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In a certain (non-commutative) version of large-N SU(N) Yang-Mills theory there are special

Wilson loops, called twistor Wilson loops for geometrical reasons, whose v.e.v. is independent

on the parameterλ that occurs in their operator definition. There is a semigroup that acts on the

parameterλ by rescaling and on the functional measure, resolved into anti-selfdual orbits by a

non-supersymmetric version of the Nicolai map, by contracting the support of the measure. As

a consequence the twistor Wilson loops are localized on the fixed points of the semigroup of

contractions. This localization is a non-supersymmetric analogue of the localization that occurs

in the Nekrasov partition function of theN = 2 SUSY YMtheory on the fixed points of a certain

torus action on the moduli space of (non-commutative) instantons. One main consequence of the

localization in the large-N YM case, as in theN = 2 SUSY YMcase, is that the beta function

of the Wilsonian coupling constant in the anti-selfdual variables is one-loop exact. Consequently

the large-N YM canonical beta function has aNSVZform that reproduces the first two universal

perturbative coefficients.
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1. Introduction

Localization in quantum field theory is a procedure by which certain (not necessarily gaussian)
functional integrals are computed exactly by the saddle-point method.

As a mathematical theory localization was discovered in thefinite dimensional setting of inte-
grals over a compact manifold without boundary by Duistermaat-Heckman [1]. In the Duistermaat-
Heckman approach there is a torus action on a compact symplectic manifold and the integral of the
exponential of the hamiltonian for the torus action with respect to the symplectic measure is local-
ized exactly on the fixed points of the torus action. A cohomological interpretation was given by
Atiyah-Bott [2] and the infinite dimensional version for onedimensional functional integrals (i.e.
for quantum mechanics) was worked out by Bismut [3].

Localization as a technique for computing exactly certain functional integrals of quantum field
theory was introduced by Witten [4]. In four-dimensional supersymmetric gauge theories Witten
twist of supersymmetry [5] provides the differential,Q, that defines the cohomology needed for
localization.

Indeed the integral of a closed form, of the kindOexp(−SSUSY), with QO= 0 andQSSUSY=

0, whereSSUSY is the action of a supersymmetric (SUSY) gauge theory, can be deformed by a
coboundary,Qα , without changing its value:

∫

Oexp(−SSUSY− tQα), (1.1)

becauseQ2 = 0 and
∫

Qα = 0. Taking the limitt →+∞, the integral localizes on the set of critical
points of the coboundary. Thus Witten localization in quantum field theory is a cohomology theory
in which certain functional integrals are viewed as cohomology classes and they are computed
choosing suitable representatives.

A remarkable application of localization is the computation of the partition function of the
N = 2 SUSY YMtheory, whose logarithm is the prepotential. The prepotential was found in-
dependently on localization arguments by Seiberg-Witten [6]. Later Nekrasov [7] reproduced the
Seiberg-Witten solution using cohomological localization.

According to Nekrasov in theN = 2 SUSY YMtheory the partition function reduces by
localization to the evaluation of a sum of finite dimensionalintegrals over the moduli space of
instantons. A remarkable feature of Nekrasov work is that also the finite dimensional integrals
over the instantons moduli space can be evaluated by localization methods provided a compacti-
fication of the moduli space of instantons is chosen. The compactification is absolutely necessary
to assure that the integral of a coboundary vanishes, i.e. todefine the integrals over instantons
moduli as cohomology classes. Nekrasov choice for the compactification was a deformation of
the instantons moduli space that amounts to introduce the moduli space of instantons defined on
a non-commutative space-time. In aSU(N) gauge theory on ordinary commutative space-time
there is an action of the groupSU(N)×SO(4) on the instantons moduli space. The first factor is
the gauge group at infinity and the second factor is the group of Euclidean rotations. The group
SU(N)×SO(4) has a diagonal Cartan subgroup that still acts on the non-commutative deformation
of the instantons moduli space. This is a torus action and in this case the finite dimensional theory
of Duistermaat-Heckman [1] applies. As a result, accordingto Nekrasov, in theN = 2 SUSY
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YM case the partition function reduces to a sum of contributions of (non-commutative) Abelian
instantons that are the fixed points of the mentioned torus action and it can be performed explicitly
[7].

