/gravity
duality, which suggests to have captured the experimental results close to quantum criticality
and the associated quantum phase transitions. In particular, for the copper-oxide systems
at low temperature, the resistivity, which is the inverse of conductivity, goes as σ ∼ T−1

[1], [2], [3], [4]. This interesting behavior has been reported in a controllable yet unrealistic
setting for a very special kind of gravitational system that displays the Lifshitz like property
and is possible only when the Lifshitz exponent takes a special value namely, z = 2, 1 [5].
However, it is also suggested in [1], [2], [3], [4] that for the copper-oxide systems the Hall
angle, cot θH = σxx/σxy, should have a quadratic dependence of temperature, cot θH ∼ T 2.
But, unfortunately, use of the gravitational solutions showing the Lifshitz like scaling does
not reproduce this behavior of Hall angle, rather it gives at low temperature a linear depen-
dence of temperature and is not in complete agreement with the experimental results.

The experimental results for the transport properties of the copper-oxide systems near
optimum doping at low temperature can be summarized as follows [1], [3], [4]

σxx ∼ 1/T, cot θH = σxx/σxy ∼ T 2 =⇒ σxy ∼ T−3. (1)

The basic reason of not getting the desired experimental behavior is due to the presence
of a rotational symmetry in the x, y plane of the metric while having the scaling symmetry
of the background solution, where x and y are the only two spatial directions available in
field theory. Even though this symmetry is broken explicitly by the presence of constant
electric and magnetic field.

In this paper we shall show that eq(1) can only be reproduced in two different cases (1)
background solutions respecting the scaling symmetry with broken rotational symmetry in
the x, y plane (2) pseudo-scaling background solutions with unbroken rotational symmetry
at low density limit. Here the pseudo-scaling solutions means, the background geometry
respects the scaling symmetry but not the dilaton and axion. Furthermore, the background
solutions which shows the scaling symmetry, time translation, spatial translation, and the
rotational symmetry are completely ruled out by eq(1), e.g., pure AdS and pure Lifshitz
solutions. It is worth to emphasize that case (1) is the only choice that is permissible at
high density, but at low density we can have either of the choices. We are discussing both
the limits of densities because it is not a priori clear the scale of optimum doping in eq(1).

The basic philosophy of [5] is to introduce charge carriers via Dp branes, in the probe
brane approximation. The charge carriers are in thermal contact with a heat bath, which
is taken as the Lifshitz black hole. Translating it into the language of [7], it’s the bi-
fundamental degrees of freedom that are charged, interacting among themselves and with

1There is another paper [6], which does not require gravitational solution with Lifshitz scaling (rather
with z = 1) in order to generate such a behavior to conductivity. More interestingly, it is shown that such a
behavior follows at one loop.
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the adjoint degrees of freedom gave us the desired feature of conductivity. In contrast to [6],
where the authors have considered only the charged adjoint degrees of freedom to replicate
the above mentioned experimental result at one loop2. In this paper, we have adopted the
former approach ( in the massless limit) and replace the heat bath of Lifshitz kind by another,
more general, heat bath. The reason of such a replacement is that (1) Lifshitz type heat bath
is a special type to this more general heat bath (2) It’s the eq(1), which was not possible to
reproduce fully with the Lifshitz type heat bath. Recall, the heat baths are essentially the
source of studying physics around the quantum critical point at low temperature [8]. The
consequences of replacing such a heat bath is also addressed, thermodynamically.

In the holographic setting [9], the authors of [10], [11] and [12] have proposed a beautiful
algorithm to calculate the conductivities. Here we have modified it slightly and obtain an
equivalent way to calculate the conductivities. The result of the calculation matches precisely
as is done in [11] when the charge carriers move in a constant electric and magnetic field.
Use of this equivalent prescription leads to the following dependence of conductivities on
the metric components evaluated at some holographic energy scale, r⋆. At high densities
compared to temperature

σxx ∼ cφe
−2Φ(r⋆)

gxx(r⋆)
, σxy ≃ Bcφe

−4Φ(r⋆)

gxx(r⋆)gyy(r⋆)
, (2)

where cφ is the charge density, B, the magnetic field, and Φ, the dilaton. In eq(2), the
spatial parts of the metric components along x and y directions are denoted as gxx and gyy
respectively. Note, this result follows when the probe brane action admits only the DBI type
of action. If we do include the Chern-Simon part of the action to the probe brane as well
then the results to conductivities gets slightly modified in the limit of high density compared
to temperature

σxx ∼ cφe
−2Φ(r⋆)

gxx(r⋆)
, σxy ≃ Bcφe

−4Φ(r⋆)

gxx(r⋆)gyy(r⋆)
− µC0(r⋆), (3)

where µ is the coupling of the Chern-Simon action and C0 is the axion field. Note that the
scaling symmetry is broken for a non constant dilaton and axion field.

Now if we restrict ourselves to background solutions which possesses the scaling symmetry
and consider the gravitational system that exhibits the rotational symmetry at the level of
metric not the full system, then the off diagonal part of the conductivity in the high density

limit goes as, σxy ∼
(
σxx

)2

, which is not in accordance with the experimental result, see

eq(1). This means to reproduce eq(1), in the high density limit we are forced to consider
metric components for which gxx 6= gyy. This is one of the basic criteria that must be

2There arises a natural question: Is this behavior of charged bi-fundamental degrees of freedom in a heat
bath=1-loop adjoint degrees of freedom in a different heat bath, generically ? Which we are not going to
address.
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imposed in choosing the background metric, i.e., the heat bath, in order to study the physics
associated to transport properties around the quantum critical point.

In getting the results to conductivity and the Hall angle as in eq(1), we have assumed
the background metric to respect the following scaling symmetry

t → λz t, x → λw x, y → λ y, r → r

λ
, (4)

and also we have assumed that there is not any non trivial scalar field, dilaton or axion,
in the entire set up. As the presence of such a non trivial background field would give rise
to some-kind of pseudo-scaling theory. Of course, the charge density of the bi-fundamental
degrees of freedom, i.e., two form field strength, F2, that appear in the DBI action, breaks
the scaling symmetry. More exactly, the gravitational solution without any non vanishing
scalar field that gives us the desired result to conductivity and Hall angle has the exponents
z = 1, w = 1/2. The zero temperature limit of the black hole solution, i.e., the solution
without the thermal factor, has a boost symmetry along the t, y plane with a form

ds2 = L2[−r2dt2 + rdx2 + r2dy2 +
dr2

r2
], (5)

where L is the size of the 3 + 1 dimensional bulk system, which we shall set to unity in our
calculations latter. The background geometry with two exponents z and w was proposed in
[15] using a combination of Einstein-Hilbert action and several form field strengths. Since,
the analytic non-extremal version of that solution is very difficult to obtain. So, here we
have adopted a different path to generate such a solution by using only gravitons.

Let us do a little bit of dimensional analysis for various physical quantities. If the d+ 1
dimensional field theory spacetime coordinates (i.e the bulk is d+ 2 dimensional spacetime)
behaves under scaling as

t → λz t, x → λw x, yi → λ yi, (i = 1, · · · , d− 1) (6)

then the physical quantities possesses the following mass dimension

[t] = −z, [x] = −w, [yi] = −1 [J t] = w + d− 1, [Jx] = d+ z − 1, [J i] = d+ w + z − 2,

[At] = z, [Ax] = w, [Ai] = 1, [Ex] = w + z, [Ei] = 1 + z, [Bx] = 1 + w, [Bi] = 2,

[T ] = z = [ω], [F ] = z, [σxx] = d− w − 1, [σxy] = d− 2, (7)

where J t, Ji, At, Ax, Ai, E, B, T, ω, F, σ are charge density, current density, time
component of the gauge potential, x-component of the gauge potential, yi-component of
the gauge potential, electric field, magnetic field, temperature, frequency, free energy and
conductivity respectively. The two form field strength has the following form i.e, F2 =
−Exdt ∧ dx− Eidt ∧ dyi +Bxdx ∧ dyi +Bydyi ∧ dyj + · · ·.
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In the small magnetic field and at low density limit with cφ ≫ BµC0, the conductivities
are

σxx ∼ N e−Φ(r⋆)

√√√√gyy(r⋆)

gxx(r⋆)
, σxy ∼ Bcφe

−4Φ(r⋆)

gxx(r⋆)gyy(r⋆)
− µC0(r⋆). (8)

Upon comparing with eq(1), we can generate the desired experimental behavior to trans-
port quantities for background solutions showing the pseudo-scaling symmetry and unbroken
rotational symmetry in the x, y plane, see eq(78). So, only in the low density limit we need
not have to consider two exponents solution as in eq(4). However, if we do then we can as
well generate eq(1), even in this limit and the exponents for trivial dilaton and axion are
z = 4, w = 5.

On summarizing the different possibilities with time translation and spatial translation
symmetries are:

Symmetries Density Eq(1) Symmetries Density Eq(1)

Pseudo-scaling Low density Possible Scaling Any density Not
and rotation and rotation possible

Pseudo-scaling High density Not Scaling with Both low Possible
and rotation possible broken and high

rotation density

(9)

The holographic study of transport properties using the approach of [10], [11] and [12]
gives us the non-linear behavior at the critical point and help us to understand the universal
features, if any, in different limits of the parameter space, especially the quantity dI/dV =
1/R = σ, where R is the resistance to the flow of current I with an applied voltage V . In
this paper, we have generated successfully eq (1), and focused more on the model building
than trying to find the universal features.

