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1. Introduction

Localization in quantum field theory is a procedure by whiettain (not necessarily gaussian)
functional integrals are computed exactly by the saddiatpoethod.

As a mathematical theory localization was discovered iffitliee dimensional setting of inte-
grals over a compact manifold without boundary by Duisteatitéeckman([1]. In the Duistermaat-
Heckman approach there is a torus action on a compact syticpieanifold and the integral of the
exponential of the hamiltonian for the torus action withpest to the symplectic measure is local-
ized exactly on the fixed points of the torus action. A cohaygidal interpretation was given by
Atiyah-Bott [3] and the infinite dimensional version for odnensional functional integrals (i.e.
for quantum mechanics) was worked out by Bisnjjit [3].

Localization as a technique for computing exactly certamctional integrals of quantum field
theory was introduced by Wittefi] [4]. In four-dimensionapstsymmetric gauge theories Witten
twist of supersymmetry[]J5] provides the differenti@), that defines the cohomology needed for
localization.

Indeed the integral of a closed form, of the ki@éxp(—Ssysy), with QO = 0 andQSsysy=
0, whereSsysyis the action of a supersymmetri&ly SY) gauge theory, can be deformed by a
coboundaryQa, without changing its value:

/Oexp(—Sg,Ugy—tQa), (1.1)

becaus&? = 0 and [ Qa = 0. Taking the limitt — oo, the integral localizes on the set of critical
points of the coboundary. Thus Witten localization in quamfield theory is a cohomology theory
in which certain functional integrals are viewed as cohaygyplclasses and they are computed
choosing suitable representatives.

A remarkable application of localization is the computataf the partition function of the
A =2 SUSY Y Mheory, whose logarithm is the prepotential. The prepakmtas found in-
dependently on localization arguments by Seiberg-Witfdn [[ater Nekrasov[]7] reproduced the
Seiberg-Witten solution using cohomological localizatio

According to Nekrasov in the#” = 2 SUSY Y Mtheory the partition function reduces by
localization to the evaluation of a sum of finite dimensiomaégrals over the moduli space of
instantons. A remarkable feature of Nekrasov work is thed #he finite dimensional integrals
over the instantons moduli space can be evaluated by latializmethods provided a compacti-
fication of the moduli space of instantons is chosen. The eatification is absolutely necessary
to assure that the integral of a coboundary vanishes, i.a@lefine the integrals over instantons
moduli as cohomology classes. Nekrasov choice for the cotifigation was a deformation of
the instantons moduli space that amounts to introduce thaulingpace of instantons defined on
a non-commutative space-time. InS&J(N) gauge theory on ordinary commutative space-time
there is an action of the grol@U(N) x SO(4) on the instantons moduli space. The first factor is
the gauge group at infinity and the second factor is the grduguolidean rotations. The group
SU(N) x SQ(4) has a diagonal Cartan subgroup that still acts on the nonvegative deformation
of the instantons moduli space. This is a torus action ankisncise the finite dimensional theory
of Duistermaat-Heckmarj][1] applies. As a result, accordm@lekrasov, in the#” = 2 SUSY
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Y M case the partition function reduces to a sum of contribstioh(non-commutative) Abelian
instantons that are the fixed points of the mentioned tortisraand it can be performed explicitly
(-

Nekrasov localization has the interesting consequendehbdeta function for the Wilsonian
coupling constant of they” =2 SUSY Y Mheory is one-loop exact, a result already known (see
for example [P]). Indeed localization implies that the dadabint approximation is exact and
therefore the only sources of divergences are the one-lauogibnal determinants and the powers
of the Pauli-Villars regulator that occurs in the integoatover the zero modes, due to the instantons
moduli, of the operators in the functional deteminants

It is clear that in the pur&U(N) Y M theory there is no natural cohomology because of the
lack of supersymmetry. However, we may wonder as to whetltbifferent kind of localization
holds, perhaps linked to the largelimit. It is also clear that such localization may exist ofty
special observables, since this is already the case in fegsummetric theory.