Nekrasov localization has the interesting consequence that the beta function for the Wilsonian
coupling constant of theN = 2 SUSY YMtheory is one-loop exact, a result already known (see
for example [9]). Indeed localization implies that the saddle-point approximation is exact and
therefore the only sources of divergences are the one-loop functional determinants and the powers
of the Pauli-Villars regulator that occurs in the integration over the zero modes, due to the instantons
moduli, of the operators in the functional deteminants1.

It is clear that in the pureSU(N) YM theory there is no natural cohomology because of the
lack of supersymmetry. However, we may wonder as to whether adifferent kind of localization
holds, perhaps linked to the large-N limit. It is also clear that such localization may exist onlyfor
special observables, since this is already the case in the supersymmetric theory.

The aim of this paper is to show that a new kind of localizationholds in the large-N limit of
the pureYM theory. One of the most striking conclusions that follow from this exact localization
is that the large-N Wilsonian beta function of theYM theory, in certain new variables of anti-
selfdual (ASD) type that are defined through a non-supersymmetric version[8] of the Nicolai map,
is one-loop exact as inSUSYgauge theories. By Wilsonian coupling we mean the coupling that
occurs in the Wilsonian normalization of the action, beforerescaling the fields in such a way that
the kinetic term is in canonical form and independent of the coupling. This is the rescaling that
occurs in perturbation theory, and in this case the gauge coupling is referred to as the canonical
coupling. It has been known for some time that the two definitions of the coupling have different
beta functions in general (see for example [9]). In absence of supersymmetry (and thus of a natural
cohomology) we developed new localization techniques in the pureYM theory based on homology
theory and on a new holomorphic version of the loop equation for special Wilson loops [8], whose
v.e.v. is invariant at quantum level for deformations that are vanishing boundaries in homology (i.e.
backtracking arcs).

From the localization of the loop equation it follows that the beta function for the ’t Hooft
Wilsonian coupling in theASDvariables is exactly one-loop at large-N [8]:

∂gW

∂ logΛ
=−β0g3

W, (1.2)

while the canonical ’t Hooft coupling,g, renormalizes according to the following exact large-N
beta function [8]:

∂g
∂ logΛ

=
−β0g3+ βJ

4 g3 ∂ logZ
∂ logΛ

1−βJg2 , (1.3)

with:

β0 =
1

(4π)2

11
3
,βJ =

4
(4π)2 , (1.4)

1In generalSUSYgauge theories the contribution of non-zero modes in such determinants cancels around an in-
stanton background. Thus only the divergences due to zero modes survive. In theN = 4 SUSY Y Mtheory also the
divergences due to zero modes cancel out and the theory has zero beta function.
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where ∂ logZ
∂ logΛ is computed to all orders in the Wilsonian coupling constant, gW, by:

∂ logZ
∂ logΛ

=

1
(4π)2

10
3 g2

W

1+cg2
W

, (1.5)

with c a scheme dependent arbitrary constant. As a check, once the result for ∂ logZ
∂ logΛ to the lowest

order in the canonical coupling,

∂ logZ
∂ logΛ

=
1

(4π)2

10
3

g2+ ..., (1.6)

is inserted in Eq.(1.3), it implies the correct value of the first and second perturbative coefficients
of the beta function:

∂g
∂ logΛ

=−β0g3+(
βJ

4
1

(4π)2

10
3

−β0βJ)g
5+ ...=−

1
(4π)2

11
3

g3−
1

(4π)4

34
3

g5+ ..., (1.7)

which are known to be universal, i.e. scheme independent.
However, the localization of the holomorphic loop equationby homology admits a simpler

interpretation directly in terms of the functional integral, as localization on the fixed points of a
semigroup contracting the functional measure and leaving invariant the v.e.v. of our special Wilson
loops. This new localization has many analogies with Nekrasov localization on the fixed points of
the torus action on the moduli of (non-commutative) instantons. Thus it is this simpler theory that
we describe in the following section.