In the calculation of the conductivity, it is not a priori clear at what scale one should
evaluate, i.e., how to choose the scale, r⋆, so as to capture the non-linear effect. Especially,
for the system that is described by the Maxwell action. Of course, the gauge/gravity duality
suggests us to do the calculations at the UV boundary. But, the result of this calculation
produces only the linearized effect. However, for the system whose action is described by
the DBI type there exists a very natural way to find the scale r⋆. This basically follows
from the argument of [10],[11] and [12], which says that either the integrand of the action or

the solution, which is in the form of
√

A
B

needed to be real. At a special value of the radial
coordinate, r = r⋆, both A and B vanishes and there the action and the solution takes an
indeterminate, 0

0
form. Above or below this special scale r⋆, both A and B becomes positive

or negative together. In this paper we give a physical argument to determine the scale r⋆ and
show that it agrees precisely with the calculations done using the arguments of [10],[11] and
[12]. We use the fact that the Legendre transformed action is same as the energy density, HL,
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evaluated on the static solution, which comes as the square root of one term, importantly
there is not any term in the denominator. On this energy we use the argument of [10],[11]
or [12] to find the scale r⋆, instead of on the action or the solution. So, the scale r⋆ is the
point on the holographic direction r for which the energy density vanishes and stay real

(
HL

)

r⋆

= 0. (10)

The systems that are described by DBI kind of actions there exists another argument
that precisely give the same result for r⋆ as suggested in the previous paragraph, even though
the precise physical reason is not that clear. The argument is to find the on shell value of
the norm of the field strength for which it takes a constant value, more precisely

(
FMNF

MN
)

r⋆

= −2. (11)

There exists yet another way to determine the scale r⋆ that is to find a scale where the
determinant of det(g + F )ab vanishes [11]. Here the indices a and b run only over the field
theory directions. The equation for the condition is

(
det(g + F )ab

)

r⋆

= 0. (12)

This can very easily be seen following the argument of vanishing HL at the scale r⋆. Gener-
ically the energy density in the Legendre transformed frame can be written as

HL =
∫ √

A(r)[A∈(r)A∋(r)− (A△(r))2]. (13)

Generically, the term (A△(r))2 is non-zero when we have got more than one spatial currents,
more importantly this term is always positive. Whereas the term A∈(r) and A∋(r) can
change sign close to the horizon. So we can use the arguments of [10],[11] and [12] so as to
have a real energy. Moreover, one of the term is nothing but (−det(g + F )ab). Hence, the
condition, eq(12), follows from HL.

The prescription of holography [9] or that of [10] has been used to calculate the con-
ductivity of several systems both in the top-down and bottom-up approaches. They include
[16],–,[31] as a partial list.

This paper is organized as follows. In section 2, we shall review the calculation of the
conductivity following [10] and compare it with that using eq(13) for systems that are de-
scribed by DBI type of actions but in the absence of the charge density. In section 3, we
study the systems in the presence of charge density both with and without Chern-Simon
type of actions. Studies in section 2 and 3 are done for generic background solutions. Based
on the calculations, in section 3, we give a toy example which is modeled in such a way that
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it gives us the desired behavior to conductivity and Hall angle in section 4. In section 5,
we study the thermodynamics of the charge carriers in the presence of a constant magnetic
field. Finally we conclude in section 6. Several details of the calculations are relegated to
Appendices.

2 From Non-linear DBI action

In this section, we shall evaluate the expression to current, Jµ = δS
δAµ

, and then use the

solution to equations of motion in it. In arbitrary spacetime dimensions, it is very difficult
to solve the equations of motion that results from the DBI action, even in the massless
and zero condensate limit i.e. for trivial embedding functions, Here, for simplicity, we shall
restrict ourselves to 3 + 1 dimensional bulk spacetime.

The DBI action is

SDBI = −T
∫
e−φ

√
−det([g]ab + Fab) ≡ −T

∫
e−φ

√
−det(Mab), (14)

where [ ] is used to denote the pull back of the bulk metric onto the world volume of the brane
and T is the tension of brane. For simplicity, we have dropped the Chern-Simon part of the
action. The equation of motion, its solution and the currents that follows are presented in
Appendix B. This part of the subsection is also studied in [12], but here we shall be explicit.

In 3 + 1 dimensions the form of the charge and current densities are

Jτ = −T e−φ
[
Fxy(FrτFxy + FxτFyr − FxrFyτ ) + e4tFrτ√

−det(Mab)

]
,

Jx = −T e−φ
[
Fyτ (FrτFxy + FxτFyr − FxrFyτ ) + e2t(Fxτ + hFxr)√

−det(Mab)

]
,

Jy = −T e−φ
[
Fxτ (−FrτFxy + FyτFxr − FyrFxτ ) + e2t(Fyτ + hFyr)√

−det(Mab)

]
, (15)

where
√
−det(Mab) =

[
(1− F 2

rτ )(e
4t + F 2

xy)− (FxτFyr − FyτFxr)
2 +

2FrτFxy(FyτFxr − FxτFyr) + e2t(2FxτFxr + hF 2
xr + 2FyτFyr + hF 2

yr)
]1/2

. (16)

From which it follows the general form of the conductivities and are

σxx =
Jx

Fxτ
= −T e−φ

[
FyτFyr + e2t
√
−det(Mab)

]
, σyy =

Jy

Fyτ
= −T e−φ

[
FxτFxr + e2t
√
−det(Mab)

]
,
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σxy =
Jx

Fyτ
= −T e−φ

[
FrτFxy − FxrFyτ + FxτFyr√

−det(Mab)

]
,

σyx =
Jy

Fxτ
= −T e−φ

[−FrτFxy + FxrFyτ − FxτFyr√
−det(Mab)

]
(17)

It follows trivially that the Hall conductivity is antisymmetric in the interchange of
indices, i.e., σxy = −σyx. Using the explicit structure of the solution, from Appendix B, in
the expression to currents, we ended up with

Jx = −T e−φ Fxτ , Jy = −T e−φ Fyτ , (18)

from which there follows the DC conductivities at the scale, r = rc

σxx(rc) = σyy(rc) = −T e−φ0 ≡ σ. (19)

This indeed reproduces the result of [12], i.e. unity conductivity.

2.1 Using the approach of [10]

In this subsection we shall try to derive the expression to conductivity from the DBI action
in the absence of density. Let us work in a d + 2 dimensional spacetime with dynamical
exponent z. The exact form of the metric that we shall be considering is

ds2d+2 = −r2zdt2 + r2
d∑

i=1

dx2
i +

dr2

r2f
, (20)

we shall take f = 1− (r0/r)
d+z. This from of the metric gives us the Hawking temperature,

TH =
(

d+z
4π

)
rz0. In order to carry out the analysis for conductivity, we need to turn on a

U(1) gauge potential which will give us the desired electric field in the field theory and for
convenience we shall consider it as a constant field. Along with this, we shall turn on another
component of the field strength, whose one leg is along the radial direction and the other
along the spatial direction. For specificity, we shall turn on Fxr. So the complete form of
the U(1) gauge field is F2 = −Edt ∧ dx−H ′(r)dr ∧ dx.

Let us consider a probe brane which is extended along time (t), radial direction (r) and
ds − 1 number of directions of the d number of spatial directions. Hence the probe brane is
a ds brane. For ds = d+ 1, the probe brane will be a space filling brane. For simplicity we
shall consider the massless limit scenario and the action in this case becomes

S = −N
∫
dtdrdxdd−1y

√√√√
d−1∏

1

gyaya

√
gttgrrgxx +H ′2gtt − E2grr, (21)
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where we have considered the metric to be far more general than that of eq(20) but assumed
to be in a diagonal form. Note, this form of the metric can very easily be re-written as is
written in eq(134), by doing a coordinate transformations. The explicit form of the metric
that we have considered has the following structure

ds2d+2 = −gtt(r)dr
2 + grr(r)dr

2 + gxx(r)dx
2 +

d−1∑

1

gab(r)dy
adyb, (22)

where
∑d−1

1 gab(r)dy
adyb is assumed to be diagonal too, i.e.,

∑d−1
1 gab(r)dy

adyb = g11(dy
1)2+

· · ·+gd−1,d−1(dy
d−1)2. The normalization N includes the tension and the number of the probe

branes. Since the action eq(21) do not depends on the function H(r) means the ’momentum’
associated to it must be a constant i.e δS

δH′ ≡ c. From which it follows that the solution

H ′ = ±c

√√√√ grrgttgxx −E2grr
N2(

∏
a gyaya)g

2
tt − c2gtt

(23)

It is very easy to convince oneself that the constant c is nothing but the current density,
Jx, in the field theory, which can be seen just using the equation of motion to the gauge field
in the definition to c. Now using the arguments of [10] we obtain the necessary equations to
fix c, which is Jx

E2 = gtt(r⋆)gxx(r⋆), J2
x = N2

(∏

a

gyaya(r⋆)
)
gtt(r⋆), (24)

where r⋆ is the value of r, where both the numerator and denominator of H ′ changes sign.
It is interesting to note that at r⋆, the solution takes H ′ = 0

0
form which is an indeterminate

structure. So, the better way to find r⋆ is to go over to an equivalent form of the action and
demand that the energy density that follows is real as well as have a ’minimum’ at some
energy scale, which we denote it as r⋆.

The action eq(21) can equivalently be expressed by doing the Legendre transformation
as

SL = S −
∫

δS

δH ′H
′ = −

∫ √√√√
[
grrgttgxx −E2grr

][
N2(

∏

a

gyaya)−
c2

gtt

]
. (25)

Since we are working with a static configuration implies the energy is

HL =
∫ √√√√

[
grr(gttgxx − E2)

][
N2(

∏

a

gyaya)−
c2

gtt

]
, (26)

where we have put an index L to the energy to denote it. For an illustration, let us take an
example of the asymptotically AdS black hole, the first term in the square bracket under the
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square root changes sign some-where close to horizon and the same is true for the second
term in the square bracket and their product is positive but diverges there. Since both the
terms in the square bracket changes sign some-where close to the horizon we assume that this
happens at the same energy scale, r = r⋆, so as to have a real energy. Asymptotically, the
first term in the square bracket diverges so also the second term (for d ≥ 2). Now the only
place it can vanish (i.e minimum) is close to the horizon. For a discussion on the condition
of minimization to energy, see Appendix C.

Demanding these two restrictions again gives the same two equations as written in eq(24).
From which there follows the expression to current

Jx = ±N

√(∏
a gyaya(r⋆)

)

√
gxx(r⋆)

E (27)

The absence of singular behavior to observable Jx means the terms under the square-root
should be regular. Upon choosing the positive sign, the conductivity is

σ = N

√(∏
a gyaya(r⋆)

)

√
gxx(r⋆)

. (28)

The solution to the first equation of eq(24) gives the desired solution to r⋆ as a function
of electric field E and Hawking temperature TH , as gtt is a function of TH . If we assume
that the metric components along the spatial directions are all same then the above formula
to conductivity reduces to

σ = N

√√√√
( d−2∏

1

gyaya(r⋆)
)
. (29)

This form of the conductivity is also found in the Maxwell system in [10],[13],[12], except
the choice of r⋆ is not fixed. For the choice of our field strength, it is expected from eq(17)
that there should not be any Hall conductivity. So, this gives a check of this procedure.