The aim of this paper is to show that a new kind of localizatimtds in the largeN limit of
the pureY M theory. One of the most striking conclusions that follownfrthis exact localization
is that the largeN Wilsonian beta function of th& M theory, in certain new variables of anti-
selfdual ASD) type that are defined through a non-supersymmetric vefgiaf the Nicolai map,
is one-loop exact as iBU SYgauge theories. By Wilsonian coupling we mean the couplivag t
occurs in the Wilsonian normalization of the action, befagcaling the fields in such a way that
the kinetic term is in canonical form and independent of thepting. This is the rescaling that
occurs in perturbation theory, and in this case the gaugplioguis referred to as the canonical
coupling. It has been known for some time that the two dedingiof the coupling have different
beta functions in general (see for example [9]). In absefsamersymmetry (and thus of a natural
cohomology) we developed new localization techniquesérptliireY M theory based on homology
theory and on a new holomorphic version of the loop equatiospecial Wilson loopg]8], whose
v.e.v. is invariant at quantum level for deformations thrat\anishing boundaries in homology (i.e.
backtracking arcs).

From the localization of the loop equation it follows thak theta function for the 't Hooft
Wilsonian coupling in théASDvariables is exactly one-loop at lar¢e[f]:

oow _ a3
Jlogh BoGw (1.2)

while the canonical 't Hooft couplingg, renormalizes according to the following exact lahge-
beta function [[8]:

dlogZ
09 —Po’+ 395 13
dlogN\ 1— B3g2 ' '
with:
1 11 4
BOZW§7BJ:Wa (14)

In generalSU SYgauge theories the contribution of non-zero modes in sutérméants cancels around an in-
stanton background. Thus only the divergences due to zedesneurvive. In the/” =4 SUSY Y Mheory also the
divergences due to zero modes cancel out and the theory faeta function.
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dlogZ

wherealog,\

is computed to all orders in the Wilsonian coupling constgpt by:

dlogz (4;)2 %JQ\%V

dlogN  1l+4cdg '

(1.5)

dlogZ

Togh to the lowest

with ¢ a scheme dependent arbitrary constant. As a check, oncesti¢ for
order in the canonical coupling,

dlogz 1 10,
dlog\  (4m)? 3 gt (1.6)

is inserted in Eq.(1.3), it implies the correct value of thietfand second perturbative coefficients
of the beta function:
B 1 10

99— o+ (B2

1 11, 1 34
dlogN 4 (4m)2 3

BOBJ)g5+...:—W§g Gl (1.7)

which are known to be universal, i.e. scheme independent.

However, the localization of the holomorphic loop equatipnhomology admits a simpler
interpretation directly in terms of the functional intelgras localization on the fixed points of a
semigroup contracting the functional measure and leavivayiant the v.e.v. of our special Wilson
loops. This new localization has many analogies with Nekrdscalization on the fixed points of
the torus action on the moduli of (non-commutative) instast Thus it is this simpler theory that
we describe in the following section.

2. Localization in pure large-N Y Mtheory on the fixed points of a semigroup of
contractions

We define twisto? Wilson loops in theY M theory with gauge groupl (N) on R? x R2 with
complex coordinate& = xg +iX1,Z = Xg — iX1,U = X2 4 iX3, U = X — iX3) and non-commutative pa-
rameterd, satisfying[dy, dg] = 611, (see[[1]_12] for a review of non-commutative gauge thesri
as follows:

TrW, (Lyn) = TrPexpi / (As+ADy)dz+ (Az+ A~ 1Dg)dz, 2.1)
Lww

whereD, = d, + Ay is the covariant derivative along the non-commutativeatios u. The plane
(z,2) is instead commutative. The loopyw, starts and ends at the marked powat, The trace in
Eq.(2.1) is over the tensor product of tbé€N) Lie algebra and of the infinite dimensional Fock
space that defines the Hilbert space representation of thearmmutative planéu,u) [, [L2].
The limit of infinite non-commutativity in the plangi,u) is understood, being equivalent to the
largeN limit of the commutative gauge theory JJI] 12]. Therefor@swwemmutativity is for us just
a mean to define the largedimit as well as for Nekrasov it is just a mean to compactify thoduli
space of instantons.