2. Localization in pure large-N YM theory on the fixed points of a semigroup of
contractions

We define twistor2 Wilson loops in theYM theory with gauge groupU(N) on R2×R2
θ with

complex coordinates(z= x0+ ix1, z̄= x0− ix1,u= x2+ ix3, ū= x2− ix3) and non-commutative pa-
rameterθ , satisfying[∂u,∂ū] = θ−11, (see [11, 12] for a review of non-commutative gauge theories)
as follows:

TrΨλ (Lww) = TrPexpi
∫

Lww

(Az+λDu)dz+(Az̄+λ−1Dū)dz̄, (2.1)

whereDu = ∂u+ iAu is the covariant derivative along the non-commutative direction u. The plane
(z, z̄) is instead commutative. The loop,Lww, starts and ends at the marked point,w. The trace in
Eq.(2.1) is over the tensor product of theU(N) Lie algebra and of the infinite dimensional Fock
space that defines the Hilbert space representation of the non-commutative plane(u, ū) [11, 12].
The limit of infinite non-commutativity in the plane(u, ū) is understood, being equivalent to the
large-N limit of the commutative gauge theory [11, 12]. Therefore non-commutativity is for us just
a mean to define the large-N limit as well as for Nekrasov it is just a mean to compactify the moduli
space of instantons.

2The name has a geometrical origin that we do not discuss here.Twistor Wilson loops occur in a twistorial topolog-
ical string theory related to the large-N limit of the YM theory [10].
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It easy to prove that the v.e.v. of the twistor Wilson loops isindependent on the parameterλ .
The proof is obtained changing variables, rescaling functional derivatives in the usual definition of
the functional integral of the non-commutativeYM theory [11, 12]. The formal non-commutative
integration measure is invariant under such rescaling because of the pairwise cancellation of the
powers ofλ andλ−1. The non-commutativeYM action, proportional toTr(−i[Dα ,Dβ ]− θ−1

αβ )
2,

is invariant because of rotational invariance in the non-commutative plane. The only possibly
dangerous terms couple the non-commutative parameter to the commutator[Du,Dū], while all the
other mixed terms are zero in our case. But the commutator is invariant underλ -rescaling. Thus
the v.e.v. of twistor Wilson loops isλ -independent.

In fact the twistor Wilson loops are trivially 1 at large-θ to all orders ing 3. We do not give
a diagrammatic proof of the triviality in this paper, but we show that indeed triviality holds to the
lowest non-trivial order in perturbation theory. We have inthe Feynman gauge in the large-θ limit:

<

∫

Lww

(Az+λDu)dz+(Az̄+λ−1Dū)dz̄
∫

Lww

(Az+λDu)dz+(Az̄+λ−1Dū)dz̄>

= 2
∫

Lww

dz
∫

Lww

dz̄(< AzAz̄ >+i2 < AuAū >)

= 0. (2.2)

We use theλ -independence to prove that the v.e.v. of twistor Wilson loops is localized on the
fixed points of the semigroup rescalingλ . It is convenient to choose our twistor Wilson loops in
the adjoint representation and to use the fact that in the large-N limit their v.e.v. factorizes in the
product of the v.e.v. of the fundamental representation andof its conjugate. Then, for the factor
in the fundamental representation, localization proceedsas follows. We write theYM partition
function by means of a non-supersymmetric analogue [8] of the Nicolai map ofN = 1 SUSY YM
theory [14], introducing in the functional integral the appropriate resolution of identity:

1=

∫

δ (F−
αβ −µ−

αβ )δ µ−
αβ , (2.3)

Z =
∫

exp(−
N8π2

g2 Q−
N

4g2 ∑
α 6=β

∫

Tr f (µ−2
αβ )d

4x)δ (F−
αβ −µ−

αβ )δ µ−
αβ δAα . (2.4)

HereQ is the second Chern class (the topological charge), not to beconfused with the differential
of the cohomology of the previous section, andµ−

αβ is a field ofASDtype. The equations ofASD
type in the resolution of identity:

F01−F23 = µ−
01

F02−F31 = µ−
02

F03−F12 = µ−
03, (2.5)

3We use the triviality at the end of this section, to justify the use of Morita equivalent subsequences to define the
large-N limit as the limit of infinite non-commutativity with rational (dimensionless) parameter on a non-commutative
torus [13]. With this definition of the large-θ limit the local holonomy ofBλ in the adjoint representation turns out to
be trivial at the fixed-points. There are other kinds of twistor Wilson loops [8] whose v.e.v. is stillλ independent but
non-trivial. We do not discuss their localization in this paper.
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can be rewritten in the form of a Hitchin system:

−iFA+[D,D̄]−θ−11= µ0 =
1
2

µ−
01

−i∂AD̄ = n=
1
4
(µ−

02+ iµ−
03)

−i∂̄AD = n̄=
1
4
(µ−

02− iµ−
03) (2.6)

or equivalently in terms of the non-hermitian connection whose holonomy is computed by the
twistor Wilson loop with parameterρ , Bρ = A+ρD+ρ−1D̄ = (Az+ρDu)dz+(Az̄+ρ−1Dū)dz̄:

−iFBρ −θ−11= µρ = µ0+ρ−1n−ρ n̄

−i∂AD̄ = n

−i∂̄AD = n̄. (2.7)

The resolution of identity in the functional integral then reads:

1=
∫

Cρ
δ (−iFBρ −µρ −θ−11)δ (−i∂AD̄−n)δ (−i∂̄AD− n̄)δ µρ δnδ n̄, (2.8)

where the measure,δ µρ , along the path,Cρ , is interpreted in the sense of holomorphic matrix
models [15], employed in the study of the chiral ring ofN = 1 SUSYgauge theories [16, 12]. In
particular the resolution of identity is independent, asρ varies, on the complex path of integration
Cρ .

The complex resolution of identity is convenient for the following argument about localization
on fixed points and also to work out the holomorphic loop equation and the associated theory of
homological localization [8].

Let us consider the v.e.v. of twistor Wilson loops:
∫

Cρ
δnδ n̄δ µρ exp(−

N8π2

g2 Q−
N4
g2

∫

Tr f (µ0)2+4Tr f (nn̄)d4x)

Tr f Pexpi
∫

Lww

(Az+λDu)dz+(Az̄+λ−1Dū)dz̄

δ (−iFBρ −µρ −θ−11)δ (−i∂AD̄−n)δ (−i∂̄AD− n̄)δAδ ĀδDδ D̄ (2.9)

and let us change variables in the functional integral rescaling the non-commutative covariant
derivatives:

∫

Cρ
δnδ n̄δ µρ exp(−

N8π2

g2 Q−
N4
g2

∫

Tr f (µ0)2+4Tr f (nn̄)d4x)

Tr f Pexpi
∫

Lww

(Az+D′
u)dz+(Az̄+D′

ū)dz̄

δ (−iFA+[D′
,D̄′]−θ−11−µ0− i

λ
ρ

∂AD̄′+ i
ρ
λ

∂̄AD′−ρ−1n+ρ n̄)

δ (−iλ∂AD̄′−n)δ (−iλ−1∂̄AD′− n̄)δAδ ĀδD′δ D̄′
. (2.10)

Taking the limitλ → 0 inside the functional integral, up to a rescaling anomaly in the functional
measure, the last line implies localization onn = 0 and∂̄AD′ = 0 while the independence on the
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pathCρ in the neighborhood ofρ = 0, that we denote, choosingρ = λ , C0+ , implies∂AD̄′ = 0 as
well. Indeed onC0+ the argument of the remaining delta function contains the combination of a
hermitian−iFA+[D′,D̄′]−θ−11−µ0 and a anti-hermitian−i∂AD̄′+ i∂̄AD′ part, whose sum can be
zero only if the two terms are zero separately. Therefore−i∂AD̄′+ i∂̄AD′ = 0 onC0+ and because
∂̄AD′ = 0 also∂AD̄′ = 0. Had the hermitian rather than the complex resolution of identity been
used, the complex conjugate constraint would have been lost. Introducing the new connection,
B′