Let us find the complete form of the conductivity associated to the Lifshitz metric written
in eq(20), as an example. In this case the relevant equation that gives r⋆ as a function of
electric field E is

E2 = r2(1+z)
⋆

[
1−

(
r0
r⋆

)d+z
]
. (30)

This algebraic equation is very non-linear in nature and hence very difficult to find the
exact solution, analytically. However, there exists exact solutions for few specific cases. In
which case the number of spatial directions are tied to the exponent z as, d = (n− 1)z + n

10



with n = 0, 1, 2, 3 and 4,

r⋆ = E
1

2(1+z) , n = 0,

r⋆ =

[
( 4π
1+z

)
1+z
z T

1+z
z

H ±
√
4E2 + ( 4π

1+z
)
2(1+z)

z T
2(1+z)

z

H

2

] 1
2(1+z)

, n = 1,

r⋆ =

[
E2 +

(
2π

1 + z

) 2(1+z)
z

T
2(1+z)

z

H

] 1
2(1+z)

=

[
E2 +

(
2π

1 + z

) 2(1+z)
z

T
2(1+z)

z

H

] 1
d+z

, n = 2,

r⋆ =

[2.3
1
3E2 + 2

1
3

[
9( 4π

3(1+z)
)
3(1+z)

z T
3(1+z)

z

H +

√
81( 4π

3(1+z)
)
6(1+z)

z T
6(1+z)

z

H − 12E6

] 2
3

62/3
[
9( 4π

3(1+z)
)
3(1+z)

z T
3(1+z)

z

H +

√
81( 4π

3(1+z)
)
6(1+z)

z T
6(1+z)

z

H − 12E6

] 1
3

] 1
2(1+z)

, n = 3,

r⋆ =

[
E2 ±

√
E4 + 4( π

1+z
)
4(1+z)

z T
4(1+z)

z

H

2

] 1
2(1+z)

, n = 4 (31)

It is interesting to note that the choice n = 0 gives negative exponent z = −d, whereas
n = 1 gives d = 1, which essentially says about a 1 + 1 dimensional field theory for any
exponent, the choice n = 2, 3 and 4 gives the exponent z = d − 2, d−3

2
and z = d−4

3

respectively.
Now using the spatial part of metric components from eq(20) in the expression to current,

J ≡ E
d−1+z
1+z Y1 with the function

Y1 = N

[
1 +

(
2π

1 + z

) 2(1+z)
z
(
T

1+ 1
z

H

E

)2] d−2
2(1+z)

for n = 2,

Y1 = N

[1±
√

1 + 4( π
1+z

)
4(1+z)

z

(
T

1+ 1
z

H

E

)4

2

] d−2
2(1+z)

for n = 4, (32)

for a couple of cases and the conductivity in these special cases are

σ = NT
d−2
z

H

[(
2π

1 + z

) 2(1+z)
z

+

(
E

T
1+ 1

z

H

)2] d−2
2(1+z)

for n = 2,

σ =
N

2
d−2

2(1+z)

[
E2 ±

√

E4 + 4(
π

1 + z
)
4(1+z)

z T
4(1+z)

z

H

] 1
2(1+z)

for n = 4 (33)

Hence for very small electric field and high temperature limit, E << T 1+ 1
z , the conduc-

tivity follows the power law behavior, in particular, T
d−2
z

H .
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Let us go away from this special case of d = (n− 1)z+n and find the solution to r⋆ from

eq(30). In the weak field limit E << T 1+ 1
z the solution to r⋆ can be approximated as

r⋆ ≃ r0

[
1 +

(
E

r1+z
0

)2] d−2
d+z

+ · · · =
(
4πTH

d+ z

) 1
z

[
1 +

(
d+ z

4π

) 2(1+z)
z
(

E

T
1+ 1

z

H

)2] 1
d+z

+ · · · (34)

which gives the current to leading order

Jx ≃ NE
(
4πTH

d+ z

) d−2
z

[
1 +

(
d+ z

4π

) 2(1+z)
z
(

E

T
1+ 1

z

H

)2] d−2
d+z

+ · · · , (35)

whereas in the strong field limit E >> T 1+ 1
z , the solution becomes

r⋆ ≃ E
1

1+z

[
1 +

(
r0

E
1

1+z

)d+z] 1
d+z

+ · · · = E
1

1+z

[
1 +

(
4π

d+ z

) d+z
z

(
T

1+ 1
z

H

E

) d+z
1+z
] 1

d+z

+ · · · (36)

which gives the current to leading order

Jx ≃ NE
d+z−1
1+z

[
1 +

(
4π

d+ z

)d+z
z
(
T

1+ 1
z

H

E

) d+z
1+z
] d−2

2(1+z)

+ · · · , (37)

this form of current essentially gives us the function

Y1 = N

[
1 +

(
4π

d+ z

)d+z
z
(
T

1+ 1
z

H

E

) d+z
1+z
] d−2

2(1+z)

+ · · · . (38)

On comparing with the expression to Y1 for n = 2 case as in eq(32), it follows that the
sub-leading terms to Y1 in eq(38) vanishes exactly for d = z + 2.

2.2 Multiple electric fields

Let us consider another situation where we have turned on more than one constant electric
field, for simplicity let us take the gauge potential as A = −(E1 t+H(r))dx−E2 t dy, which
gives the field strength as

F2 = −E1dt ∧ dx−E2dt ∧ dy −H ′(r)dr ∧ dx (39)

and considering the previous brane configuration again but with this new from of the
gauge field strength in the background metric

ds2d+2 = −gtt(r)dr
2 + grr(r)dr

2 + gxx(r)dx
2 + gyy(r)dy

2 +
d−2∑

1

gab(r)dz
adzb. (40)
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On evaluating the DBI action

S = −N
∫
dtdrdxdydd−2z

√√√√
d−2∏

1

gzaza

√
gttgrrgxxgyy +H ′2(gttgyy −E2

2)− E2
1grrgyy − E2

2grrgxx

(41)
Since the action do not depends onH(r) implies the corresponding momentum is constant

i.e. δS
δH′(r)

= c, and this constant c is nothing but the current density along the x direction,
Jx. Upon inverting to re-write

H ′ = ± c

[gttgyy − E2
2 ]

√√√√grr(gttgxxgyy − E2
1gyy − E2

2gxx)

N2(
∏
gzaza)− c2

gttgyy−E2
2

(42)

Now demanding the reality of the solution as in [10] gives two different equations which
needed to be satisfied at r = r⋆ and the equations are

gtt(r⋆)gxx(r⋆)gyy(r⋆) = E2
1gyy(r⋆)+E2

2gxx(r⋆), N2(
∏

gzaza(r⋆))(gtt(r⋆)gyy(r⋆)−E2
2) = (Jx)2

(43)
These two equations again can be derived by putting the conditions on the energy that

it vanishes and becomes real at the same energy scale r = r⋆. This follows by going over to
the Legendre transformed action

SL = S −
∫ δS

δH ′H
′ = −

∫ √
grr(gttgxxgyy − E2

1gyy − E2
2gxx)

√√√√N2

(∏
gzaza

)
− c2

(gttgyy −E2
2)
,

(44)
which gives the energy as

HL =
∫ √

grr(gttgxxgyy − E2
1gyy − E2

2gxx)

√√√√N2

(∏
gzaza

)
− c2

(gttgyy − E2
2)
, (45)

Now demanding the condition as stated above yields the same two equations eq(43).
The first equation gives the choice of r⋆ whereas the last equation gives the full non-linear
expression to current density. Using these two equations, we ended up with

Jx = ±N E1

√√√√
d−2∏

1

gzaza(r⋆)

√√√√gyy(r⋆)

gxx(r⋆)
, (46)

where r⋆ is to be determined by solving

gtt(r⋆)gxx(r⋆) = E2
1 + E2

2

gxx(r⋆)

gyy(r⋆)
. (47)
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Now, note that the expression to current density remain same as is found in the DBI
action with one electric field. Of course the condition of r⋆ is different. For gxx(r⋆) = gyy(r⋆),
the condition almost remains the same as for one electric field except with the substitution
E2

1 → E2
1 + E2

2 , but for unequal gxx(r⋆) and gyy(r⋆), one has to find the choice of cutoff r⋆
by solving eq(47).

2.3 With a constant electric and magnetic field

Let us re-run the argument of the previous subsection but with a constant electric and
magnetic field, in which case the field strength comes as

F2 = −Edt ∧ dx+Bdx ∧ dy −H ′(r)dr ∧ dx (48)

In this case the DBI action results

S = −N
∫
dtdrdxdydd−2z

√√√√
d−2∏

1

gzaza

√
gttgrrgxxgyy +H ′2gttgyy − E2grrgyy +B2grrgtt (49)

Once again the action does not depend on the field, H(r), implies the corresponding
momentum is constant, δS

δH′(r)
= c. This constant c is nothing but the current density along

the x direction, Jx. The gradient of the solution that results from it

H ′(r) = c

√√√√grrgttgxxgyy +B2grrgtt −E2grrgyy
N2(

∏
gzaza)g

2
ttg2yy − (Jx)2gttgyy

(50)

Going through the logic of [10] gives two algebraic equations which are

gtt(r⋆)gxx(r⋆) = E2 − B2 gtt(r⋆)

gyy(r⋆)
, and Jx = ±N

√√√√
( d−2∏

a=1

gzaza(r⋆)
)
gtt(r⋆)gyy(r⋆), (51)

These two equations again can be derived by putting the conditions on the energy that
it vanishes and becomes real at the same energy scale, r = r⋆. Again, going over to the
Legendre transformed action

SL = S −
∫ δS

δH ′H
′ = −

∫ √
grr(gttgxxgyy −E2gyy +B2gtt)

√√√√N2

(∏
gzaza

)
− c2

gttgyy
, (52)

gives the energy as

HL =
∫ √

grr(gttgxxgyy − E2gyy +B2gtt)

√√√√N2

(∏
gzaza

)
− c2

gttgyy
, (53)
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Now demanding the condition as stated above yields the same two equations as in eq(51),
where the choice of r⋆ is determined by solving the first equation of eq(51). For a constant
electric and magnetic field the formula to current density becomes

Jx = ±N E

√√√√√

(∏d−2
a=1 gzaza(r⋆)gyy(r⋆)

)

gxx(r⋆)

√√√√1− B2

E2

gtt(r⋆)

gyy(r⋆)
(54)

and has been modified with an additional multiplicative factor
√
1− B2

E2
gtt(r⋆)
gyy(r⋆)

in compar-

ison to the cases without any magnetic field. This is because the r⋆ is also modified by the
same multiplicative factor on the right hand side to eq(24), but without the square-root.

