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Abstract

The strong-coupling limit of three-point correlation functions of local operators can be

analyzed beyond the supergravity regime using vertex operators representing spinning

string states. When two of the vertex operators correspond to heavy string states having

large quantum numbers, while the third operator corresponds to a light state with fixed

charges, the correlator can be computed in the large string tension limit by means of a

semiclassical approximation. We study the case when the heavy string states are circular

string solutions with one AdS5 spin and three different angular momenta along S5, for

several choices of the light string state.

http://arxiv.org/abs/1011.0408v1


1 Introduction

Complete resolution of a conformal field theory implies determining the whole spectrum of

two and three-point correlation functions of primary operators. Higher order correlation

functions can then be written in terms of these two lower ones. In the case of four-

dimensional Yang-Mills with N = 4 supersymmetry the spectrum of planar anomalous

dimensions of single-trace gauge invariant operators has been exhaustively explored, both

in the weak and strong-coupling regimes, after the uncovering of integrable structures in

the AdS/CFT correspondence [1]-[4]. It is however unclear whether integrability will also

illuminate the evaluation of three-point correlation functions. In the weak-coupling regime

three-point functions can be evaluated perturbatively [5]. In the strong-coupling realm a

computation at hand within the AdS/CFT correspondence is that of three-point functions

for chiral operators, which can be evaluated in the supergravity regime [6]. But in general

the calculation of three-point functions requires dealing with primary operators dual to

massive string states, which is not a tractable problem within our level of understanding

of string theory on AdS5×S5. However, a case beyond the the supergravity limit and still

reachable from the correspondence should be that of non-protected operators with large

quantum charges, dual to semiclassical spinning string solutions.

The evaluation on the string theory side of the correspondence of correlation functions

of single-trace gauge invariant operators is performed by inserting closed string vertex

operators in the path integral for the string partion function. Vertex operators scale ex-

ponentially with the energy and the quantum charges of the corresponding string state

and therefore when the charges are as large as the string tension
√
λ/2π the string path

integral can be evaluated through a saddle point approximation. The leading contribu-

tion to the corresponding correlation functions is thus governed by a semiclassical string

configuration. This observation was employed in [7]-[10] to compute two-point correlation

functions. The extension to three-point functions has been recently explored in a series of

appealing papers [11]-[14], where two of the vertex operators in the correlation function

were taken to be semiclassical, or heavy, while the remaining light one was chosen as a

massless mode, corresponding to a protected chiral state [11]-[14], or as a massive mode,

dual to general non-protected states [14].

The leading order contribution to the correlator of three string vertex operators is

then dominated in the large string tension regime by the semiclassical string trajectory
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coming from the semiclassical operators. The quantum numbers of the heavy vertex op-

erators are much larger than those of the light operator, and thus the contribution to

the saddle point from the light operator can be neglected. Therefore, in order to evalu-

ate 〈VH1(x1)VH2(x2)VL(x3)〉 it suffices to obtain the leading classical string configuration

saturating the correlation function of the two heavy vertices, 〈VH1(x1)VH2(x2)〉, and then

evaluate the contribution of the light vertex operator VL(x3) on this classical solution,

〈VH1(x1)VH2(x2)VL(x3)〉 = VL(x3)classical . (1.1)

This observation was employed in reference [14] to suggest a general method able to cover

diverse choices of either massless or massive string states for the light vertex operator

VL(x3). In this note we will closely follow this proposal to explore the case where the

classical states associated to the heavy vertex operators in the three-point function are

circular string solutions rotating with one AdS5 spin and three different angular momenta

along S5. The remaining part of the letter is organized as follows. In section 2 we will

review some relevant features of the corresponding spinning string solutions. In section

3 we will compute the three-point function coefficients for several choices of light vertex

operators. We conclude in section 4 with some prospects and remarks.

