时间域瞬变电磁法中心方式全程视电阻率的数值计算

占

健

王立凤

何兆海

白登海

1 中国地震局地质研究所,北京 100029

Maxwell A Meju²

2 Department of Environmental Science, Lancaster University, Lancaster LA1 4 YQ, UK

3 大连理工大学电信学院,大连 116023

摘 要 给出了一种时间域瞬变电磁法视电阻率的数值计算方法,利用该方法可以容易地求出中心方式的全程 视电阻率.根据中心方式磁场垂直分量时间变化率 $\partial B_z/\partial T$ 的核函数 Y(Z)的表现特征,以参数 Z 把整个瞬变过程 分为早期阶段(Z > 1.6)、早期到晚期的转折点(Z = 1.6)和晚期阶段(Z < 1.6).首先分别得到早期视电阻率和晚期 视电阻率的精确值,然后通过转折点构成一条完整的全程视电阻率曲线.虽然磁场垂直分量 B_z 的核函数 Y(Z)是 参数 Z 的单值函数,但同样存在一个从早期到晚期的转折点 Z = 1.6,转换点两边仍然可以得到一条早期曲线和一 条晚期曲线.在数值计算中,当迭代步长 Z < 0.005 Z时,视电阻率的相对误差小于 0.5 %.理论模型和实际数据 计算表明,与早期和晚期近似值比较,全程视电阻率具有更高的精度和分辨率.

关键词 全程视电阻率 瞬变电磁法 数值计算 中心方式 迭代步长

文章编号 0001 - 5733 (2003) 05 - 0697 - 08 🗸 **中图分类号** P631 🛛 **收稿日期** 2002 - 09 - 26 ,2003 - 05 - 23收修定稿

NUMERICAL CALCULATION OF ALL-TIME APPARENT RESISTIVITY FOR THE CENTRAL LOOP TRANSIENT ELECTROMAGNETIC METHOD

BAI DENGHAI¹ MAXWELL A METU² LU JIAN³ WANG LIFENG¹ HE ZHAOHAI¹

1 Institute of Geology, China Seismological Bureau, Beijing 100029, China

2 Department of Environmental Science, Lancaster University, Lancaster LA1 4 YQ, UK

3 College of Electronic ngineering, Dalian University of Technology, Dalian 116023, China

Abstract A numerical method for calculating the exact all-time apparent resistivity for time domain transient electromagnetic method is proposed in this paper. According to the behaviours of the kernel function Y(Z) for $\partial B_z/\partial T$, the transient can be distinguished into early-time (Z > 1.6), transition point (Z = 1.6) and late-time (Z < 1.6) stages for a central loop configuration. First the exact early-time and late-time apparent resistivities are calculated, then the exact all-time curve is founded by combining the two over the transition point. Although the kernel function Y(Z) for B_z is single valued, there is also a transition point Z = 1.6 and the early-time and late-time curves can be obtained for Z > 1.6 and Z = 1.6, respectively. For the numerical calculation an iterative procedure is employed. The relative error in the all-time apparent resistivity will be less than 0.5 % when the variation of the parameter Z is defined as Z < 0.005 Z in the iteration. Model calculation and field data experiments show that the resulting all-time apparent resistivity can be easily defined with greater accuracy and higher resolution than that based on early-time and late-time asymptotic definitions. **Key words** All-time apparent resistivity, Transient electromagnetic method, Numerical calculation, Central loop, Iteration steps.

作者简介 白登海,男,1957年生,1991年北京大学毕业,博士,研究员.主要从事地球电磁学的理论方法和应用研究. Email: bdh607@sina.com

基金项目 国家自然科学基金项目(49974017)和英国皇家奖学金资助.