At first sight it looks as if the result to currents in eq(18), after substituting the solution,
are not compatible with eq(54), in 3+1 dimensions. Actually to compare both the equations
we need to go a frame where both the calculation are done in one frame not in different frames.
To do that we can either do some change of coordinates or directly compute the current using
the approach of [10] in the coordinate system that is used to do the calculations which is
presented in Appendix B.

In either way note that the computation to eq(18) is done for which F (τ)
xr vanishes in

the frame of (τ, r, xi). We have used a superscript (τ) in the expression to field strength
to denote it, which in the frame (t, r, xi) e.g. as in eq(48) says that they are related as
F (τ)
xr = H ′(r) − E/h(r). Vanishing of F (τ)

xr means H ′2(r) = E2/h2(r), which upon using in
eq(50) gives

Jx = ±N E, (55)

for zero magnetic field. This precisely matches with eq(18) at the scale, r = r⋆ up to an over
all identification of normalizations.

2.4 Subsummary

The summary to the study of this section is the result of current density in terms of one
or more constant electric and magnetic field. Essentially, use of the prescription of [10]
or equivalently that of eq(13), results a recipe to calculate the current density in d + 1
dimensional field theory if the dual bulk geometry is of the form eq(40). With a constant
electric field say along x, one of the spatial direction, the ratio of the current density to
electric field is the square-root of the ratio of the product of metric component ( up to an
over all factor) of d−1 space, which is perpendicular to t, x, r plane, to the metric component
along x-axis i.e. eq(28). This quantity should be evaluated at an energy scale, r⋆, for which
the product of metric components along t and x axis i.e. gtt(r⋆)gxx(r⋆) becomes same as
the square of the electric field i.e first equation of eq(24). This condition determining scale
is generalized when there is more than one constant electric fields and a constant magnetic
field in the theory.
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It is worth to emphasize that r⋆ should be close to the horizon, rh, rather than to

boundary because in order for eq(54) to make sense. The factor
√
1− B2

E2
gtt(r⋆)
gyy(r⋆)

should be a

real quantity and can happen only when r⋆ is close to the horizon for any strength of the
magnetic and electric field. This can be seen as follows, close to the horizon the ratio gtt(r⋆)

gyy(r⋆)

is very small whereas close to the boundary this ratio approaches unity. So for B > E the
second factor in the square root can become greater than unity.

3 With charge density

Let us discuss the case with non vanishing charge density first without the Chern-Simon
term and then with it. The inclusion of Chern-Simon term makes an interesting change
to the Hall conductivity that is it adds a piece and could potentially change the structure
unless we take the axion to be constant. Moreover, the Chern-Simon term does not make
any surprising changes to the Hall angle, cot θH = σxy/σxx at the leading order in the large
density and small magnetic field limit.

3.1 Charge density without the Chern-Simon term

Let us work in the background metric, which we have taken to be diagonal for simplicity,
as written in eq(40) and consider two electric fields that are turned on along two different
directions along with two magnetic fields. So, the form of the gauge potential and the field
strength are

A = −
(
E1t +

B

2
y +H(r)

)
dx−

(
E2t−

B

2
x+ h(r)

)
dy + φ(r)dt

F2 = −E1dt ∧ dx− E2dt ∧ dy +Bdx ∧ dy −H ′(r)dr ∧ dx− h′(r)dr ∧ dy + φ′(r)dr ∧ dt.

(56)

The DBI action that describes the dynamics

S = −N
∫

dr

√∏
gzaza

[
grr(B

2gtt −E2
1gyy − E2

2gxx + gttgxxgyy) + (gttgxx −E2
1)h

′2 +

2E1E2h
′H ′ + (gttgyy − E2

2)H
′2 − 2B(E1h

′ − E2H
′)φ′ − (gxxgyy +B2)φ′2

]1/2

≡ −N
∫

dr

√∏
gzaza L̄, (57)

where the normalization, N , includes the tension of the probe brane and the volume of
R1,d. Since the action does not depend on the fields H, h and φ implies the corresponding
momentum are constants.
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δS

δφ′ ≡ cφ = −N√∏
gzaza

L̄ [−B(E1h
′ − E2H

′)− (gxxgyy + B2)φ′],

δS

δh′ ≡ ch = −N√∏
gzaza

L̄ [(gttgxx − E2
1)h

′ + E1E2H
′ − BE1φ

′],

δS

δH ′ ≡ cH = −N√∏
gzaza

L̄ [(gttgyy − E2
2)H

′ +BE2φ
′ + E1E2h

′] (58)

By taking the ratio of the momenta we determine h′ and φ′ in terms of H ′

h′ =
gyy[−E2(cHE1 + chE2)gxx + gtt(B(Bch − cφE1) + chgxxgyy)]H

′

gxx[−E1(cHE1 + chE2)gyy + gtt(B(BcH + cφE2) + cHgxxgyy)]
,

φ′ =
gtt[E1(−Bch + cφE1)gyy + gxx(E2(BcH + cφE2)− cφgttgyy)]H

′

gxx[−E1(cHE1 + chE2)gyy + gtt(B(BcH + cφE2) + cHgxxgyy)]
(59)

The function H ′ can be determined by substituting eq(59) in the last equation of eq(58).
We do not write down the exact form of H ′ because it is a very long expression and not that
illuminating, even though one might think of using it to find the r⋆. We shall determine r⋆
using eq(13) and obtain the other relevant expressions so as to find the currents.

The Legendre transformed action

SL = S −
∫

δS

δφ′φ
′ −

∫
δS

δh′h
′ −

∫
δS

δH ′H
′

= −N
∫
dr

√∏
gzaza
L̄

[
grr(B

2gtt − E2
1gyy − E2

2gxx + gttgxxgyy)
]

= −
∫

dr

√
grr

gttgxxgyy
×
√
[A∈(r)A∋(r)− (A△(r))2], (60)

where

A∈(r) = B2gtt − E2
2gxx − E2

1gyy + gttgxxgyy,

A∋(r) = N 2(
∏

gzz)gttgxxgyy − c2Hgxx − c2hgyy + c2φgtt,

A△(r) = cφBgtt − chE1gyy + cHE2gxx (61)

The prescription to find r⋆ and the expression to the currents are that each of the quan-
tities A∈(r), A∋(r) and A△(r) must vanish independently at the same value of r, which is
r⋆. The solution to A∋(r⋆) = 0 and A△(r⋆) = 0 gives the expression to currents

cH = −
BcφE2gttgxx ±

√
E2

1gttgxxgyy[−B2c2φgtt + (E2
2gxx + E2

1gyy)(c
2
φ + gxxgyyN 2(

∏
gzz))]

gxx(E2
2gxx + E2

1gyy)

ch =
BcφE

2
1gttgyy ∓ E2

√
E2

1gttgxxgyy[−B2c2φgtt + (E2
2gxx + E2

1gyy)(c
2
φ + gxxgyyN 2(

∏
gzz))]

E1gyy(E
2
2gxx + E2

1gyy)

(62)

17



The scale r⋆ is determined by solving

A∈(r⋆) = [B2gtt − E2
2gxx − E2

1gyy + gttgxxgyy]r⋆ = 0. (63)

The constants cH and ch are nothing but the currents along the x and y direction respec-
tively. Using the condition eq(63) in eq(62) gives the currents

Jx = −
BcφE2 ± E1gyy

√
c2φ +N 2(

∏
gzz)(B2 + gxxgyy)

B2 + gxxgyy
,

Jy =
BcφE1 ∓E2gxx

√
c2φ +N 2(

∏
gzz)(B2 + gxxgyy)

B2 + gxxgyy
, (64)

The conductivities that follows from the expression to currents are

σxx =
dJx

dE1
= ∓ gyy

B2 + gxxgyy

√
c2φ +N 2(B2 + gxxgyy), σxy =

dJx

dE2
= − Bcφ

B2 + gxxgyy
,

σyy =
dJy

dE2
= ∓ gxx

B2 + gxxgyy

√
c2φ +N 2(B2 + gxxgyy), σyx =

dJy

dE1
=

Bcφ
B2 + gxxgyy

. (65)

Now there follows trivially the Onsager relation, σxy(B) = σyx(−B). For the choice of,
E2 = 0, the currents are

Jx = ∓ E1gyy
B2 + gxxgyy

√
c2φ +N 2(

∏
gzz)(B2 + gxxgyy),

Jy =
BE1cφ

B2 + gxxgyy
, (66)

which precisely matches with the result of [11] for the special case when the spatial part of
the metric components are same that is gxx = gyy = gzz and with the units 2πα′ = 1. Upon
restricting our selves to 3 + 1 dimensional bulk systems we get the currents as

Jx = ∓ E1gyy
B2 + gxxgyy

√
c2φ +N 2(B2 + gxxgyy), Jy =

BE1cφ
B2 + gxxgyy

(67)

Now using the Ohm’s law, follows the conductivities and are

σxx = ∓ gyy
B2 + gxxgyy

√
c2φ +N 2(B2 + gxxgyy), σxy =

Bcφ
B2 + gxxgyy

. (68)

Let us look at a special corner of the parameter space of charge density cφ and the
magnetic field B for which NB is very small in comparison to density i.e, very large charge
density. In this case the conductivity reduces to

σxx ≃ ∓
[
cφ
gxx

+N 2 gyy
2c2φ

+ · · ·
]
, σxy ≃ Bcφ

gxxgyy
+ · · · , (69)
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where the ellipses denote higher powers of magnetic field. Choosing the positive branch from
σxx and dropping the second term in σxx gives us

σxx ∼ cφ
gxx

, σxy ≃ Bcφ
gxxgyy

,
σxx

σxy
∼ gyy

B
. (70)

If we want different temperature dependence to the conductivity and the Hall angle, not
as inverse, as reported by experiments restricts us to take the spatial part of the metric
components to be different. Let us consider a situation where gxx ∼ T

2w/z
H and gyy ∼ T

2/z
H

with TH being the equilibrium temperature of the dual field theory. Then the conductivities
are

σxx ∼ T
−2w/z
H ;

σxx

σxy
∼ T

2/z
H . (71)

On comparing with the experimental results gives us the condition on the exponents z
and w as

z = 1, w = 1/2. (72)

So by considering different form of the metric components we can reproduce the precise form
of the conductivities as seen in the NFL phase.