2 Circular rotating strings

Semiclassical circular string solutions rotating with several spins and angular momenta in

the AdS5 × S5 background were analyzed in [15]-[18]. Following notation in there, it will

prove useful to parameterize the embedding coordinates of the ten-dimensional background

in terms of the global AdS5 and S5 angles,

Y1 + iY2 = sinh ρ sin θeiφ1 , Y3 + iY4 = sinh ρ cos θeiφ2 , Y5 + iY0 = cosh ρei t , (2.1)

X1 + iX2 = sin γ cosψeiϕ1 , X3 + iX4 = sin γ sinψeiϕ2 , X5 + iX6 = cos γeiϕ3 .(2.2)

The YM coordinates are related to the Poincaré coordinates in AdS5 through

Ym =
xm
z

, Y4 =
1

z

(

− 1 + z2 + xmxm
)

, Y5 =
1

2z

(

1 + z2 + xmxm
)

, (2.3)

where xmxm = −x20 + xixi, with m = 0, 1, 2, 3 and i = 1, 2, 3. Euclidean rotation allows

the classical geodesics to reach the boundary, and comes from continuation of the time-like

coordinates to

te = it , Y0e = iY0 , x0e = ix0 . (2.4)
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The two commuting isometries along the φi directions and the three along ϕi allow a

general ansatz with two spins in AdS5 and three angular momenta in S5 [18],

Y1 + iY2 = b1e
iw1τ+ik1σ , Y3 + iY4 = b2e

iw2τ+ik2σ , Y5 + iY0 = b0e
i t , (2.5)

X1 + iX2 = a1e
iω1τ+im1σ , X3 + iX4 = a2e

iω2τ+im2σ , X5 + iX6 = a3e
iντ , (2.6)

where

t = κτ , w2
a = κ2 + k2a , b20 − b21 − b22 = 1 , (2.7)

with a = 1, 2, and

ω2
i = m2

i + ν2 , a21 + a22 + a23 = 1 , (2.8)

with i = 1, 2, 3 and m3 = 0, together with the constraints

E − κ

2
∑

a=1

Sa

wa
=

√
λκ ,

3
∑

i=1

Ji
ωi

=
√
λ , (2.9)

2κE − 2
2
∑

a=1

waSa −
√
λκ2 = 2

3
∑

i=1

ωiJi −
√
λν2 , (2.10)

2
∑

a=1

kaSa +
3
∑

i=1

miJi = 0 . (2.11)

Spins along AdS5 are Sa =
√
λb2awa, and the angular momenta along S5 are Ji =

√
λa2iωi.

When all spins and angular momenta are of the same order of magnitude and large, we

can solve for ν and κ in the above equations as power series expansions [18],

ν2 =
J2

λ
−

3
∑

i=1

m2
i

Ji
J

+ · · · , κ2 =
J2

λ
+

1

J

(

3
∑

i=1

m2
iJi + 2

2
∑

a=1

k2aSa

)

+ · · · (2.12)

where we have introduced the total angular momentum J ≡ J1 + J2 + J3. The energy is

then

E = J + S +
λ

2J2

(

3
∑

i=1

m2
iJi +

2
∑

a=1

kaSa

)

+ · · · (2.13)

In what follows we will simply treat the case of a circular string rotating with a single

spin S along AdS5, and three different momenta Ji along S
5. 1Choosing

b0 = cosh ρ0 , b1 = sinh ρ0 , b2 = 0 , (2.14)

1The general case of a circular string with two spins along AdS5 and three angular momenta along S5

could in principle be also considered. However it leads to

Y4 + Y5 = cosh(κτe) cosh ρ0 + sin(−iw2τe + k2σ) sinh ρ0 cos θ0 ,

and thus provides hard to evaluate integrals in the three-point vertices below.
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the euclidean continuation in Poincaré coordinates of this solution becomes

x1 =
cos(−iw1τe + k1σ)

cosh(κτe)
tanh ρ0 , x0e = tanh(κτe) , (2.15)

x2 =
sin(−iw1τe + k1σ)

cosh(κτe)
tanh ρ0 , z =

1

cosh(κτe) cosh ρ0
, (2.16)

The choice b0 = cosh ρ0 fixes where the string is located in the radial coordinate of AdS5,

while rotating in the remaining angular directions.