2The name has a geometrical origin that we do not discuss Feistor Wilson loops occur in a twistorial topolog-
ical string theory related to the largédimit of the Y M theory ].
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It easy to prove that the v.e.v. of the twistor Wilson loopsdependent on the paramefer
The proof is obtained changing variables, rescaling foneiti derivatives in the usual definition of
the functional integral of the non-commutativeM theory [11,[IR]. The formal non-commutative
integration measure is invariant under such rescalingusecaf the pairwise cancellation of the
powers ofA andA ~1. The non-commutativ¥ M action, proportional tar(—i[Dg,Dg] — 6;5)2,
is invariant because of rotational invariance in the nomicmtative plane. The only possibly
dangerous terms couple the non-commutative parametee toothmutatofD,,, Dg], while all the
other mixed terms are zero in our case. But the commutatowéiant undei -rescaling. Thus
the v.e.v. of twistor Wilson loops is-independent.

In fact the twistor Wilson loops are trivially 1 at largkto all orders ing 3. We do not give
a diagrammatic proof of the triviality in this paper, but wew that indeed triviality holds to the

lowest non-trivial order in perturbation theory. We havéhia Feynman gauge in the lar@dimit:

< / (Ag+ADy)dz+ (AZ—+)\_1DJ)dZ/ (Ay+ADy)dz+ (Ay+ A ~'Dg)dz>

=2/ dz| dzZ<AA> +i%<AAT>)
Lww Lww
=0. (22

We use theA-independence to prove that the v.e.v. of twistor Wilsorplos localized on the
fixed points of the semigroup rescalidg It is convenient to choose our twistor Wilson loops in
the adjoint representation and to use the fact that in thygddrlimit their v.e.v. factorizes in the
product of the v.e.v. of the fundamental representationddrits conjugate. Then, for the factor
in the fundamental representation, localization proceedfollows. We write the¥ M partition
function by means of a non-supersymmetric analofue [8]@fitolai map of /" =1SUSY YM
theory [14], introducing in the functional integral the appriate resolution of identity:

1= /5 5 — Hag)Stigp. 2.3)

2 :
Z:/exp(—%Q—% > /Trf(ugﬁz)d“x)é(Fa‘B—ugﬁ)c‘iugﬁéAa. (2.4)

a#p
HereQ is the second Chern class (the topological charge), not tmbfised with the differential
of the cohomology of the previous section, apn[g3 is a field of ASDtype. The equations ASD
type in the resolution of identity:

For—F23 = Hgy;
Foo—Fz1= Uy,
Fos — F12 = Hyg, (2.5)

SWe use the triviality at the end of this section, to justifg thse of Morita equivalent subsequences to define the
largeN limit as the limit of infinite non-commutativity with ratiai (dimensionless) parameter on a non-commutative
torus ]. With this definition of the larg8-limit the local holonomy ofB, in the adjoint representation turns out to
be trivial at the fixed-points. There are other kinds of taistvilson loops m] whose v.e.v. is still independent but
non-trivial. We do not discuss their localization in thigppa
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can be rewritten in the form of a Hitchin system:

—iFA+[D,D] -8 '1=p®= %ual

Lo i
—i0AD=n= —(Hoz+'ﬂo3)

—~i0aD (uoz i Hos) (2.6)

or equivalently in terms of the non-hermitian connectionogad holonomy is computed by the
twistor Wilson loop with parametes, B, = A+ pD + p~!D = (A, + pDy)dz+ (Az+ p~Dg)dZ

—iFg, — 0 M1 =p, =’ +p tn—pn
—idgAD=n
—igaD = 2.7)

The resolution of identity in the functional integral thexads:

1— / —iFg, — 14y — 0711)5(—i0AD — ) 3(—idAD — )14y N3, 2.8)

where the measur&Ll,, along the pathC,, is interpreted in the sense of holomorphic matrix
models [Ip], employed in the study of the chiral ring.6f = 1 SU SYgauge theorie§ [16,]12]. In
particular the resolution of identity is independentpagries, on the complex path of integration
Co.

The complex resolution of identity is convenient for thddaling argument about localization
on fixed points and also to work out the holomorphic loop equaand the associated theory of
homological localization[]8].