If one consider pseudo-scaling theories where the metric respects the scaling symmetry
but not the scalar field, dilaton, Φ. Then the currents written in eq(66) gets changed to

Jx = ∓ E1e
2Φgyy

B2 + e4Φgxxgyy

√√√√c2φ +N 2e−2Φ(
d−2∏

1

e2Φgzz)(B2 + e4Φgxxgyy),

Jy =
BE1cφ

B2 + e4Φgxxgyy
, (73)

as the action in eq(57) gets changed to S = −N ∫
dre−Φ

√∏
(e2Φgzaza) L̄. Now the metric

components that appear in L̄ can obtained from eq(57) by substituting gsab → e2ΦgEab. This
kind of changes to the action occurs because of doing the changes to the metric components
i.e., from string frame to Einstein frame and performing the calculations for which the metric
components are in Einstein frame.

Let us consider the conductivities that follows from eq(73), for d = 2, i.e., in 2 + 1
dimensional dual field theory

σxx =
e2Φgyy

B2 + e4Φgxxgyy

√
c2φ +N 2e−2Φ(B2 + e4Φgxxgyy) −→

e−2Φ

gxx

√
c2φ +N 2e2Φgxxgyy,

σxy =
Bcφ

B2 + e4Φgxxgyy
−→ Bcφe

−4Φ

gxxgyy
, (74)
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where we have taken the very small magnetic field limit. Let us recall that N 2 ∼ N2
f /g

2
s ,

where Nf is the number of flavor branes. It means in the very high density limit i.e.,
c2φ ≫ N2

f gxxgyy, the conductivities reduces to

σxx ∼ cφ
e−2Φ

gxx
, σxy ∼ Bcφe

−4Φ

gxxgyy
,

σxx

σxy
∼ e2Φgyy

B
. (75)

For a rotationally invariant geometry i.e., with gxx = gyy and demanding that the con-
ductivities in the very high density limit matches with eq(1), do not give us any solution to
dilaton and metric components.

Instead of considering the very high density limit, let us consider the low density limit,
c2φ ≪ N2

f gxxgyy, in which case the conductivities eq(74) reduces to

σxx ∼ N e−Φ

√
gyy
gxx

, σxy ∼ Bcφe
−4Φ

gxxgyy
,

σxx

σxy
∼ N

Bcφ

e3Φ

gxx

1
√
gxxgyy

. (76)

Again considering the rotationally invariant geometry and demanding that the conduc-
tivities in this limit matches with eq(1) gives us the solution as

eΦ ∼ NT, gxx(r⋆) = gyy(r⋆) ∼
√
Bcφ

N 2
T−1/2. (77)

The prediction for the background solutions from eq(77) are very interesting, e.g., the
smallness of the dilaton at low temperature. It would be interesting to generate such solutions
and the predicted form of the metric in Einstein frame and dilaton evaluated at r = r⋆ are

ds2E(r⋆) ∼ −gtt(r⋆)dt
2 + grr(r⋆)dr

2 +
dx2 + dy2

r
1/2z
⋆

, φ(r⋆) ∼ rz⋆ (78)

where we have used the choice that T = TH ∼ rzh ∼ rz⋆, with TH being the Hawking
temperature.

3.2 Charge density with the Chern-Simon term

It is not a priori clear whether the low energy effective action of the probe brane admits a
Chern-Simon type term or not. We assume it does and takes the form similar to that in the
string theory except that the target space here is 3 + 1 dimensional. In this section we have
made a small change to the form of the field strength, i.e., h(r) → −h(r)

F2 = −E1dt∧ dx−E2dt∧ dy+Bdx∧ dy−H ′(r)dr∧ dx+ h′(r)dr∧ dy+ φ′(r)dr∧ dt. (79)
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The inclusion of the Chern-Simon term to the probe brane action adds the following term
to the 3+1 dimensional action

SCS = µ
∫ (

[C0]F ∧ F + [C2] ∧ F + [C4]
)
, (80)

in the absence of the B2 field from the NS-NS sector. The bulk fields [Cn] are to be understood
as the pullback onto the world volume of the probe brane. Let us also assume for simplicity,
C4 vanishes, the C2 has the following structure, [C2] = −2C̃2(r)dt ∧ dy and [C0] depends
only on the radial coordinate. Using the field strength as written in eq(79) results in

SCS = 2µ
∫ [

C0(E1h
′ + E2H

′ − Bφ′) + C̃2H
′
]
dt ∧ dx ∧ dy ∧ dr. (81)

Let us redefine µ̃ := 2µV3, where V3 is the volume of R1,2. Finally the Chern-Simon action
becomes

SCS = µ̃
∫ [

C0E1h
′ + (C0E2 + C̃2)H

′ − C0Bφ′)
]
dr. (82)

So, the full action of the probe brane is

S = −N
∫
dr
[
grr(B

2gtt − E2
1gyy − E2

2gxx + gttgxxgyy) + (gttgxx −E2
1)h

′2 −

2E1E2h
′H ′ + (gttgyy − E2

2)H
′2 + 2B(E1h

′ + E2H
′)φ′ − (gxxgyy +B2)φ′2

]1/2

+ µ̃
∫
dr
[
C0E1h

′ + (C0E2 + C̃2)H
′ − C0Bφ′)

]

≡ −N
∫
dr L̄+ µ̃

∫
dr
[
C0E1h

′ + (C0E2 + C̃2)H
′ − C0Bφ′)

]
(83)

Once again the action does not depends on the field φ, H and h, so the corresponding
momentum are constants. Let us denote the constant momentum for the field φ, h and H
as cφ, ch and cH , respectively

δS

δφ′ ≡ cφ = −N√∏
gzaza

L̄ [B(E1h
′ + E2H

′)− (gxxgyy +B2)φ′]− µ̃BC0,

δS

δh′ ≡ ch = −N√∏
gzaza

L̄ [(gttgxx − E2
1)h

′ −E1E2H
′ +BE1φ

′] + µ̃E1C0,

δS

δH ′ ≡ cH = −N√∏
gzaza

L̄ [(gttgyy −E2
2)H

′ +BE2φ
′ −E1E2h

′] + µ̃(E2C0 + C̃2] (84)

From now on we shall drop the tildes from the field C2 and the coupling µ so as to avoid
cluttering of it. By taking the ratio of the momenta we determine h′ and φ′ in terms of H ′

h′ ≡ h1

h2

, where

21



h1 = gyy

[
E2(cHE1 − chE2 −E1µC2)gxx + gtt

(
B(Bch + cφE1) + (ch − E1µC0)gxxgyy

)]
H ′

h2 = gxx

[
E1(−cHE1 + chE2 + E1µC2)gyy + gtt

(
B(BcH + cφE2) +

(cH − E2µC0)gxxgyy − µC2(B
2 + gxxgyy)

)]
,

φ′ ≡ φ1

φ2

, where

φ1 = gtt

[
E1(Bch + cφE1)gyy + gxx

(
E2(BcH + cφE2)−BE2µC2 − (cφ +BµC0)gttgyy

)]
H ′

φ2 = gxx

[
E1(−cHE1 + chE2 + E1µC2)gyy + gtt

(
B(BcH + cφE2) +

(cH − E2µC0)gxxgyy − µC2(B
2 + gxxgyy)

)]
(85)

The function H ′ can be evaluated by substituting eq(85) into the last equation of eq(84).
Again we are not writing down the explicit form of H ′ as it is a very long expression. As is
done previously the Legendre transformed action

SL = S −
∫

δS

δφ′φ
′ −

∫
δS

δh′h
′ −

∫
δS

δH ′H
′

= −N
∫

dr

L̄
[
grr(B

2gtt − E2
1gyy − E2

2gxx + gttgxxgyy)
]

= −
∫

dr

√
grr

gttgxxgyy
×
√
[A∈(r)A∋(r)− (A△(r))2], (86)

where

A∈(r) = B2gtt − E2
2gxx −E2

1gyy + gttgxxgyy,

A∋(r) = gttgxxgyy −
(
cH − µ(E2C0 + C2)

)2

gxx − (ch − E1µC0)
2gyy + (cφ +BµC0)

2gtt,

A△(r) = (cφ +BµC0)Bgtt + (ch −E1µC0)E1gyy +
(
cH − µ(E2C0 + C2)

)
E2gxx (87)

From now on we shall set E2 = 0 as it does not change much of the physics that we are
going to do. The scale r⋆ is determined by solving

A∈(r⋆) = [B2gtt − E2
1gyy + gttgxxgyy]r⋆ = 0, (88)

whose functional form coincides with that of eq(63), which was considered without the
Chern-Simon term. The form of the currents are

Jx = µC2 ∓
E1gyy

B2 + gxxgyy

√
(cφ +BµC0)2 +N 2(B2 + gxxgyy),
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Jy = E1

[
B(cφ +BµC0)

B2 + gxxgyy
− µC0

]
=

E1[Bcφ − µC0gxxgyy]

B2 + gxxgyy
, (89)

where we have used eq(88). From which the conductivity follows upon using the Ohm’s law

σxx = ∓ gyy
B2 + gxxgyy

√
(cφ +BµC0)2 +N 2(B2 + gxxgyy), σxy =

Bcφ − µC0gxxgyy
B2 + gxxgyy

. (90)

Once again, let us look at a special corner of the parameter space of charge density cφ
and the magnetic field B for which NB is very small in comparison to density. In this case
the conductivity reduces to

σxx ≃ ∓
[
cφ
gxx

+N 2 gyy
2c2φ

+ · · ·
]
, σxy ≃ Bcφ

gxxgyy
− µC0 + · · · , (91)

where the ellipses denote higher powers of magnetic field. Choosing the positive branch from
σxx and dropping the second term in σxx gives us

σxx ∼ cφ
gxx

, σxy ≃ Bcφ
gxxgyy

− µC0, (92)

and in the small µC0 limit i.e. µC0 << Bcφ the Hall angle reduces to

σxx

σxy
∼ gyy

B
. (93)

So the presence of Chern-Simon term to the action parametrically does not change much
to the conductivity in the small magnetic field and large density limit but adds a piece to the
off diagonal part of the conductivity. The Hall angle in the limit, µC0 <<

Bcφ
gxxgyy

, remains

same as in the case of without the Chern-Simon term.
In the presence of a non trivial dilaton, Φ, the form of the conductivities becomes

σxx = ∓ e2Φgyy
B2 + e4Φgxxgyy

√
(cφ +BµC0)2 +N 2e−2Φ(B2 + e4Φgxxgyy),

σxy =
Bcφ − µC0e

4Φgxxgyy
B2 + e4Φgxxgyy

, (94)

which in the small magnetic field and cφ ≫ BµC0 limit reduces to

σxx ∼ e−2Φ

gxx

√
c2φ +N 2e2Φgxxgyy, σxy ∼ Bcφe

−4Φ

gxxgyy
− µC0. (95)

If we take the axion as constant, C0 = θ, with a rotationally invariant geometry, very
high density limit and assume the first term in the Hall conductivity dominates over the
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axionic term then there is no solution to dilaton and metric component that can give the
result eq(1). However if we consider a small density limit (but cφ ≫ BµC0) in a rotationally
invariant geometry with a non constant axion then the conductivities reduces to

σxx ∼ N e−Φ, σxy ∼ Bcφe
−4Φ

g2xx
− µC0. (96)

Upon comparing with eq(1), the dilaton goes eΦ ∼ NT with the combination of metric
component and axion as

Bcφe
−4Φ

g2xx
− µC0 ∼ T−3. (97)

It would be interesting to find such background solutions that shows the property as is
being shown in eq(97).