Our analysis along this note can be easily truncated to cover two different configu-

rations. Setting ρ0 = 0 corresponds to the case of a circular string with three different

angular momenta Ji along S
5,

Y5 + iY0 = eiκτ , X1 + iX2 = sin γ0 cosψe
iω1τ+im1σ ,

X3 + iX4 = sin γ0 sinψe
iω2τ+im2σ , X5 + iX6 = cos γ0e

iντ . (2.17)

The case of a string with just a single spin S and a single momentum J is

Y1 + iY2 = sinh ρ0e
iwτ+ikσ , Y5 + iY0 = cosh ρ0e

iκτ , X1 + iX2 = eiωτ+imσ . (2.18)

The contribution of this semiclassical solution to a three-point correlator function was also

considered in reference [12].

3 Semiclassical three-point functions

We will now evaluate the leading contribution in the large string tension limit to a three-

point correlation function with two complex conjugate heavy vertex operators carrying

quantum charges of the order of the string tension and one light operator with order one

charges.

Conformal invariance completely fixes the dependence on the location of the vertex

operators in a three-point function, up to some coefficent C123. The value of these coeffi-

cients can be obtained from a convenient choice for the values of the positions x1, x2 and

x3, namely |x1| = |x2| = 1 and x3 = 0 [10, 14]. 2 Then, as the conformal weights of the

heavy operators, ∆H1 = ∆H2 , are much larger than that of the light operator, ∆L,

〈VH1(x1)VH2(x2)VL(0)〉 =
C123

|x1 − x2|2∆H1
. (3.1)

2This is indeed the case for the semiclassical trajectory (2.15)-(2.16) at the τe = ±∞ boundaries.
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The three-point correlator reduces to the light vertex operator evaluated on the classical

solution saturating the two-point correlation function of the heavy operators, and the value

of C3 ≡ C123/C12 can then be determined through

C3 = c∆VL(0)classical , (3.2)

where c∆ is the normalization constant of the light vertex operator. In what follows

we will employ the proposal and conventions in reference [14] in order to evaluate the

normalized three-point coefficients C3. The classical states corresponding to the heavy

vertex operators will be the circular string solutions described in the previous section, and

for the light vertex operators we will consider several different choices.

3.1 Dilaton operator

We will first analyze the case of a light vertex chosen to be the massless dilaton operator,

V (dilaton) = (Y+)
−∆d (Xz)

j
[

z−2(∂xm∂̄x
m + ∂z∂̄z) + ∂Xk∂̄Xk

]

, (3.3)

where Y+ ≡ Y4 + Y5, Xz ≡ X5 + iX6 and the derivatives are ∂ ≡ ∂+ and ∂̄ ≡ ∂−. To

leading order in the strong-coupling regime the scaling dimension is ∆d = 4+ j, where we

have denoted by j the Kaluza-Klein momentum of the dilaton. The corresponding gauge

invariant operator on the gauge theory side is Tr(F 2
µνZ

j + · · · ). There is also a fermionic

contribution to the dilaton vertex operator, but it is subleading in the large string tension

expansion, and thus we can safely take into account only the bosonic terms in all the

vertex operators that we will consider. The corresponding gauge invariant operator on the

gauge theory side is Tr(F 2
µνZ

j + · · · ).

The coefficient of the three-point correlator becomes

C(dilaton)

3 = c(dilaton)∆

∫

∞

−∞

dτe

∫ 2π

0

dσ (Y+)
−∆d (Xz)

j
[

z−2(∂xm∂̄x
m + ∂z∂̄z) + ∂Xk∂̄Xk

]

, (3.4)

where the normalization constant of the dilaton vertex operator is [19]

c(dilaton)∆ =
2−j/2−1

π2
(j + 3) . (3.5)

The contribution from the AdS5 piece of the circular string ansatz is just κ2,

z−2(∂xm∂̄x
m + ∂z∂̄z) = κ2 , (3.6)
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while from (2.6) the S5 contribution is

∂Xk∂̄Xk = −ν2 , (3.7)

and thus, using that Y+ = 1/z,

C(dilaton)

