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Shock Wave Collisions and Thermalization in AdS5

Yuri V. Kovchegov

Department of Physics, The Ohio State University, Columbus, OH 43210, USA

We study heavy ion collisions at strong ’t Hooft coupling using AdS/CFT correspondence.
According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock
wave collisions in AdS5. We construct the metric in the forward light cone after the collision
perturbatively through expansion of Einstein equations in graviton exchanges. We obtain
an analytic expression for the metric including all-order graviton exchanges with one shock
wave, while keeping the exchanges with another shock wave at the lowest order. We read
off the corresponding energy-momentum tensor of the produced medium. Unfortunately
this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that
higher order graviton exchanges are needed to construct the full solution of the problem.
We also show that shock waves must completely stop almost immediately after the collision
in AdS5, which, on the field theory side, corresponds to complete nuclear stopping due
to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform
trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole,
corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions,
thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

Subject Index: 228,121

§1. General Setup: Expansion in Graviton Exchanges

AdS/CFT correspondence conjectures that the dynamics ofN = 4 SU(Nc) SYM
theory in four space-time dimensions is dual to the type IIB superstring theory on
AdS5×S5.

1) In the limit of large number of colors Nc and large ’t Hooft coupling
λ = g2Nc (with g the gauge coupling constant) such that Nc ≫ λ ≫ 1, AdS/CFT
correspondence reduced to the gauge-gravity duality: N = 4 SU(Nc) SYM theory at
Nc ≫ λ ≫ 1 is dual to (weakly coupled) classical supergravity in AdS5. Hence the
gauge theory dynamics at strong coupling, which includes all-orders quantum effects,
is equivalent to the classical dynamics of supergravity. Instead of summing infinite
classes of Feynman diagrams in the gauge theory or using other non-perturbative
methods, one can simply study classical supergravity in 5 dimensions. For a review
of AdS/CFT correspondence see.2)

Our goal is to describe the isotropization (and thermalization) of the medium
created in heavy ion collisions assuming that the medium is strongly coupled and
using AdS/CFT correspondence to study its dynamics. We want to construct a
metric in AdS5 which is dual to an ultrarelativistic heavy ion collision as pictured
in Fig. 1. Throughout the discussion we will use Bjorken approximation of the
nuclei having an infinite transverse extent and being homogeneous (on the average)
in the transverse direction, such that nothing in our problem would depend on the
transverse coordinates x1, x2.3)
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Fig. 1. The space-time picture of the ultrarelativistic heavy ion collision in the center-of-mass frame.

The collision axis is labeled x
3, the time is x0.

We start with a metric for a single shock wave moving along a light cone:4)

ds2 =
L2

z2

{

−2 dx+ dx− +
2π2

N2
c

〈T−−(x
−)〉 z4 dx− 2 + dx2⊥ + dz2

}

. (1.1)

Here x± = x0±x3
√
2

, z is the coordinate describing the 5th dimension such that the

boundary of the AdS space is at z = 0, and L is the radius of S5. According to
holographic renormalization,5) 〈T−−(x

−)〉 is the expectation value of the energy-
momentum tensor for a single ultrarelativistic nucleus moving along the light-cone
in the x+-direction in the gauge theory. We assume that the nucleus is made out
of nucleons consisting of N2

c “valence gluons” each, such that 〈T−−(x
−)〉 ∝ N2

c , and
the metric (1.1) has no N2

c -suppressed terms in it.
The metric in Eq. (1.1) is an exact solution of Einstein equations in AdS5:

Rµν +
4

L2
gµν = 0. (1.2)

It can also be represented perturbatively as a single graviton exchange between the
source nucleus at the AdS boundary and the location in the bulk where we measure
the metric/graviton field. This is shown in Fig. 2, where the solid line represents the
nucleus and the wavy line is the graviton propagator. Incidentally a single graviton
exchange, while being a first-order perturbation of the empty AdS space, is also an
exact solution of Einstein equations. This means higher order tree-level graviton
diagrams are zero (cf. classical gluon field of a single nucleus in covariant gauge in
the Color Glass Condensate (CGC) formalism6)).