4 Geometry with two exponents: An example

In this section we shall write down a gravitational solution for which the geometry exhibits
the required two exponents explicitly. The extremal solution is already found in [15] in a
specific setting that is with several form field strengths and metric. But to find the non-
extremal solution in that setup is very cumbersome. Instead, here we shall find such solutions
by adopting a different form of the gravitational action than that is considered in [15], but
it comes up with a cost that is the entropy vanishes even though there is a finite size to the
horizon. The on shell action vanishes identically as a result of the vanishing of the free energy
and the energy. Similar kind of behavior was seen previously in the context of generating
Lifshitz type solutions in [33] and [34].

The action that we shall consider is a Ricci squared corrected term to Einstein-Hilbert
action with a cosmological constant

S =
1

2κ2
4

∫ √−g[R− 2Λ + βR2] ≡
∫

L. (98)

The equation of motion that follows from it is

RMN − 1

2
gMNR + ΛgMN + 2βgMN2R − 2β∇M∇NR + 2βRRMN − 1

2
βR2gMN = 0. (99)

The solution to the equation of motion comes as

ds2 = L2[−r2zf(r)dt2 + r2wdx2 + r2dy2 +
dr2

r2f(r)
], (100)
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which respect the scaling symmetry

t → λz t, x → λw x, y → λ y, r → r

λ
. (101)

The function

f(r) = 1−
(
rh
r

)α±

, (102)

where

α± = 1 + w +
3

2
z ± 1

2

√
−4(1 + w2) + 4z + 4wz + z2. (103)

From which there follows a restriction on the exponents, 4z + 4wz + z2 ≥ 4(1 + w2) and
the dimension full objects β and Λ are

Λ = − 1

2L2
[1 + w + z + w2 + z2 + wz], β =

L2

4[1 + w + z + w2 + z2 + wz]
(104)

with the Hawking temperature

TH =
α±
4π

rzh. (105)

It follows trivially that for a solution with exponents for which z = 1 and w = 1/2
satisfies the restrictions that α± is a real quantity and hence the solution is real. For this
choice to the exponents the cosmological constant and the coupling are

Λ = − 17

8L2
, β =

L2

17
, α± =

3
√
2± 1√
2

. (106)

If we calculate the entropy of the system using Wald’s formula [32]

SBH = −2π
∫

rh

∂L

∂Rabcd

ǫabǫcd, (107)

where the quantity ǫab is binormal to the bifurcation surface, and is normalized in such a
way that it obeys ǫabǫ

ab = −2. We use the convention of [35] to calculate it, which reads as

ǫab = ξaηb − ξbηa, (108)

where ξ and η are null vectors normal to the bifurcate killing horizon, with ξ.η = 1. In our
choice of 3 + 1 dimensional metric, the non vanishing components of the null vectors are

ξt = −gtt = −L2r2zf(r), ηt = 1, ηr = −
√
grr
gtt

= − 1

f(r)r1+z
. (109)
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In fact, for the action like eq(98) the entropy is

SBH =
2π2

κ2
4

(√−g[1 + 2βR]

)

rh

, (110)

and using all this ingredients into this formula gives us vanishing entropy, which means the
solution eq(100) has the constant curvature: R = −1/2β. From the trace of the equation of
motion to metric eq(99), it follows that the scalar curvature obeys

R = 4Λ + 6β2R. (111)

Now combining these two facts, we obtain the curvature

R = −1/2β = 4Λ, (112)

which is precisely the behavior of the solution in eq(106).

4.1 Parameter Space

In this subsection we shall write down the exact form of both the conductivity and Hall angle
that followed from section 3. Before the evaluation of the conductivity we need to know the
scale, r⋆. From eq(88), it follows that for small electric field and magnetic field the scale

r⋆ ∼ rh ∼ T
1/z
H . (113)

The corrections to this scale occurs in the dimensionless ratios of E/T
1+1/z
H and B/T

(1+w)/z
H .

Now, substituting the explicit form of the metric components from eq(100) into eq(90)
results in

σxx = ∓ r2⋆

B2 + r
2(1+w)
⋆

√

(cφ +BµC0)2 +N 2

(
B2 + r

2(1+w)
⋆

)
, σxy =

Bcφ − µC0r
2(1+w)
⋆

B2 + r
2(1+w)
⋆

.

(114)
In the small magnetic field, large density and at low temperature limit the expression to

conductivities reduces to

σxx ∼ cφr
−2w
⋆ + · · · ∼ cφT

−2w/z
H , σxy ∼ Bcφr

−2(1+w)
⋆ − µC0 + · · · ∼ BcφT

−2(1+w)/z
H − µC0,

=⇒ σxx/σxy ∼ r2⋆/cφ + · · · ∼ (T
2/z
H )/cφ + · · · , (115)

where in the last line we have assumed Bcφ > µC0T
2(1+w)/z
H . Demanding that this tem-

perature dependence to conductivities should match the experimental results, eq(1), gives
us the following values of exponent, z = 1, w = 1/2. So, the above form of the expo-
nents gives us the strange metal behavior of copper-oxide systems as seen in experiments
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[1], [3], [4]. If we consider the other regime of parameter space with a constant axion at low
temperature for which the magnetic field is small in comparison to charge density such that
Bcφ < µC0T

2(1+w)/z
H then the off diagonal conductivity does not depend on temperature,

which is not of much interest as far as the experimental results are concerned. Hence, this
regime of parameter space may not be that useful. However, if we consider the non con-
stant axion field in the same limit, i.e., Bcφ < µC0T

2(1+w)/z
H , then by matching with eq(1),

we get the exponents as 2w = z and the axion field should have the following behavior,
C0 ∼ T−3

H ∼ r−3z
⋆ . It would be interesting to find such background solutions.

4.2 Fermi Liquid

In this subsection we shall reproduce a well known transport properties of the Fermi liquid
theory. It is known, see for example [38], that the conductivity at low temperature goes
as σFL ∼ T−2. Now upon using eq(115), we see that in order to reproduce this particular
behavior requires us to take the exponents as w = z. Here the exponents are not fixed to a
particular value. In the next section, we shall demand that the specific heat heat should have
a linear dependence to temperature, parametrically. The result of this, fixes the exponents to
z = w = −2. Note, for this choice of exponents the quantity α± defined in eq(103) becomes
pure imaginary, which is an artifact of the action we used to construct it. However, in what
follows we shall not be worried about the nature of α± as we believe the above mentioned
constraint on the exponents can be removed by looking at better solutions.

5 Probe brane thermodynamics

In this section we shall study some thermodynamic properties of the probe brane but without
the Chern-Simon term and non trivial dilaton. Let us recall that the charge carriers are
introduced via probe brane and the study of their thermodynamic behavior is very important
so as to have a better understanding of the nature of quantum critical point. It is reported
in [36] and [37], for a review see [38] that at low temperature the specific heat (for NFL )
goes as CV ∼ T Log T . But unfortunately, with our choice of exponents as demanded by the
transport properties: z = 1, w = 1/2, gives us the specific heat to go instead as CV ∼ T 3

H .
This kind of behavior to specific heat resembles that of the Debye theory.

Let us see this particular behavior of specific heat in detail. We shall proceed to calculate
the free energy of the probe brane system following [39]. The proper holographic treatment
is also done in [23] and [40]. The Gibbs free energy, i.e., the thermodynamic potential,
Ω, in the grand canonical ensemble is just the negative of the on shell value of the action
times temperature. Here, we have chosen to work in the canonical ensemble. The easiest
way to include the effect of charge density in a magnetic field is by using the field strength,
F2 = φ′(r)dr ∧ dt+Bdx∧ dy in the DBI action. In 3 + 1 dimensions, using the metric as in
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eq(40) gives us the thermodynamic potential and chemical potential µ =
∫∞
rh

drFrt =
∫∞
rh

drφ′.
The chemical potential, µ, should not be confused with the Chern-Simon coupling that
appeared in section 3.2.

Ω = NV2

∫ ∞

rh
dr

(gxxgyy +B2)
√
gttgrr√

gxxgyy +B2 + ρ2
, µ = ρ

∫ ∞

rh
dr

√
gttgrr√

gxxgyy +B2 + ρ2
, (116)

where N ρ = cφ, and cφ is the charge density. V2 is the flat space volume of x, y plane. Using
the metric structure as written in eq(100) gives

Ω = NV2

∫ ∞

rh
dr

(r2+2w +B2)rz−1

√
r2+2w +B2 + ρ2

, µ = ρ
∫ ∞

rh
dr

rz−1

√
r2+2w +B2 + ρ2

. (117)

For generic choice of the exponents, the integral in the thermodynamic potential and in
the chemical potential diverges at UV, so we need to regulate it. The way we shall do is to
subtract an equivalent amount but without the charge density and magnetic field. It means

Ω = NV2

∫ ∞

0
dr
(

r1+2w+z

√
r2+2w +B2 + ρ2

− rz+w
)
−NV2

∫ rh

0
dr

r1+2w+z

√
r2+2w +B2 + ρ2

+ NV2B
2
∫ ∞

0
dr
(

rz−1

√
r2+2w +B2 + ρ2

− rz−w−2
)
−NV2B

2
∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

,

µ = ρ
∫ ∞

0
dr
(

rz−1

√
r2+2w +B2 + ρ2

− rz−w−2
)
− ρ

∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

(118)