Let us consider the v.e.v. of twistor Wilson loops:

/ 5n5n5upexp(—|\|8712 N4/Trf )24 4Tr¢ (nN)d*x)

TriPexpi / (Az+ADy)dz+ (Az+ A 1Dg)dz
L

WW

3(—iFs, — Hp — 87 11)3(—iaD — n)3(~idaD — N)SASASDSD (2.9)

and let us change variables in the functional integral tesgdhe non-commutative covariant
derivatives:

/ 3NSNS U, exp(— —— N8n2 /Trf )2+ 4Tr¢ (nn)d*x)

TrPexpi / (A+D/,)dz+ (Ay+ DL)dzZ
L

WW

O(—iFa+[D,D]—0671—p —%a D’+|§0AD’ p~n+pn)

5(—iAdaD’ —n)S(—iA 19D’ — ) SASASD' D' (2.10)

Taking the limitA — 0O inside the functional integral, up to a rescaling anomalthe functional
measure, the last line implies localization wa= 0 anddaD’ = 0 while the independence on the



Large-N beta function and localization on fixed points Marco Bochicchio

pathC, in the neighborhood gb = 0, that we denote, choosimm= A, Cy+, impliesdAIS’ =0as
well. Indeed orCqy- the argument of the remaining delta function contains thelination of a
hermitian—iFa+ [D’, 5’] -0 11—planda anti—hermitiapridAIS’+i_dAD’ part, whose sum can be
zero only if the two terms are zero separately. Therefai@D’ +idaD’ = 0 onCy+ and because
daD’ = 0 alsodaD’ = 0. Had the hermitian rather than the complex resolution efifity been
used, the complex conjugate constraint would have been lagtoducing the new connection,
B), = (A;+ pD})dz+ (Az+ p~'Djdz that is is a function of the rescaled covariant derivatities
v.e.v. of the twistor Wilson loop is localized on:

‘ _ N8 . N4 _
/Co SndNd g+ exp(—?Q—g/Trf(umum)d“x)

TrPexpi /L (A+D),)dz+ (Ag+ DL)dZ
S(—iFg, — 6711 — o+ )8(n)5(3AD’) BAGASD' 5D, (2.11)

where now the\ -independent rescaled functional derivatives occur bothe twistor Wilson loop
and in the functional measure. Tha integral is performed by means of the delta function,dhe
integral decouples. We notice that the localized densisyahaolomorphic ambiguity, since we can
represent the same measure using a different density mag&logorphic transformations without
spoiling the localization:dug+ = gﬁ—‘,’iéugﬁ. This holomorphic ambiguity (and the associated
holomorphic anomaly) can be resc;)lved only through the mefieed theory of the homological
localization of the loop equatiof J[L7] that will not be dissed here.

A delicate point arises about the meaning of the residuadrhotphic integral at the fixed
points. We show below that there is a dense set in functiocesgaiere we can reduce in the large-
N limit the formal functional integral on a continuos produseasure to a product over a lattice
of points and at the same time we can give a differential géomeaning to the corresponding
connections[[8]. We need such differential geometric megto get a structure theorem about the
solutions of the localized Hitchin system and for many otiedated technical issues.

In a neighborhood of the fixed points this dense set correisptm a differential geometric
description of the gauge orbits of the connection as hygrlét reduction on the space of con-
nections [IB] 79] (and references therein). Mathemagidetiorresponds to performing functional
integration on parabolic sheavgs][£0] [[8, 19] and physicaila lattice of surface operators (see
below) carrying magnetic singularities.

On this dense set generically the connections have moduhas the functional measure truly
contains the powers of the Pauli-Villars regulator neederdkgjularize, in the functional determi-
nants that arise integrating the gauge connection, thermedes associated to the moduli (this is
essential to get the correct beta functifin [8]).