ρ = (Az+ρD′
u)dz+(Az̄+ρ−1D′

ū)dz̄, that is is a function of the rescaled covariant derivatives, the
v.e.v. of the twistor Wilson loop is localized on:

∫

C0+

δnδ n̄δ µ0+ exp(−
N8π2

g2 Q−
N4
g2

∫

Tr f (µ0+ µ̄0+)d
4x)

Tr f Pexpi
∫

Lww

(Az+D′
u)dz+(Az̄+D′

ū)dz̄

δ (−iFB′
1
−θ−11−µ0+)δ (n)δ (∂AD̄′)δAδ ĀδD′δ D̄′

, (2.11)

where now theλ -independent rescaled functional derivatives occur both in the twistor Wilson loop
and in the functional measure. Theδn integral is performed by means of the delta function, theδ n̄
integral decouples. We notice that the localized density has a holomorphic ambiguity, since we can
represent the same measure using a different density makingholomorphic transformations without
spoiling the localization:δ µ0+ =

δ µ0+

δ µ ′
0+

δ µ ′
0+ . This holomorphic ambiguity (and the associated

holomorphic anomaly) can be resolved only through the more refined theory of the homological
localization of the loop equation [17] that will not be discussed here.

A delicate point arises about the meaning of the residual holomorphic integral at the fixed
points. We show below that there is a dense set in function space where we can reduce in the large-
N limit the formal functional integral on a continuos productmeasure to a product over a lattice
of points and at the same time we can give a differential geometric meaning to the corresponding
connections [8]. We need such differential geometric meaning to get a structure theorem about the
solutions of the localized Hitchin system and for many otherrelated technical issues.

In a neighborhood of the fixed points this dense set corresponds to a differential geometric
description of the gauge orbits of the connection as hyper-Kahler reduction on the space of con-
nections [18, 19] (and references therein). Mathematically it corresponds to performing functional
integration on parabolic sheaves [20, 18, 19] and physically on a lattice of surface operators (see
below) carrying magnetic singularities.

On this dense set generically the connections have moduli, so that the functional measure truly
contains the powers of the Pauli-Villars regulator needed to regularize, in the functional determi-
nants that arise integrating the gauge connection, the zeromodes associated to the moduli (this is
essential to get the correct beta function [8]).

However, anticipating the result, as we reach the fixed points the moduli disappear4. This is
the interesting case for localization because the functional measure collapses to a sum over fixed

4The correct statement is that we can define the large-N limit in such a way that the moduli disappear at the fixed
points. This is obtained defining the large-N limit on a non-commutative torus through a diverging sequence of rational
(dimensionless) non-commutative parameters [13] and using the Morita equivalence to the large-N limit of the theory
on a commutative torus (see [13] for a review of Morita equivalence), for which there is an understanding of the moduli
of surface operators by the work of [20, 18, 19].
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points rather than to an integral over a manifold. This has ananalogue in the localization of theN
= 2 SUSY YMpartition function, where generically instantons have moduli (this is essential to get
the correct beta function in that case too), but the instantons at the fixed points of the torus action
introduced by Nekrasov have not. The subtle point about localization in both cases, not usually
stressed in the literature, is that first we have to regularize and renormalize the functional measure
in a neighborhood of the localized locus and only then localize at the fixed points.

Thus at the fixed points the contour integral overµ0+ collapses to a discrete sum. The final
result for the localized effective measure, up to a rescaling anomaly that is a local counterterm, and
including the holomorphic ambiguity is:

[

∫

C0+

δ µ ′
0+

δ µ0+

δ µ ′
0+

exp(−
N8π2

g2 Q−
N

4g2 ∑
α 6=β

∫

Tr f (µ−2
αβ )d

4x)δ (F−
αβ −µ−

αβ )
]

n=n̄=0δAα , (2.12)

where we have reintroduced the covariant notation. Now the integration on the gauge connection
can be explicitly performed to obtain:

[

∫

C0+

δ µ ′
0+ exp(−

N8π2

g2 Q−
N

4g2 ∑
α 6=β

∫

Tr f (µ−2
αβ )d

4x)

Det′−
1
2 (−∆Aδαβ +DαDβ + iadµ−

αβ
)(

Λ
2π

)nbDet
1
2 ω

δ µ0+

δ µ ′
0+

]

n=n̄=0, (2.13)

where, by an abuse of notation, the connectionA in the determinants denotes the solution of the
equation[F−

αβ −µ−
αβ = 0]n=n̄=0. The ′ superscript requires projecting away from the determinants

the zero modes due to gauge invariance, since gauge fixing andthe corresponding Faddeev-Popov
determinant is understood but not explicitly displayed.Det

1
2 ω is the contribution of the possible

nb zero modes due to the (holomorphic) moduli andΛ the corresponding Pauli-Villars regulator:

ω =

∫

|dz|2Tr f (
δB1z

δmi
δmi ∧

δB1z̄

δmk
δmk). (2.14)

We refer to the functional determinant in Eq.(2.13) as the localization determinant, because it arises
localizing the gauge connection on a given level,µ−

αβ , of the ASDcurvature. Let us notice the
unusual spin term,iadF−

αβ
, as opposed to the one that arises in the background field method, 2iadFαβ ,

by expanding the classical actionN2g2 ∑α 6=β
∫

d4xTrf (Fαβ )
2 around a solution of the equation of

motion.
From Eq.(2.13) we read the effective action,Γ. We found convenient to choose the original

Wilson loop in the adjoint representation. Since in this case the v.e.v. of the Wilson loop in
the large-N limit factorizes in the product of the v.e.v. in the fundamental and in the conjugate
representation we get a hermitian version ofΓ, up to the irrelevant topological term:

Γ =
[N4

g2

∫

Tr f (µ0+ µ̄0+)d
4x− logDet′−

1
2 (−∆Aδαβ +DαDβ + iadµ−

αβ
)

−nb log(
Λ
2π

)− log(Det
1
2 ω

δ µ0+

δ µ ′
0+

)+c.c.
]

n=n̄=0. (2.15)

We would like to give a precise mathematical meaning to the previous formal manipulations of the
functional measure by introducing a lattice regularization of the functional integral according to

8
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Wilson. However, the usual Wilsonian regularization on thelinks of a lattice would spoil the whole
geometrical structure. Therefore we introduce a new regularization of theYM functional integral
that allows us to keep the differential geometric structure. The differential geometric structure is
crucial to get a structure theory of the locus of the fixed points of the functional measure and to
understand the zero modes of the determinants, that in turn affect the beta function of the theory5.

Our new regularization of theYM theory in the large-N limit is performed in two steps. In
the first step, that is still formal, the resolution of identity in the Nicolai map is represented as an
elliptic fibration of parabolic bundles, as suggested long ago in [18, 19]:

1=

∫

δ (F−
αβ (A)− ∑

p(u,ū)

µ−
αβ (p(u,ū))δ

(2)(z−zp(u,ū))) ∏
p(u,ū)

δ µ−
αβ (p(u,ū)). (2.16)

The term elliptic implies that the base of the fibration is most conveniently chosen as a two-
dimensional torus. The torus allows a simple non-commutative deformation and the corresponding
non-commutative gauge theory enjoys, for rational values of the dimensionless non-commutative
parameter6, Morita duality to the commutative theory (see for example [13]). Sometimes it may
be convenient to choose as base (non-commutative)R2 or its compactification toS2. Thus the
resolution of identity at this stage is still represented bya functional integral. In the second step,
taking advantage of the non-commutative partial large-N Eguchi-Kawai (EK) reduction [11, 12],
the large-N functional integral is reduced to an integral over point-like parabolic singularities [8]:

1=

∫

δ (F−
αβ (A)−∑

p
µ−

αβ (p)δ
(2)(z−zp))∏

p
δ µ−

αβ (p). (2.17)

At this stage the integral over the parabolic residues that occur in the Nicolai map is finite dimen-
sional at finiteN. Both the representations are useful.