3 = 2πc(dilaton)∆ ã2
∫

∞

−∞

dτe
ejντe

(cosh(κτe))4+j
, (3.8)

where we have defined

ã2 ≡ (κ2 − ν2)(1− a21 − a22)
j/2

(1 + b21)
2+j/2

, (3.9)

with κ2 and ν2 as in equation (2.12). The integral over τe has been evaluated in [14], and

thus our analysis here follows directly from the discussion in there. In the ν = 0 limit the

string does not rotate in the (56)-directions, the angular momenta reduce to J1 = |m1|a21,
J2 = |m2|a22 and J3 = 0, and the three-point vertex is simply

C(dilaton)

3,ν=0 = 4π3/2c(dilaton)∆

(1− a21 − a22)
j/2

(4 + j)(1 + b21)
2+j/2

Γ
(

(j + 6)/2
)

Γ
(

(j + 5)/2
)κ . (3.10)

In the case when ν 6= 0 we find

C(dilaton)

3 = 2j+5πc(dilaton)∆ ã2
b
(4)
+ F

(4)
− + b

(4)
− F

(4)
+

(4 + j)2κ2 − j2ν2
κ , (3.11)

where we have defined

b
(α)
± ≡ j + α± jν

κ
and F

(α)
± ≡ 2F1

(

j + α,
b
(α)
±

2
, 1 +

b
(α)
±

2
,−1

)

, (3.12)

with α = 4. In the limit j = 0 the coupling is just to the lagrangian, and we get

C(dilaton)

3,j=0 =
8πc(dilaton)∆

3(1 + b21)
2

κ2 − ν2

κ
. (3.13)

Let us now concentrate for compactness in the case when the string is moving just along

S5, with three different angular momenta. Equation (3.13) is then 3

C(dilaton)

3,j=0 =
8

3
πc(dilaton)∆

√
λ(2m2

1J1 + 2m2
2J2)

J
√

J2 + λ
J
(m2

1J1 +m2
2J2)

, (3.14)

3Comparison with [14] is immediate if we use the condition implied by the Virasoro constraint on the

ansatz (2.6), κ2 = 2
∑3

i=1
a2i (ω

2
i +m2

i ). The three-point function can then be written

C(dilaton)

3,j=0
=

8

3
πc

(dilaton)

∆

2a21m
2
1 + 2a22m

2
2

√

2a2
1
m2

1
+ 2a2

2
m2

2
+ ν2

.
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Recalling now that

E =

√

J2 +
λ

J
(m2

1J1 +m2
2J2) , (3.15)

our result extends to the case of three different angular momenta the observation in ref-

erences [12] and [14] that the three-point function is proportional to the derivative with

respect to λ of the strong-coupling limit of the anomalous dimension for the corresponding

operator,

λ
∂E

∂λ
=

λ(m2
1J1 +m2

2J2)

2J
√

J2 + λ
J
(m2

1J1 +m2
2J2)

. (3.16)

A similar argument also holds in the more general case of non-vanishing spin along AdS5.

This behavior seems to be a general feature in the case of the light dilaton vertex operator,

as argued in [12] from a renormalization group point of view, or in [20] by means of a

thermodynamical reasoning.

3.2 Primary scalar operator

The dual to the BMN operator TrZj is the superconformal primary scalar operator, and

the corresponding vertex operator is [19, 13, 14]

V (primary) = (Y+)
−∆p(Xz)

j
[

z−2(∂xm∂̄x
m − ∂z∂̄z)− ∂Xk∂̄Xk

]

, (3.17)

where the scaling dimension is now ∆p = j. The cases where the classical solution is a

BMN geodesic or a folded string rotating in S5 have been considered in [13], while that of

a folded spin rotating in AdS5 has been analyzed in [14]. In this section we will extend the

analysis to the case under study in this note, where the semiclassical solution is a circular

string rotating in AdS5 with a single spin S, and with three different angular momenta

along S5. The ansatz (2.5)-(2.6) leads now to

C(primary)

3 = 2πc(primary)