However, anticipating the result, as we reach the fixed pdime moduli disappedr This is
the interesting case for localization because the funatioreasure collapses to a sum over fixed

4The correct statement is that we can define the I&fdienit in such a way that the moduli disappear at the fixed
points. This is obtained defining the lartglimit on a non-commutative torus through a diverging segeenf rational
(dimensionless) non-commutative paramet [13] andgusi@ Morita equivalence to the lardélimit of the theory
on a commutative torus (sdﬂliﬂ] for a review of Morita eqjgimae), for which there is an understanding of the moduli

of surface operators by the work ¢f]40] {8} 19].
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points rather than to an integral over a manifold. This haaratogue in the localization of theg”
=2 SUSY Y Martition function, where generically instantons have aliohis is essential to get
the correct beta function in that case too), but the instemtd the fixed points of the torus action
introduced by Nekrasov have not. The subtle point aboutilatéon in both cases, not usually
stressed in the literature, is that first we have to regudaaizd renormalize the functional measure
in a neighborhood of the localized locus and only then laesgdit the fixed points.

Thus at the fixed points the contour integral oygr collapses to a discrete sum. The final
result for the localized effective measure, up to a resgaimomaly that is a local counterterm, and
including the holomorphic ambiguity is:

I.,lo 7T2 N _ _ _

/ I p(— Q-2 3 /Trf(uag)d“x)(s(FaB — 155)] o oBAa, (2.12)
a#p

where we have reintroduced the covariant notation. Nowritegration on the gauge connection

can be explicitly performed to obtain:

N8
[/C Sy exp(————Q— /Trf Hof)d™)

A02
49 G#B

5[.10+
5“& ] n=n=0’

Det 2 (—DBa0yp+DaDg + iad“;B)(%T)”bDet?w (2.13)
where, by an abuse of notation, the connec#oim the determinants denotes the solution of the
equation[Fa‘B —Hap = Oln—m—0- The’ superscript requires projecting away from the determmant
the zero modes due to gauge invariance, since gauge fixintharabrresponding Faddeev-Popov
determinant is understood but not explicitly displayemet%w is the contribution of the possible
ny zero modes due to the (holomorphic) moduli @athe corresponding Pauli-Villars regulator:

5i1125m A 5Blf5mk). (2.14)

w= [ |dZ°Tr;

[ 102 S
We refer to the functional determinant in Eqg.(2.13) as tlealiaation determinant, because it arises
localizing the gauge connection on a given Ie\pegﬁ, of the ASD curvature. Let us notice the
unusual spin term'adeB, as opposed to the one that arises in the background fielcbmﬂbdpap,

by expanding the classical actic% Saxzp J d*XTrs (Fgp)? around a solution of the equation of
motion.

From Eq.(2.13) we read the effective actidn, We found convenient to choose the original
Wilson loop in the adjoint representation. Since in thisect® v.e.v. of the Wilson loop in
the largeN limit factorizes in the product of the v.e.v. in the fundanaérand in the conjugate
representation we get a hermitian versiort ptip to the irrelevant topological term:

N4 _ -3 i
r=lg / Trt(Ho+ Fo+)d*x— logDet 2 (~8adyg + DaDy +iad,, )

O Lo+
Ol

—p Iog(%) — log(Detzw )+cCl o (2.15)

n

We would like to give a precise mathematical meaning to tlegipus formal manipulations of the
functional measure by introducing a lattice regularizatid the functional integral according to
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Wilson. However, the usual Wilsonian regularization onlthks of a lattice would spoil the whole
geometrical structure. Therefore we introduce a new regalgon of theY M functional integral
that allows us to keep the differential geometric structurbe differential geometric structure is
crucial to get a structure theory of the locus of the fixed tmowf the functional measure and to
understand the zero modes of the determinants, that in fi@et ¢he beta function of the theoPy

Our new regularization of th¥ M theory in the largeN limit is performed in two steps. In
the first step, that is still formal, the resolution of idéntin the Nicolai map is represented as an
elliptic fibration of parabolic bundles, as suggested logg ia [18,[19]:

1:/5(F(;5(A)_ Z “;B(p(uj))fj(z)(z_Zp(u.m)) |_| 5H;B(p(u,ﬁ))- (2-16)
Pu.q) P(u,m

The term elliptic implies that the base of the fibration is mosnveniently chosen as a two-
dimensional torus. The torus allows a simple non-commugateformation and the corresponding
non-commutative gauge theory enjoys, for rational valdeb® dimensionless non-commutative
parametef, Morita duality to the commutative theory (see for examfig]]. Sometimes it may
be convenient to choose as base (non-commutaR¢e)r its compactification t&. Thus the
resolution of identity at this stage is still representedalfyanctional integral. In the second step,
taking advantage of the non-commutative partial laxgEguchi-Kawai EK) reduction [11L[12],
the largeN functional integral is reduced to an integral over poikélparabolic singularitie$][8]:

1= [ 8(Fa(A) - 3 Hop P8 (2-20)) [ 8t (P). (2.17)

At this stage the integral over the parabolic residues tbatioin the Nicolai map is finite dimen-
sional at finiteN. Both the representations are useful.