The aforementioned point-like parabolic singularities ofthe non-commutative partial large-N
EK reduction are daughters of codimension-two singularitiesof the four-dimensional parent gauge
theory. Codimension-two singularities of this kind were introduced many years ago in [17] in the
pureYM theory as an "elliptic fibration of parabolic bundles" for the purpose of getting control over
the large-N limit of the pureYM theory exploiting the integrability of the Hitchin fibration. Later, in
[21], they were introduced in theN = 4 SUSY YMtheory for the study of the geometric Langlands
correspondence, under the name of "surface operators", andthis is now the name universally used
in the physical literature. In fact they have been studied originally in the mathematical literature at
classical level in [20] as singular instantons.

In a mathematical sense we can think of parabolic bundles in two slightly different ways.
Either we can think that they are defined on a space-time with no boundary and with a divisor and
a parabolic structure that belong to the space-time. This isthe point of view in this paper.

Or we can think that they arise on a space-time with boundaries, where the boundaries are the
singular locus of the surface operators. This is the point ofview of [21]. In this case the insertion

5In SUSYgauge theories the beta function is completely determined by the zero modes, because of cancellations
of functional determinants. In the pure large-N Yang-Mills case the beta function has contributions from both zero and
non-zero modes associated to the non-supersymmetric Nicolai map. We would like to thank Gabriele Veneziano for a
discussion on this point.

6The dimensionless ratio:θ divided by the area of the torus.
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of a surface operator keeps the finiteness of the action, since the singular locus is not included in
the space-time integral that computes the action. This justifies also the term operators, since their
occurrence is the analogue of operator insertions7.

However, our point of view is that the surface operators are dynamical objects and therefore
their singular divisor is included in the space-time integral.

As a consequence the classicalYM action is quadratically divergent on the singular divisor,
with a divergence proportional to the area of each surface operator. We need therefore a way
to handle this classical divergence. It turns out that when the codimension-two surface is non-
commutative, as in our case, theYM action of the corresponding non-commutative reducedEK
model is rescaled by a power of the inverse cut-off ([11] p.6 and [12] p.21 ) that cancels precisely
[8] the quadratic divergence that occurs evaluating the classicalYM action on surface operators.
Thus the effective action,Γ, of the non-commutative reducedEK theory in theASDvariables is
given by:

Γ =
N8π2

N2g2 Q+
N
g2

2πθ
N2

∫

Tr f (µ−2
01 +µ−2

02 +µ−2
03 )d

2x

− logDet′−
1
2 (−∆Aδαβ +DαDβ + iadµ−

αβ
), (2.18)

whereN2 = ( Λ
2π )

2Area is the infinite factor that arises in the partialEK reduction and the trace
in the functional determinants has to be interpreted coherently with the partialEK reduction. In
particular the classical part of the reducedYM action is finite on a lattice of surface operators also
when we include the singular divisor. For brevity we have displayed in the reduced version ofΓ
only the contribution of the fundamental representation and we have omitted the contribution of
the zero modes and of the holomorphic change of variables.

Once the classical quadratic divergence has been tamed by theEK reduction we need to under-
stand the logarithmic divergences that lead to a non-trivial beta function. Therefore an important
issue is the regularization of the logarithmic divergencesarising in the localization determinant.
We would like to find a regularization for which the loop expansion of the localization determinant
satisfies the usual power counting as in the background-fieldcomputation of the beta function. This
regularization of the effective action is a point-splitting regularization of the propagator in the back-
ground of the lattice of surface operators. A typical example is the following one-loop logarithmic
contribution to the beta function in Euclidean configuration space:

1
(4π2)2 ∑

p6=p′

∫

d2ud2v
NTr(µpµ̄p′)

(|zp−zp′|2+ |u−v|2)2 , (2.19)

where the sum overp, p′ runs over the planar lattice of the parabolic divisors of thesurface opera-
tors. Had the contribution withp= p′ been included, there would appear a quadratic divergence,
thus spoiling the usual power counting in higher order termsof the loop expansion. This lattice
point-spitting regularization8 is followed by Epstein-Glaser renormalization in Euclidean config-
uration space (see [22] for references) and it is a possible starting point of a new constructive
approach to the large-N YM theory.