∆ b̃2
∫

∞

−∞

dτe
ejντe

(cosh(κτe))j
I(τe) , (3.18)

where

b̃2 ≡
(

1− a21 − a22
1 + b21

)j/2

and I(τe) ≡
2κ2

cosh2(κτe)
− 2

J
(

2
∑

i=1

m2
iJi + k S) . (3.19)

In the ν = 0 limit we get

C(primary)

3,ν=0 = π3/2c(primary)

∆ b̃2
(j − 1)Γ(j/2)

Γ((j + 3)/2)
κ . (3.20)
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When ν 6= 0,

C(primary)

3 = 2j+4πc(primary)

∆ b̃2

(

κ2
(

b
(2)
+ F

(2)
− + b

(2)
− F

(2)
+

)

(j + 2)2κ2 − j2ν2
−
(

b
(0)
+ F

(0)
− + b

(0)
− F

(0)
+

)

8j2

)

κ , (3.21)

where b
(α)
± and F

(α)
± are as defined in equation (3.12), with α = 0, 2. It is illuminating to

consider the limiting case when the classical trajectories from the heavy vertex operators

approach BMN geodesics, which correspond to point like-strings. If we take J1 = J2 =

S = 0 and J3 =
√
λκ, relation (3.21) simplifies to

C(primary)

3 = 2j+3π
j − 1

(j + 1)j
c(primary)

∆ κ . (3.22)

Recalling now the normalization constant for the BPS operator [13],

c(primary)

∆ =
(j + 1)

√
j

2j+3πN

√
λ , (3.23)

the correlator becomes

C(primary)

3 =
1

N

√

jJ , (3.24)

in agreement with the coefficient for the correlator of three chiral primary operators [6].

3.3 Singlet massive scalar operator

Let us now consider the case where the light vertex operator is taken to be a singlet massive

scalar operator, made out of derivatives of the S5 coordinates [14, 21],

V (singlet) = (Y+)
−∆r
(

(∂Xk∂Xk)(∂̄Xl∂̄Xl)
)r/2

, with r = 2 , 4 , . . . (3.25)

where the scaling dimension is ∆r = 2
√

(r − 1)λ1/4. When r = 2 the operator corresponds

to a massive string state on the first excited level, and the corresponding dual gauge theory

operator is contained within the Konishi multiplet. Higher values of r label the remaining

(r − 1)-th excited levels in the tower of string states.

Using the contribution in (2.5) for the circular string with three different angular mo-

menta along S5 we easily get

V (singlet) =
κ2r

(cosh(κτe) cosh ρ0)∆r
, (3.26)

Therefore the coefficient in the three-point function is

C(singlet)

3 =
4π3/2c(singlet)∆r

∆r(1 + b21)
∆r/2

Γ(∆r/2 + 1)

Γ((∆r + 1)/2)
κ2r−1 , (3.27)
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as in [14] when ρ0 = 0, and the three-point function behaves also as the (2r− 1)-th power

of the level number of the light string state in the correlator.

The AdS5 counterpart of this operator produces again an identical result, because

(

(∂YK∂YK)(∂̄YL∂̄YL)
)k/2

= κ2k , with k = 2 , 4 , . . . (3.28)

The simple structure of the light vertex contribution in both cases happens because

the singlet scalar operators are made out of chiral components of the stress tensor, and

thus when evaluated on any classical trajectory they imply a constant result [14].

4 Concluding remarks

Exhaustive spectroscopy of anomalous dimensions for single-trace gauge invariant opera-

tors and energies for the corresponding dual strings rotating in the AdS5×S5 background

proved essential in order to uncover the integrable structure of the AdS/CFT correspon-

dence. In this sense, extending the study of three-point functions to general correlators

could contribute to clarify whether integrability should also play a role in the evaluation of

three-point correlators, and thus in the complete resolution of planar N = 4 Yang-Mills.