Now let us try to find the geometry dual to a collision of two shock waves
with the metrics like that in Eq. (1.1). Defining t1(x

−) ≡ 2π2

N2
c
〈T1−−(x

−)〉 and

t2(x
+) ≡ 2 π2

N2
c
〈T2++(x

+)〉 for the energy-momentum tensors of the two shock waves

in the boundary theory, we write the metric resulting from such a collision as

ds2 =
L2

z2

{

− 2 dx+ dx− + dx2⊥ + dz2 + t1(x
−) z4 dx− 2 + t2(x

+) z4 dx+2

+higher order graviton exchanges

}

(1.3)
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Fig. 2. A representation of the metric (1.1) as a graviton (wavy line) exchange between the nucleus

at the boundary of AdS space (the solid line) and the point in the bulk where the metric is

measured (denoted by a cross).

The metric of Eq. (1.3) is illustrated in Fig. 3. The first two terms in Fig. 3 (diagrams
A and B) correspond to one-graviton exchanges which constitute the individual met-
rics of each of the nuclei, as shown in Eq. (1.1). Our goal below is to calculate higher-
order corrections to these terms, which are illustrated by the diagram C in Fig. 3 and
by the ellipsis following it. Fig. 3 illustrates that construction of dual geometry to a
shock wave collision in AdS5 consists of summing up all tree-level graviton exchange
diagrams, similar diagrammatically to the classical gluon field formed by heavy ion
collisions in CGC.7), 8) While classical gluon fields lead to free-streaming final state,9)

as we will argue below, their AdS graviton “dual” will lead to an ideal hydrodynamic
final state for the gauge theory similar to the one found in,4) though at the same
time different from4) due to non-trivial rapidity dependence in the case at hand.

N
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c
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nucleus 2

BA C

nucleus 1

Fig. 3. Diagrammatic representation of the metric in Eq. (1.3). Wavy lines are graviton propagators

between the boundary of the AdS space and the bulk. Graphs A and B correspond to the metrics

of the first and the second nucleus correspondingly. Diagram C is an example of the higher order

graviton exchange corrections.

§2. Perturbative Solution of Einstein Equations

We begin by parametrizing the metric as

ds2 =
L2

z2

{

−
[

2 + g(x+, x−, z)
]

dx+ dx− +
[

t1(x
−) z4 + f(x+, x−, z)

]

dx− 2
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+
[

t2(x
+) z4 + f̃(x+, x−, z)

]

dx+2 +
[

1 + h(x+, x−, z)
]

dx2⊥ + dz2
}

, (2.1)

where the functions f , f̃ , g, and h are zero before the collision, i.e., for either x+ < 0
and/or x− < 0. The exact Einstein equations (1.2) for f , f̃ , g, and h are rather
complicated and are not going to be presented here. Instead we are going to solve
Einstein equations perturbatively.

To be more specific let us consider in the boundary theory a collision of two
ultrarelativistic nuclei with large light-cone momenta per nucleon p+1 , p

−
2 , and atomic

numbers A1 and A2. Writing

t1(x
−) = µ1 δ(x

−), t2(x
+) = µ2 δ(x

+) (2.2)

we want to expand Einstein equations in the powers of µ1 and µ2.
10), 11) The two

scales µ1 and µ2 can be expressed terms of physical parameters in the problem11), 12)

µ1 ∼ p+1 Λ2
1 A

1/3
1 , µ2 ∼ p−2 Λ2

2 A
1/3
2 . (2.3)

Λ1 and Λ2 are the typical transverse momentum scales describing the two nuclei,11)

similar to the saturation scales. Note that µ1 and µ2 are independent of Nc. As
follows from a simple dimensional analysis, combined with Lorentz-transformation
properties of the relevant quantities, the expansion parameters in four dimensions
would be