The second term in the square bracket of the first equation should not be there when
z + w = 0. Similarly, the second term in the square bracket of the first equation comes into
picture only when z > 2 + w, so also for the second term in the second square bracket. Let
us assume the case, where z 6> 2 + w and z 6= −w. It means we want to regulate it in the
following way

Ω = NV2

∫ ∞

0
dr
(

r1+2w+z

√
r2+2w +B2 + ρ2

− rz+w
)
−NV2

∫ rh

0
dr

r1+2w+z

√
r2+2w +B2 + ρ2

+ NV2B
2
∫ ∞

0
dr

rz−1

√
r2+2w +B2 + ρ2

−NV2B
2
∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

,

µ = ρ
∫ ∞

0
dr

rz−1

√
r2+2w +B2 + ρ2

− ρ
∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

(119)

After doing these integrals

Ω

NV2

= α(w, z) (B2 + ρ2)
z+w+1
2+2w − 1

(2 + 2w + z)

r
(2+2w+z)
h√
B2 + ρ2

×
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2F1[1 +
z

2 + 2w
,
1

2
; 2 +

z

2 + 2w
;− r2+2w

h

B2 + ρ2
] +

B2

z
√
π

(B2 + ρ2)
z−w−1
2+2w Γ

(
1 + w − z

2 + 2w

)

Γ
(
2 + 2w + z

2 + 2w

)
− rzh

z

B2ρ√
B2 + ρ2

2F1

[
z

2 + 2w
,
1

2
; 1 +

z

2 + 2w
; − r2+2w

h

B2 + ρ2

]
,

µ =
1

z
√
π

(B2 + ρ2)
z−w−1
2+2w Γ

(
1 + w − z

2 + 2w

)
Γ
(
2 + 2w + z

2 + 2w

)
−

rzh
z

ρ√
B2 + ρ2

2F1

[
z

2 + 2w
,
1

2
; 1 +

z

2 + 2w
; − r2+2w

h

B2 + ρ2

]
,

(120)

where α(w, z) is a function of the exponents, whose explicit structure is not that important
for the understanding of thermodynamics. Γ(x) and 2F1[a, b; c; x] are the gamma function
and hypergeometric function, respectively. In the limit of high density, low magnetic field
and low temperature, i.e.,T

1+w
z /

√
B2 + ρ2 ≪ 1, eq(120) can be expanded in the series form.

The free energy in the canonical ensemble, F = Ω + µJ t, where J t = NV2ρ is the charge.
From this the entropy density goes as

s = − 1

V2

(
∂F

∂TH

)
= s0 +

N
2z
√
B2 + ρ2

(
4π/α±

) 2+2w+z
z

T
2+2w

z

H , (121)

where s0 = 4πN
zα±

√
B2 + ρ2 is the entropy density at zero temperature. The specific heat

defined as the heat capacity per unit volume, at low temperature, goes as

CV = TH

(
∂s

∂TH

)
=

N√
B2 + ρ2

(
1 + w

z2

) (
4π/α±

) 2+2w+z
z

T
2+2w

z

H . (122)

The magnetic susceptibility, which we shall call as susceptibility, at low temperature

χ/V2 = −
(
∂2F

∂B2

)
= −χ0(B, ρ) +

N 4π

zα±

ρ2

(B2 + ρ2)3/2
TH , (123)

where χ0 is some function of B and ρ, whose exact form is not that illuminating. The effect
of the Chern-Simon term with the field strength, F2 = φ′(r)dr ∧ dt+Bdx∧ dy, is to replace
ρ in all of the above formulas by ρ+ µθB, where we have considered the axion field to be a
constant and identified it with C0 ≡ θ.

5.1 At high temperature, low magnetic field and low density

In this subsection, we shall write down the behavior to thermodynamic quantities in the high
temperature but low magnetic field limit. One of the main reason of study of this regime of
parameter space is to see the behavior of susceptibility. Probably, it is correct to say that
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when we are in the proximity of quantum critical point the magnetization should not obey
the Curie-Weiss type behavior in the high temperature limit.

The temperature dependence to free energy in this regime can be obtained very easily
by looking at the following integrals

Ω

NV2
∼ −

∫ rh

0
dr

r1+2w+z

√
r2+2w +B2 + ρ2

− B2
∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

,

= − rz+w+1
h

z + w + 1
− B2rz−w−1

h

z − w − 1
+

(B2 + ρ2)

2(z − w − 1)
rz−w−1
h +

B2(B2 + ρ2)

2(z − 3w − 3)
rz−3w−3
h + · · · ,

µ ∼ −ρ
∫ rh

0
dr

rz−1

√
r2+2w +B2 + ρ2

= − ρrz−w−1
h

z − w − 1
+

ρ(B2 + ρ2)

2(z − 3w − 3)
rz−3w−3
h + · · · . (124)

So, the Free energy in the canonical ensemble has the following behavior in the high
temperature limit

F

NV2
= − 1

z + w + 1

(
4π/α±

) z+w+1
z

T
z+w+1

z

H − (B2 + ρ2)

2(z − w − 1)

(
4π/α±

) z−w−1
z

T
z−w−1

z

H +

(B2 + ρ2)2

2(z − 3w − 3)

(
4π/α±

) z−3w−3
z

T
z−3w−3

z

H + · · · . (125)

From which the magnetization, M
NV2

= −
(

∂F/(NV2)
∂B

)
and the susceptibility, χ

NV2
= −

(
∂2F/(NV2)

∂B2

)

are

M

NV2
= − B

(z − w − 1)

(
4π/α±

) z−w−1
z

T
z−w−1

z

H − 2B(B2 + ρ2)

(z − 3w − 3)

(
4π/α±

) z−3w−3
z

T
z−3w−3

z

H ,

χ

NV2
=

1

(z − w − 1)

(
4π/α±

) z−w−1
z

T
z−w−1

z

H − 2(3B2 + ρ2)

(z − 3w − 3)

(
4π/α±

) z−3w−3
z

T
z−3w−3

z

H

≡ χ̃0T
z−w−1

z

H − χ̃1T
z−3w−3

z

H (126)

Now, if we demand that the magnetization or more precisely, the susceptibility has the
Curie-Weiss type behavior, the above result forces us to put the following constraints on the
exponents

2z = 1 + w. (127)

Recalling the results to the exponents that follows from the study of conductivity and
Hall angle in section 4, suggests that near to quantum critical point the system does not show
the Curie-Weiss type behavior. In fact the behavior of susceptibility using the exponents,
z = 1, w = 1/2, gives

χ = χ̃0 T
−1/2
H , (128)
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and for Fermi liquid, z = −2 = w, at high temperature limit goes as

χ = χ̃0 T
1/2
H . (129)

The Curie-Weiss type behavior is possible only when eq(127) is obeyed. From which
it follows trivially that the asymptotically AdS spacetime possesses such kind of behavior,
as an example, for which z = 1 = w. Once again the effect of the Chern-Simon term is to
replace ρ in all of the above formulas by ρ+µθB, for constant axion as stated in the previous
section.

6 Conclusion

In this paper we have shown that there exists only two possible ways with different symme-
tries to find the precise temperature dependence to conductivity and Hall angle, 1/T and
T 2, respectively as seen in the non-Fermi liquid. The calculation is done similar in spirit
to the proposal of [10], where the charge density is introduced via flavor brane. It is done
in a generic background demanding the symmetries, like scaling, time translation, spatial
translations and rotations. The result of the calculation suggests us that for a theory having
scaling, time and spatial translation symmetry at high density limit, we should not take the
spatial part of the metric components to be same, i.e. gxx 6= gyy, in order to get the desired
experimental result for transport quantities that is mentioned above. For this purpose, we
have considered a metric with two exponents, z and w, as defined in eq(4). The end result
of this requirement is that the exponents takes the values, z = 1, w = 1/2.

The study of the thermodynamic behavior of various physical quantities are also of equal
importance in the study of quantum critical point or otherwise. For the above choice of
exponents, the specific heat at low temperature goes as CV ∼ T 3

H , which resembles that of
the Debye type. The susceptibility at zero magnetic field and at low temperature goes as
χ = −χ0 + (constants) × TH/ρ, where χ0 is a function of charge density.

However, if we consider the theory to have the symmetries like pseudo-scaling, time
translation, spatial translation and rotation in the low density limit, we can reproduce eq(1)
without the need to introduce two exponents. We leave the detailed study of the thermody-
namic behavior of this class of solution for future research.

From this study there follows one interesting outcome that is we are completely ruling
out the possibility to see eq(1) for background solutions showing scaling symmetry, time
translation, spatial translation and rotational symmetry. In other words these symmetries
are not consistent with eq(1).

The transport and thermodynamic behavior of various physical quantities at high density
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and at low temperature can be summarized in this two exponent model as follows :

Type Physical quantity Expt. result Ref In this model Experimental re-
sult
forces the choice
of Exponents

NFL Conductivity T−1 [1],[3], [4] T
−2w/z
H z = 1, w = 1/2

NFL Hall Angle T 2 [1],[3], [4] T
2/z
H z = 1, w = 1/2

FL Conductivity T−2 [38] T
−2w/z
H z = −2, w = −2

FL Hall Angle Not known T
2/z
H ∼ T−1

H

to author
(130)

and

Type Physical quantity Expt. result Ref In this model Experimental re-
sult forces
the choice of
Exponents

FL Specific heat T [38] −T
(2+2w)/z
H z = −2, w = −2

FL Susceptibility: independent [38] −χ0 + const/α± z = −2, w = −2
χ(B = 0) of T ×TH/ρ

NFL Specific heat should not [38] T
(2+2w)/z
H ∼ T 3

H

be as T
NFL Susceptibility: Not known −χ0+

χ(B = 0) to author const× TH/ρ

(131)
At high temperature, low density and low magnetic field limit

Type Physical quantity Exponents In this model Prediction

NFL Specific heat z = 1, w = 1/2 T
(1+w)/z
H T

3/2
H

NFL Susceptibility z = 1, w = 1/2 T
(z−w−1)/z
H T

−1/2
H

FL Specific heat z = −2 = w T
(1+w)/z
H T

1/2
H

FL Susceptibility z = −2 = w T
(z−w−1)/z
H T

1/2
H

AdS Specific heat z = 1 = w T
(1+w)/z
H T 2

H

Spacetime

AdS Susceptibility z = 1 = w T
(z−w−1)/z
H T−1

H

Spacetime

(132)
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From eq(132), it follows that it’s only the asymptotically AdS spacetime that shows the
Curie-Weiss type behavior. From which it is natural to think that the asymptotically AdS
spacetime may be associated to metals, more specifically to the paramagnets, even though
the specific heat shows a quadratic dependence to temperature.