The aforementioned point-like parabolic singularitieghef non-commutative partial lards-
EK reduction are daughters of codimension-two singulardfebe four-dimensional parent gauge
theory. Codimension-two singularities of this kind wergaduced many years ago inJ17] in the
pureY Mtheory as an "elliptic fibration of parabolic bundles" foe thurpose of getting control over
the largeN limit of the pureY M theory exploiting the integrability of the Hitchin fibratioLater, in
[ET]], they were introduced in the” = 4 SUSY Y Mheory for the study of the geometric Langlands
correspondence, under the name of "surface operatorsthanig now the name universally used
in the physical literature. In fact they have been studiegirmally in the mathematical literature at
classical level in[[J0] as singular instantons.

In a mathematical sense we can think of parabolic bundlesvindightly different ways.
Either we can think that they are defined on a space-time withaundary and with a divisor and
a parabolic structure that belong to the space-time. Thigipoint of view in this paper.

Or we can think that they arise on a space-time with bounsianiéere the boundaries are the
singular locus of the surface operators. This is the poinief of [R1]. In this case the insertion

5In SUSYgauge theories the beta function is completely determiryetihé zero modes, because of cancellations
of functional determinants. In the pure larleYang-Mills case the beta function has contributions frorthbxero and
non-zero modes associated to the non-supersymmetricailivalp. We would like to thank Gabriele Veneziano for a
discussion on this point.

5The dimensionless ratid divided by the area of the torus.
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of a surface operator keeps the finiteness of the actione shrecsingular locus is not included in
the space-time integral that computes the action. Thiffipsalso the term operators, since their
occurrence is the analogue of operator insertions

However, our point of view is that the surface operators srenhical objects and therefore
their singular divisor is included in the space-time inggr

As a consequence the classiy¥all action is quadratically divergent on the singular divisor,
with a divergence proportional to the area of each surfacrabpr. We need therefore a way
to handle this classical divergence. It turns out that wiendodimension-two surface is non-
commutative, as in our case, thieM action of the corresponding non-commutative redugéd
model is rescaled by a power of the inverse cut-¢ff|([11] mé fi2] p.21 ) that cancels precisely
[B] the quadratic divergence that occurs evaluating thesatalY M action on surface operators.
Thus the effective actiorl,, of the non-commutative reduc&K theory in theASDvariables is
given by:

N8m N 2m6 PP,
_1 .
—logDet ™2 (—Apdyp + DaDp + |ad%), (2.18)

whereN; = (%T)ZArea is the infinite factor that arises in the partiaK reduction and the trace
in the functional determinants has to be interpreted caitigravith the partialEK reduction. In
particular the classical part of the reducél action is finite on a lattice of surface operators also
when we include the singular divisor. For brevity we havepldiged in the reduced version bf
only the contribution of the fundamental representatiod @&e have omitted the contribution of
the zero modes and of the holomorphic change of variables.

Once the classical quadratic divergence has been tamed Bytheduction we need to under-
stand the logarithmic divergences that lead to a non-trbéga function. Therefore an important
issue is the regularization of the logarithmic divergenasdsing in the localization determinant.
We would like to find a regularization for which the loop expam of the localization determinant
satisfies the usual power counting as in the backgroundda@itputation of the beta function. This
regularization of the effective action is a point-spli¢firegularization of the propagator in the back-
ground of the lattice of surface operators. A typical examglthe following one-loop logarithmic
contribution to the beta function in Euclidean configunatgpace:

L 22 NTr(kpky)
W%/d R (P TRV Y (2.19)

where the sum ovep, p’ runs over the planar lattice of the parabolic divisors ofghgace opera-
tors. Had the contribution witlp = p’ been included, there would appear a quadratic divergence,
thus spoiling the usual power counting in higher order teomthe loop expansion. This lattice
point-spitting regularizatiof is followed by Epstein-Glaser renormalization in Euclideanfig-
uration space (se¢ [22] for references) and it is a possthltirgy point of a new constructive
approach to the large-Y Mtheory.