µ1 (x
−)2 x+, and µ2 (x

+)2 x−, (2.4)

such that the expansion is valid only at early times, when these parameters are small.
Linearizing Einstein equations (1.2) in f , f̃ , g, and h we solve the obtained

system of differential equation to obtain11)

h(x+, x−, z) = h0(x
+, x−) z4 + h1(x

+, x−) z6 (2.5)

where h0 and h1 are determined by the causal solutions of the following equations

(∂+ ∂−)
2 h0(x

+, x−) = 8 t1(x
−) t2(x

+), (2.6)

∂+ ∂− h1(x
+, x−) =

4

3
t1(x

−) t2(x
+). (2.7)

f , f̃ , and g are easily expressed in terms of h(x+, x−, z) from Eq. (2.5) (see11)).
This lowest-order perturbative solution leads to the energy density of the pro-

duced medium (in the center-of-mass frame)10), 11)

ǫ(τ) =
N2

c

π2
µ1 µ2 τ

2 (2.8)

where τ =
√
2x+ x−. The corresponding center-of-mass energy-momentum tensor is

〈T µν〉 =









ǫ(τ) 0 0 0
0 2 ǫ(τ) 0 0
0 0 2 ǫ(τ) 0
0 0 0 −3 ǫ(τ)









(2.9)
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in terms of the x0, x1, x2, x3 components. One can see that the longitudinal pressure
component in Eq. (2.9) is large and negative. Under boosts the T 00 and T 33 com-
ponents of the energy-momentum tensor mix. This implies that there is a frame in
which the energy density is negative T ′

00 < 0. At this point it is not clear whether
this result presents a problem, as there may be nothing wrong with energy den-
sity becoming negative for a short period of time.10) As we will see below, further
evolution of the energy density with time leads to disappearance of this negative
energy-density problem.

Higher-order perturbative corrections to the energy-momentum tensor (2.9) in
powers of µ1 and µ2 have been found in10), 11) up to the fourth order in µi (i.e., up
to O(µ3

1µ2), O(µ2
1µ

2
2), O(µ1µ

3
2)).

§3. All-Order Resummation in µ2

The exact solution of Einstein equations for the collision of two shock waves
involves resummation of both parameters in Eq. (2.4) to all orders: such calculation
appears to be very hard to do. Instead one can resum all orders of µ2 (x

+)2 x− while
keeping at the lowest order in µ1 (x

−)2 x+. The corresponding diagram is shown
in Fig. 4: in it one resums multiple graviton exchanges with one shock wave (t2),
while exchanging only one graviton with the other shock wave (t1). By analogy
with perturbative QCD calculations we will refer to these class of diagrams as to the
“proton-nucleus” scattering, with the shock wave t1 being the proton and the shock
wave t2 the nucleus. The applicability region of such approximation is defined by

µ1 (x
−)2 x+ ≪ 1, µ2 (x

+)2 x− ∼ 1, (3.1)

which shows that the resummation is applicable to nucleus-nucleus collisions, only
in the part of the forward light-cone defined by Eq. (3.1).

t 2 t 2

t 1

t 2t 2t 2

∆ +
x ∆ +

x∆ +
x 2 n1

Fig. 4. A diagram contributing to the metric of an asymmetric collision of two shock waves.

Such resummation was performed in13) using the eikonal approximation. The
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result for the expectation value of the energy-momentum tensor reads13)

〈T++〉 = − N2
c

2π2

4µ1 µ2 (x
+)2 θ(x+) θ(x−)

[1 + 8µ2 (x+)2 x−]
3/2

, (3.2a)

〈T−−〉 =
N2

c

2π2
θ(x+) θ(x−)

µ1

2µ2 (x+)4
1

[1 + 8µ2 (x+)2 x−]
3/2

×
[

3− 3
√

1 + 8µ2 (x+)2 x− + 4µ2 (x
+)2 x−

×
(

9 + 16µ2 (x
+)2 x− − 6

√

1 + 8µ2 (x+)2 x−
)

]

, (3.2b)

〈T+−〉 =
N2

c

2π2

8µ1 µ2 x
+ x− θ(x+) θ(x−)

[1 + 8µ2 (x+)2 x−]
3/2

, (3.2c)

〈T ij〉 = δij
N2

c

2π2

8µ1 µ2 x
+ x− θ(x+) θ(x−)

[1 + 8µ2 (x+)2 x−]
3/2

. (3.2d)

Provided the complexity of the problem at hand, the resulting formulas (3.2) for the
energy-momentum tensor are remarkably simple!