In this note we have employed the general proposal in [14] in order to deal with heavy

vertex operators corresponding to semiclassical strings rotating in the AdS5 × S5 back-

ground, and general light vertices. The study of additional spinning string solutions con-

tributing to the heavy vertices, as well as different light vertex operators, is a natural

extension of the present approach to three-point functions at strong-coupling. An addi-

tional question is the analysis of quadratic fluctuations around the saddle point approxi-

mation. Understanding this problem, that could hopefully be treated in generality at least

in some restricted sector of the theory, should also help to clarify the general structure of

three-point correlators.
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N. Beisert, R. Hernández and E. López, A crossing-symmetric phase for AdS5 × S5

strings, JHEP 0611 (2006) 070, [arXiv:hep-th/0609044].

N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.
0701 (2007) P021, [arXiv:hep-th/0610251].

[5] C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, A new double-scaling
limit of N = 4 super Yang-Mills theory and PP-wave strings, Nucl. Phys. B 643

(2002) 3, [arXiv:hep-th/0205033].

N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Postnikov
andW. Skiba, PP-wave string interactions from perturbative Yang-Mills theory, JHEP
0207 (2002) 017, [arXiv:hep-th/0205089].

C. S. Chu, V. V. Khoze and G. Travaglini, Three-point functions in N = 4 Yang-Mills
theory and pp-waves, JHEP 0206 (2002) 011, [arXiv:hep-th/0206005].

N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, BMN
correlators and operator mixing in N = 4 super Yang-Mills theory, Nucl. Phys. B
650 (2003) 125, [arXiv:hep-th/0208178].

K. Okuyama and L. S. Tseng, Three-point functions in N = 4 SYM theory at one-
loop, JHEP 0408 (2004) 055, [arXiv:hep-th/0404190].

L. F. Alday, J. R. David, E. Gava and K. S. Narain, Structure constants of planar
N = 4 Yang Mills at one-loop, JHEP 0509 (2005) 070, [arXiv:hep-th/0502186].

10

http://arxiv.org/abs/hep-th/0212208
http://arxiv.org/abs/hep-th/0303060
http://arxiv.org/abs/hep-th/0307042
http://arxiv.org/abs/hep-th/0305116
http://arxiv.org/abs/hep-th/0402207
http://arxiv.org/abs/hep-th/0405001
http://arxiv.org/abs/hep-th/0504190
http://arxiv.org/abs/hep-th/0406256
http://arxiv.org/abs/hep-th/0511082
http://arxiv.org/abs/hep-th/0603038
http://arxiv.org/abs/hep-th/0609044
http://arxiv.org/abs/hep-th/0610251
http://arxiv.org/abs/hep-th/0205033
http://arxiv.org/abs/hep-th/0205089
http://arxiv.org/abs/hep-th/0206005
http://arxiv.org/abs/hep-th/0208178
http://arxiv.org/abs/hep-th/0404190
http://arxiv.org/abs/hep-th/0502186


G. Georgiou, V. L. Gili and R. Russo, Operator mixing and three-point functions in
N = 4 SYM, JHEP 0910 (2009) 009, arXiv:0907.1567 [hep-th].

A. Grossardt and J. Plefka, One-Loop Spectroscopy of Scalar Three-Point Functions
in planar N = 4 super Yang-Mills Theory, arXiv:1007.2356 [hep-th].

[6] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation
functions in the CFTd/AdSd+1 correspondence, Nucl. Phys. B 546 (1999) 96,
[arXiv:hep-th/9804058].

G. Chalmers, H. Nastase, K. Schalm and R. Siebelink, R-current correlators in N =
4 super Yang-Mills theory from anti-de Sitter supergravity, Nucl. Phys. B 540 (1999)
247, [arXiv:hep-th/9805105].

S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three-point functions of chiral
operators in D = 4, N = 4 SYM at large N , Adv. Theor. Math. Phys. 2 (1998) 697,
[arXiv:hep-th/9806074].

G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS5×
S5 and three-point functions in SYM(4) at large N , Phys. Rev. D 61 (2000) 064009,
[arXiv:hep-th/9907085].

S. Lee, AdS5/CFT4 Four-point Functions of Chiral Primary Operators: Cubic Ver-
tices, Nucl. Phys. B 563 (1999) 349, [arXiv:hep-th/9907108].

[7] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, A semi-classical
limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99,
[arXiv:hep-th/0204051].