"We would like to thank Edward Witten for a discussion aboig foint.
8This regularization has been found during joint work withitArr Jaffe.

10
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We now describe the moduli space of surface operators iretbe af commutative space-time
[BQ] that arises by Morita duality. We are interested onlydeal moduli, i.e. in the moduli that
occur because of the non-trivial holonomy of the gauge catime around the parabolic divisor
[Q], since to compute the beta function we need only locahtarterms. There might exist other
moduli, associated for example to holonomies around gloyzes [2D], but they are irrelevant for
the beta function. There is a geometric way of understanttiaglocal) moduli of the connections
that satisfy the self-duality equations with singulagtia a neighborhood of the fixed points by
means of the hyper-Kahler reduction on the space of cormmestdue essentially to Hitchin (see
[L8, [L9] and references therein). In our setting the rolehefdomplex Higgs field in the Hitchin
equations is played by the covariant derivatives in(the) plane and therefore the residues of the
Higgs field vanish at the fixed poinfs According to Hitchin the three constraints occurring in
Eq.(2.5), withu® = 5 ,pAp8p 20@ (2— 2y, ), N = 5 pNpd P (2= 2, ), N = 5 p M0 (2— 2, ),
define the levels of the three hamiltonians, the hermitiasththe complex ones respectively, that
are needed for the hyper-Kahler reducti@a)\pggl is an adjoint orbit with fixed eigenvaluesp
(modulo shifts of Zr) , while n,, labels complex coordinates tangent to the adjoint orhjit &/hen
the residuesgny,np), of the levels of the complex hamiltonians vanish, the amijo'rbits,gp)\pggl,
occurring as residues of the levels of the hermitian hami#to have to degenerate to a point since
the reduction is hyper-Kahler. Another way to get the samsaltés to observe that, since at the
fixed pointsnp = np = 0, the Higgs field is smooth on the parabolic divisor. Therefine only
singularities of the connectioA may occur at the zeroes of the Higgs field and the residues of
the singularities of the connectighare necessarily quantized because they are determinee by th
zeroes. Thus the only possibility by general principleshef quantization of the magnetic charge
in gauge theories (see for example] [23]) is that the locabinminy of A 10 is in Zy and since it
is central there are no moduli [20]. Thus there are no modulhe fixed points. However, if
we perform an infinitesimal deformation of the eigenvaluetha fixed points, that preserves their
multiplicity, non-trivial moduli of the corresponding audipt orbit occur.

Then the computation of the beta function for the Wilsonianpting rapidly reduces to result
of [B] obtained by localization of the holomorphc loop edont that is Eq.(1.2). The beta func-
tion for the Wilsonian coupling of the largg-Y Mtheory in theASDvariables is exactly one-loop
and coincides with the result of one-loop perturbation thediowever, the one-loop result for
Bo = ﬁ% is obtained as the sura,lr—)z(g +2). The first term is the contribution of the local-
ization determinant due to the non-supersymmetric Nicolap that gives rise to the non-trivial
multiplicative renormalization factoz%, of the ASDvariables. The second term is due to zero
modes arising from moduli in a nheighborhood of the surfagegators withizy holonomy.

At the same time, in the regularization scheme[df [8], if tieddf are rescaled in canonical
form the following relation is obtained between the canahimd the Wilsonian coupling constant:

1 1 Bs

ﬁ = 2—gg+leoggC+ZlogZ. (2.20)

Differentiating this relation it follows Eq.(1.3) for thenonical beta functior{]8].

9The hyper-Kahler reduction requires that the residues efHfggs field be nilpotentmﬂg] (and references
therein), but this is not restrictive since at the fixed pothie residues vanish.
10we assume thak is irreducible.
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