Now we can ask a question: what kind of medium is produced in these strongly
coupled proton-nucleus collisions? Is it described by ideal hydrodynamics, just like
Bjorken hydrodynamics was obtained in4)? In our case the produced matter distri-
bution is obviously rapidity-dependent, so it is slightly more tricky to check whether
Eqs. (3.2) constitute an ideal hydrodynamics, i.e., whether it can be written as

T µν = (ǫ+ p)uµ uν − p ηµν (3.3)

with the positive energy density ǫ and pressure p. ηµν is the metric of the four-
dimensional Minkowski space-time and uµ is the fluid 4-velocity.

For the particular case at hand it is easy to see that the energy-momentum
tensor in Eq. (3.2) can not be cast in the ideal hydrodynamics form of (3.3). In the
case of ideal hydrodynamics one has

T++ = (ǫ+ p) (u+)2 > 0. (3.4)

At the same time 〈T++〉 in Eq. (3.2a) is negative definite. Therefore the ideal
hydrodynamic description is not achieved in the proton-nucleus collisions. We be-
lieve this result is due to limitations of this proton-nucleus approximation. As we
will show below, thermalization (black hole production) is inevitable in the collision
of the two shock waves considered here. Our conclusion is then that thermaliza-
tion/isotropization of the medium does not happen in the space-time region defined
by the bounds in Eq. (3.1). What we found in Eq. (3.2) is a medium at some in-
termediate stage, on its way to thermalization at a later time. It appears that one
needs to solve the full nucleus-nucleus scattering problem to all orders in both µ1

and µ2, to obtain a medium described by ideal hydrodynamics.
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§4. Stopping of Nuclei After Collision

To better understand dynamics of the shock wave collisions let us follow one of
the shock waves after the interaction. First we “smear” the delta-function profile of
that shock wave:

t1(x
−) =

µ1

a1
θ(x−) θ(a1 − x−). (4.1)

Here a1 ∝ R1
Λ1

p+
1

∝ A
1/3
1

p+
1

, where the nucleus of radius R1 has A1 nucleons in it. The

“++” component of the energy-momentum tensor of a shock wave after the collision
at x− = a1/2 is11)

〈T++(x+, x− = a1/2)〉 =
N2

c

2π2

µ1

a1

[

1− 2µ2 x
+2 a1

]

. (4.2)

The first term on the right of Eq. (4.2) is due to the original shock wave while the
second term describes energy loss due to graviton emission. Eq. (4.2) shows that
〈T++〉 of a nucleus becomes zero at light-cone times (as p+1 ≈ p−2 in the center-of-
mass frame)

x+stop ∼ 1√
µ2 a1

∼ 1

Λ2 A
1/6
1 A

1/6
2

. (4.3)

Zero 〈T++〉 would mean stopping of the shock wave and the corresponding nucleus.
The result can be better understood by doing all-order resummation of graviton
exchanges with one shock wave performed above for “proton-nucleus collisions”.13)

The full result for the proton’s “++” component of the energy-momentum tensor is

〈T++〉 =
N2

c

2π2

µ1

a1

1
√

1 + 8µ2 (x+)2 x−
, for 0 < x− < a1. (4.4)

Eq. (4.4) is illustrated in Fig. 5, in which one can see that the proton loses all of its
light cone momentum over a rather short time.

T
++

X
+

Fig. 5. T
++ component of the proton’s energy-momentum tensor after the collision as a function

of light cone time x
+ (arbitrary units).

We thus conclude that the collision of two nuclei at strong coupling leads to
a necessary stopping of the two nuclei shortly after the collision. If the nuclei
stop completely in the collision, the strong interactions between them are almost
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certain to thermalize the system, probably leading to Landau hydrodynamics.14)

(Rapidity-independent Bjorken hydrodynamics3) seems to be unlikely after stop-
ping. Even before stopping the energy-momentum tensor in Eq. (3.2) is strongly
rapidity-dependent.)