7We would like to thank Edward Witten for a discussion about this point.
8This regularization has been found during joint work with Arthur Jaffe.
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We now describe the moduli space of surface operators in the case of commutative space-time
[20] that arises by Morita duality. We are interested only inlocal moduli, i.e. in the moduli that
occur because of the non-trivial holonomy of the gauge connection around the parabolic divisor
[20], since to compute the beta function we need only local counterterms. There might exist other
moduli, associated for example to holonomies around globalcycles [20], but they are irrelevant for
the beta function. There is a geometric way of understandingthe (local) moduli of the connections
that satisfy the self-duality equations with singularities in a neighborhood of the fixed points by
means of the hyper-Kahler reduction on the space of connections, due essentially to Hitchin (see
[18, 19] and references therein). In our setting the role of the complex Higgs field in the Hitchin
equations is played by the covariant derivatives in the(u, ū) plane and therefore the residues of the
Higgs field vanish at the fixed points9. According to Hitchin the three constraints occurring in
Eq.(2.5), withµ0 = ∑p gpλpg−1

p δ (2)(z−zp(u,ū)),n= ∑pnpδ (2)(z−zp(u,ū)), n̄= ∑p n̄pδ (2)(z−zp(u,ū)),
define the levels of the three hamiltonians, the hermitian and the complex ones respectively, that
are needed for the hyper-Kahler reduction.gpλpg−1

p is an adjoint orbit with fixed eigenvalues,λp

(modulo shifts of 2π) , while np labels complex coordinates tangent to the adjoint orbit atp. When
the residues,(np, n̄p), of the levels of the complex hamiltonians vanish, the adjoint orbits,gpλpg−1

p ,
occurring as residues of the levels of the hermitian hamiltonian have to degenerate to a point since
the reduction is hyper-Kahler. Another way to get the same result is to observe that, since at the
fixed pointsnp = n̄p = 0, the Higgs field is smooth on the parabolic divisor. Therefore the only
singularities of the connectionA may occur at the zeroes of the Higgs field and the residues of
the singularities of the connectionA are necessarily quantized because they are determined by the
zeroes. Thus the only possibility by general principles of the quantization of the magnetic charge
in gauge theories (see for example [23]) is that the local holonomy ofA 10 is in ZN and since it
is central there are no moduli [20]. Thus there are no moduli at the fixed points. However, if
we perform an infinitesimal deformation of the eigenvalues at the fixed points, that preserves their
multiplicity, non-trivial moduli of the corresponding adjoint orbit occur.

Then the computation of the beta function for the Wilsonian coupling rapidly reduces to result
of [8] obtained by localization of the holomorphc loop equation, that is Eq.(1.2). The beta func-
tion for the Wilsonian coupling of the large-N YM theory in theASDvariables is exactly one-loop
and coincides with the result of one-loop perturbation theory. However, the one-loop result for
β0 = 1

(4π)2
11
3 is obtained as the sum1

(4π)2 (
5
3 + 2). The first term is the contribution of the local-

ization determinant due to the non-supersymmetric Nicolaimap that gives rise to the non-trivial
multiplicative renormalization factor,Z

1
2 , of the ASDvariables. The second term is due to zero

modes arising from moduli in a neighborhood of the surfaces operators withZN holonomy.
At the same time, in the regularization scheme of [8], if the fields are rescaled in canonical

form the following relation is obtained between the canonical and the Wilsonian coupling constant:

1

2g2
W

=
1

2g2
c
+βJ loggc+

βJ

4
logZ. (2.20)

Differentiating this relation it follows Eq.(1.3) for the canonical beta function [8].

9The hyper-Kahler reduction requires that the residues of the Higgs field be nilpotent [18, 19] (and references
therein), but this is not restrictive since at the fixed points the residues vanish.

10We assume thatA is irreducible.
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