[8] A. A. Tseytlin, On semiclassical approximation and spinning string vertex operators
in AdS5 × S5, Nucl. Phys. B 664 (2003) 247, [arXiv:hep-th/0304139].

[9] E. I. Buchbinder, Energy-Spin Trajectories in AdS5 × S5 from Semiclassical Vertex
Operators, JHEP 1004 (2010) 107, arXiv:1002.1716 [hep-th].

[10] E. I. Buchbinder and A. A. Tseytlin, On semiclassical approximation for correlators of
closed string vertexoperators in AdS/CFT, JHEP 1008 (2010) 057, arXiv:1005.4516
[hep-th].

[11] R. A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators
dual to classical spinning string states, JHEP 1005 (2010) 030, arXiv:1002.4613
[hep-th].

[12] M. S. Costa, R. Monteiro, J. E. Santos and D. Zoakos, On three-point correlation
functions in the gauge/gravity duality, arXiv:1008.1070 [hep-th].

[13] K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 1009

(2010) 030, arXiv:1008.1059 [hep-th].

[14] R. Roiban and A. A. Tseytlin, On semiclassical computation of 3-point functions of
closed string vertex operators in AdS5 × S5, arXiv:1008.4921 [hep-th].

[15] J. G. Russo, Anomalous dimensions in gauge theories from rotating strings in AdS5×
S5, JHEP 0206 (2002) 038, [arXiv:hep-th/0205244].

11

http://arxiv.org/abs/0907.1567
http://arxiv.org/abs/1007.2356
http://arxiv.org/abs/hep-th/9804058
http://arxiv.org/abs/hep-th/9805105
http://arxiv.org/abs/hep-th/9806074
http://arxiv.org/abs/hep-th/9907085
http://arxiv.org/abs/hep-th/9907108
http://arxiv.org/abs/hep-th/0204051
http://arxiv.org/abs/hep-th/0304139
http://arxiv.org/abs/1002.1716
http://arxiv.org/abs/1005.4516
http://arxiv.org/abs/1002.4613
http://arxiv.org/abs/1008.1070
http://arxiv.org/abs/1008.1059
http://arxiv.org/abs/1008.4921
http://arxiv.org/abs/hep-th/0205244


[16] S. Frolov and A. A. Tseytlin, Multi-spin string solutions in AdS5 × S5, Nucl. Phys.
B 668 (2003) 77, [arXiv:hep-th/0304255].

[17] G. Arutyunov, S. Frolov, J. Russo and A. A. Tseytlin, Spinning strings in AdS5×S5

and integrable systems, Nucl. Phys. B 671 (2003) 3, [arXiv:hep-th/0307191].

[18] G. Arutyunov, J. Russo and A. A. Tseytlin, Spinning strings in AdS5 × S5: New in-
tegrable system relations, Phys. Rev. D 69 (2004) 086009, [arXiv:hep-th/0311004].

[19] D. E. Berenstein, R. Corrado, W. Fischler and J. M. Maldacena, The operator product
expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999)
105023, [arXiv:hep-th/9809188].

[20] R. Roiban and A. A. Tseytlin, Spinning superstrings at two loops: strong-coupling cor-
rections to dimensions of large-twist SYM operators, Phys. Rev. D 77 (2008) 066006,
arXiv:0712.2479 [hep-th].

[21] R. Roiban and A. A. Tseytlin, Quantum strings in AdS5xS
5: strong-coupling correc-

tions to dimension of Konishi operator, JHEP 0911 (2009) 013, arXiv:0906.4294
[hep-th].

12

http://arxiv.org/abs/hep-th/0304255
http://arxiv.org/abs/hep-th/0307191
http://arxiv.org/abs/hep-th/0311004
http://arxiv.org/abs/hep-th/9809188
http://arxiv.org/abs/0712.2479
http://arxiv.org/abs/0906.4294

	1 Introduction
	2 Circular rotating strings
	3 Semiclassical three-point functions
	3.1 Dilaton operator
	3.2 Primary scalar operator
	3.3 Singlet massive scalar operator

	4 Concluding remarks