§5. Thermalization: Trapped Surface Analysis

While the exact solution of Einstein equations for the colliding shock waves
remains elusive, one can infer whether a black hole will be created in the bulk
following such collisions by performing a trapped surface analysis.15), 16) A trapped
surface analysis for shock waves with sources in the bulk has been carried out before
in.17)–19) However, with the resulting trapped surface being centered around the
sources, it is not clear to what extend the trapped surface is the property of these
bulk sources, and what happens to the trapped surface when there are no bulk
sources, as is the case for our shock wave (1.1).

Performing a trapped surface analysis for a shock wave without sources (1.1) does
not allow one to uniquely fix the position of the trapped surface.20) We therefore
start with a shock wave having an extended source in the bulk with the only non-zero
component of the bulk energy-momentum tensor being J−− = E

z0 L
δ(x−) δ(z − z0).

The corresponding metric is18)

ds2 =
L2

z2
{

−2 dx+ dx− + φ(z) δ(x−) dx− 2 + dx2⊥ + dz2
}

(5.1)

with

φ(z) =
2π2 E L2

N2
c











z4

z4
0

, z ≤ z0

1, z > z0.

(5.2)

As one can readily see, the metric (5.1) reduces to that in Eq. (1.1) if we send the
source to the IR infinity in the bulk by taking z0 → ∞ limit of the metric in Eqs.
(5.1) and (5.2) keeping µ defined by

µ =
2π2

N2
c

E L2

z40
(5.3)

fixed.20)

Marginal trapped surface for a collision of two shock waves given by Eq. (5.1)
was found in.18) In the z0 → ∞, µ fixed limit that trapped surface reduces to

x+ = 0, x− = −µ

2

[

z4 − µ−4/3 2−2/3
]

(5.4)

with an analogous expression for the other shock wave obtained by interchanging
x+ ↔ x− in Eq. (5.4). (For simplicity we work in the center-of-mass frame where
µ1 = µ2 = µ.) The trapped surface in Eq. (5.4) is independent of the shape of the
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z=za

shock wave 2shock wave 1 collision
position

z=0

*

Fig. 6. An illustration of the trapped surface in the collision of two sourceless shock waves. Vertical

axis is the bulk z-direction, the horizontal left-right axis can be thought of either as the collision

axis or as the time direction. The trapped surface is shaded.

source being sent to deep IR, as shown in.20) The trapped surface from Eq. (5.4) is
depicted in Fig. 6.

The existence of trapped surface proves that gravitational collapse is inevitable.
That is a black hole will be created in a bulk following a collision of two sourceless
shock waves. In the boundary theory this means that a thermal medium is created,
which is described by ideal hydrodynamics.

The (lower bound for the) produced entropy per unit transverse area A⊥ can be
found by calculating the area of the trapped surface, which yields20)

S

A⊥
=

N2
c

2π2
(2µ1 µ2)

1/3 . (5.5)

Since the trapped surface analysis does not “know” anything about shock wave
thickness (e.g. a1), we conclude that the thermalization time is only a function of
µ1 and µ2, which gives

τth ∼ 1

(µ1 µ2)1/6
, (5.6)

in agreement with the thermalization time suggested in.10) While numerically this
thermalization time is too short to be relevant for RHIC data, it is parametrically
shorter than the stopping time (4.3), making our model somewhat more relevant for
description of real-life collisions. As µ1 µ2 ∼ s with s the center of mass energy of
the collision, we get

S

A⊥
∝ s1/3 (5.7)

in agreement with the result obtained in.17) Finally note that, since, as follows
from Eq. (2.3), µ1 and µ2 are Nc-independent, the produced entropy scales ∝ N2

c , in
agreement withNc-counting in a perturbative QCD calculation of particle production
for a collision of two nuclei with N2

c “valence gluons” in their nucleons.
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