We have constructed a background geometry with two exponents, for illustration. The
future goal would be to construct other background solutions having non trivial spacetime
thermodynamics, i.e., the thermodynamics of adjoint degrees of freedom, in the sense of
having non zero entropy for finite horizon size and may be a non zero free energy, depending
on the requirement of the model, which is a priori not clear at present. Moreover, the
thermodynamic quantities in the Fermi liquid phase need to be real.

There are several other checks that needed to be done. In particular, the AC conductivity
σ(ω), which in the interval TH < ω < Ω̃, shows a very specific behavior [41], where ω and
Ω̃ are the frequency and some high energy cutoff scale. This result of [41] for copper oxide
systems puts some serious restrictions on the form of the (bulk) geometry. In the study of
superconductors [42] at low temperature (even at extremality), it was suggested that if the
potential energy close to IR behaves as, V = V0/r

2, then the real part of AC conductivity goes
as, ℜ[σ(ω)] ∝ ω

√
4V0+1−1. Now upon matching with the results of [41], we get V0 = −2/9, i.e.,

there should be an attractive potential energy close to IR. Which is an interesting prediction
but we leave this aspect of holographic model building for future research.

There is one further comment that deserve to be mentioned. In [5], it is shown that
both for scaling and presudo-scaling theories with unbroken rotational symmetry in the x, y
plane, the resistivity and the AC conductivity have the following temperature and frequency
dependence at low temperature as ρ ∼ T ν1, and σ(ω) ∼ ω−ν1 for ν1 ≤ 1. Now if we demand
eq(1) on this result, then it fixes ν1 = 1, it means, σ(ω) ∼ ω−1, which is not what [41]
suggests. So, it is natural to think of some more exotic models that are either proposed in
[5] or that of discussed in this paper so as to get as close as possible to the experimental
results.
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8 Appendix A: Solution to Maxwell system

In this section we shall write down the exact solution to Maxwell’s equation of motion in
the notation of [14]. Let us start with a system whose dynamics is described by Maxwell’s
action

S = −1

4

∫
dd+1x

√−g

g2YM

FMNF
MN , (133)

with coordinate dependent coupling, gYM , whose explicit dependence we do not specify. Also
assume that the d+1 dimensional spacetime possessing the symmetries like rotation in d−1
dimensional space, time and spatial translations has a structure like

ds2d+1 = −h(r)dτ 2 + 2dτdr + e2t(r)δijdx
idxj , (134)

where the radial coordinate can have a range, rh ≤ r ≤ rc, with rh denote the horizon of a
black hole and rc is the upper cutoff, which is the UV. The non-vanishing components of the
field strength’s are Fτr, Fτi, Fij, Fir.

In terms which the equations of motion are

e2t∂τFτr + ∂iFτi = h∂iFir,

∂τFir + [(2− p)t′ − φ′]Fτi − ∂rFτi + h′Fir = −h∂rFir + h[(2− p)t′ − φ′]Fir + e−2t∂jFji,

∂rFτr + (pt′ + φ′)Fτr + e−2t∂iFir = 0, (135)

where we have used 1/g2YM = eφ(r) and in the derivatives the indices i, j, · · · are raised using
δij i.e. ∂i = δij∂j . The normalization of the coupling is assumed to be φ(rh) = 0. We shall
solve these equations of motion along with the Bianchi identities

∂τFri + ∂rFiτ + ∂iFτr = 0,

∂τFij + ∂iFjτ + ∂jFτi = 0,

∂rFij + ∂iFjr + ∂jFri = 0, (136)

with the in falling boundary condition at the horizon, which means the momentum flux
tangent to the horizon vanishes i.e. Trr(rh) = 0 [14], which means Fir(rh) = 0.

The current and charge density at the horizon are

Ji(τ, xi, rh) = Fiτ (τ, xi, rh) q(τ, xi, rh) = Frτ (τ, xi, rh), (137)

which obey the continuity equation ∂τq + ∂iJi = 0, courtesy the first equation of eq(135)
after setting the condition t(rh) = 0.
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8.1 Exact Solutions

In this subsection, we shall find the exact solution to the Maxwell system first for 3 + 1
dimensional space time and then for any spacetime.

3+1 dimension:

Let us denote the spacetime coordinate as τ, x, y and r. The solution for which the
coupling is constant i.e. φ′ = 0 with a non-trivial electric field and a constant magnetic field

Fxr = 0, Fyr = 0, Frτ = 0, Fyτ = Ey(τ), Fxy = constant ≡ B, Fxτ = Ex(τ), (138)

for some functions Ex(τ) and Ey(τ) whose functional form is not fixed by the equations of
motion or the Bianchi identity.

For p = 2, there exists another exact solution for which the the coupling is constant i.e.
φ′ = 0 and the rest of the components of field strength are

Fxr = 0, Fyr = 0, Frτ = q e2t(r), Fyτ = Ey(τ), Fxy = constant ≡ B, Fxτ = Ex(τ),
(139)

where q is a constant and the functions Ex(τ) and Ey(τ) whose functional form is not fixed
by the equations of motion or the Bianchi identity.

Any arbitrary dimension:

There exists exact solution to the Maxwell system in any arbitrary dimension but un-
fortunately with zero electric field. In fact all the components of field strength vanishes
except

Frτ = qe−pt(r)−φ(r), (140)

where q is a constant. One can find another solution with a non-trivial electric field provided
the inverse coupling goes as

1/g2YM = e−(p−2)t(r)+constant, (141)

with Frτ = qe−2t(r) and the other non-vanishing component to field strength is

Fiτ = Ei(τ) (142)

for some functions Ei(τ), again whose functional form is not fixed by the equations of motion
or the Bianchi identity.
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9 Appendix B: Solution to DBI action

Looking at the existence of an exact solution to Maxwell system for 3+1 dimensions suggest
there should be an exact solution to the non-linearly generalized Maxwell system that is the
DBI action. The DBI action is

SDBI = −T
∫
e−φ

√
−det([g]ab + Fab) ≡ −T

∫
e−φ

√
−det(Mab), (143)

where [ ] is used to denote the pull back of the bulk metric onto the world volume of the
brane. Let us assume the following structure to metric and U(1) gauge field strength

ds24 = −h(r)dτ 2 + 2dτdr + e2t(r)(dx2 + dy2),

F2 = Frτdr ∧ dτ + Fxτdx ∧ dτ + Fyτdy ∧ dτ + Fxydx ∧ dy + Fxrdx ∧ dr + Fyrdy ∧ dr

(144)

The equation of motion to gauge field and the current associated to it are

∂K [T e−φ
√
−det(MAB) θKL] = 0, Jµ = −T e−φ

√
−det(MAB) θrµ, (145)

where the indices N, K, L etc run over the entire bulk spacetime whereas µ, ν, ρ etc run over
only the field theory directions, τ, x, y. The function θKL = MKL−MLK

2
and MKLMLP = δKP .

The explicit form of the spatial components of the current are

√
−det(MAB) Jx = −T e−φ

[
Fyτ (FrτFxy + FxτFyr − FxrFyτ ) + e2t(Fxτ + hFxr)

]
,

√
−det(MAB) Jy = −T e−φ

[
Fxτ (−FrτFxy + FyτFxr − FyrFxτ ) + e2t(Fyτ + hFyr)

]
(146)

Let us assume that the non-vanishing components of field strength are Fxτ , Fyτ and Fxy

following the previous example, in which case there occurs a lot of simplification to both the
currents and equations of motion

Jx = −T e−φ Fxτ√
1 + e−4tF 2

xy

, Jy = −T e−φ Fyτ√
1 + e−4tF 2

xy

,

∂y

[
T

e−φ Fxy√
e4t + F 2

xy

]
+ ∂r

[
T
e−φ+2t Fxτ√
e4t + F 2

xy

]
= 0, ∂x

[
− T

e−φ Fxy√
e4t + F 2

xy

]
+ ∂r

[
T
e−φ+2t Fyτ√
e4t + F 2

xy

]
= 0,

∂x

[
Te−φ+2t Fxτ√

e4t + F 2
xy

]
+ ∂y

[
Te−φ+2t Fyτ√

e4t + F 2
xy

]
= 0 (147)

and the solution for φ = constant = φ0 becomes

Fyτ = Ey(τ, r), Fxy = constant ≡ B, Fxτ = Ex(τ, r), (148)
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for some functions Ex(τ, r) and Ey(τ, r), whose functional form is

Ex(τ, r) = f2(τ)e
−2t

√
e4t +B2, Ey(τ, r) = f3(τ)e

−2t
√
e4t +B2 (149)

determined in terms of two unknown functions f2(τ) and f3(τ). The Bianchi identity sets the
condition on Fxτ and Fyτ that these components should not depend on r and can happen
only when B = 0. This solution indeed is an exact solution to the complete equation of
motion with only non-vanishing components of field strength are Fxτ and Fyτ [12].

There exists another exact solution but unfortunately with zero electric field and the
non-vanishing components to field strength reads

Fxy = B = constant, Frτ =
f1√

f 2
1 + e4t +B2

, (150)

where f1 is a constant.

10 Appendix C: Energy Minimization

After extremizing eq(26), it follows that the extremum occurs when the following equation
is satisfied

[
g′rr(gttgxx − E2) + grr(g

′
ttgxx + gttg

′
xx)
][
N2(

∏
gyaya)−

c2

gtt

]
+

[
grr(gttgxx − E2)

][
N2(

∏
gyaya)

′ +
c2g′tt
g2tt

]
= 0. (151)

Let us denote it as rm which is a function of (TH , E, Jx). But recall that vanishing and
reality of energy, HL, implies that it occurs at a scale r⋆, which is a function of TH and E
only. So one can ask the question: Can r⋆ be same as rm i.e. r⋆(TH , E) = rm(TH , E, Jx)
? The answer to this question is: It can happen only if the current Jx is a function of TH

and E. If we take the case as in eq(24) then it gives us a solution to eq(151). In fact for this

solution the energy extremization at r⋆ again is in the indeterminate form i.e
(

dHL

dr

)

r⋆

= 0
0

because in this case both HL and the numerator of dHL

dr
vanishes. So we shall take the

physical reason of choosing a scale r⋆ is the condition of reality and vanishing of energy, HL.
In general, a priori, it is not clear what other value of r one should choose so as to find the
current as a function of temperature and electric field that solves eq(151) for which r⋆ = rm.
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