1 引 言

对于时间域瞬变电磁法(简称 TEM),虽然有人 提出利用其他一些参数进行解释将具有更多的优 点^[1],但在实际应用中,人们习惯采用全程视电阻 率参数. 其计算方法归纳起来主要有两类. 一是利 用晚期、早期近似合成为一个近似的全程视电阻率. 这种近似值在瞬变的中期误差较大或无定义. 另一 类方法是从环形框中心方式的解析表达式[2] 计算视 电阻率. 但这种计算并不容易,因为 TEM 场值(B, 或 $\partial B_{z}/\partial T$)的表达式是视电阻率以及时间的隐函 数,必须采用数值方法,最简单的计算方法是利用 有限项的级数展开近似法,在不同时段采用不同的 展开系数^[3,4]. Raiche 等^[5]提出了一种计算精确的 晚期视电阻率的迭代算法. 此后,以迭代计算为基 础,利用观测值与理论值之间的曲线拟合方法就被 人们广泛采用^[6~8].特别是对于磁场的垂直分量 (B₂),可以得到单值的全程视电阻率^[8]. 但目前大 多数 TEM 仪器记录的是磁场垂直分量的变化率 $(\partial B_{I}/\partial T), \partial B_{I}/\partial T$ 是一个双值函数,在某些特定的 情况下视电阻率在中期时段没有确定值[1].

实际上 TEM 的全程解由两个不同瞬变时段组 成,一个是早期解,一个是晚期解. 虽然磁场 *B*_z 是 单值函数,仍然可以分为早期和晚期两个阶段.

2 时间域瞬变电磁法全程视电阻率的 定义

均匀半空间表面的一个水平放置的圆形发射框, 其中心的瞬变响应(B₂及其时间变化率∂B₂/∂T)可以 表示为^[2]

$$\frac{\partial B_z}{\partial T} = \frac{I}{a^3} \left[3 \operatorname{erf}(a) - \frac{2}{\sqrt{2}} a(3+2^{-2}a^2) \operatorname{e}^{-(a)^2} \right]$$
(1)

和

$$B_{z} = \frac{I\mu}{2a} \left[\frac{3}{\sqrt{a}} e^{-(a)^{2}} + \left(1 - \frac{3}{2^{2}a^{2}} \right) \operatorname{erf}(a) \right] ,$$
(2)

其中 I为发射电流,为半空间的视电阻率,a为发 射框的半径, μ 为均匀半空间的磁导率(近似取为 4 ×10⁻⁷ H/m),T为时间,从电流关断时算起,

$$= \sqrt{\frac{\mu}{4}}, \text{ erf}(a) = \frac{2}{\sqrt{2}} \int_{0}^{(a)} e^{-t^{2}} dt \text{ E}$$

如果定义

$$Z = a = \frac{a}{2} \sqrt{\frac{\mu}{T}} , \qquad (3)$$

则视电阻率可表示为

$$= \frac{a^2 \mu}{4 T} \frac{1}{z^2} .$$
 (4)

方程(4)对瞬变的全过程成立,由此定义的 被称 为全程视电阻率.

方程(1)和(2)可以表示为同一个参数 Z 的函数

$$\frac{\partial B_z}{\partial T} = \frac{\mu I}{4 a T} Y (Z) , \qquad (5)$$

其中

$$Y(Z) = \frac{1}{Z^2} \left[3\text{erf}(Z) - \frac{2}{\sqrt{z}} Z(3 + 2Z^2) e^{-Z^2} \right]$$
(7)

 $\mathcal{E}\partial B_z/\partial T$ 的核函数,

$$Y(Z) = \frac{1}{Z^2} \left[\frac{3Z}{\sqrt{2}} e^{-Z^2} + \left(Z^2 - \frac{3}{2} \right) \operatorname{erf}(Z) \right]$$
(8)

是 B_z 的核函数. 方程(7)和(8)也被称为 TEM 中心 方式的归一化响应函数.

求(4)式定义的全程视电阻率的关键是寻找满 足(7)式或(8)式的 Z值. (7)式和(8)式中的 Y(Z) 和 Y(Z)为观测值,可分别由(5)和(6)式求得.

3 核函数的计算方法

虽然环形框中心方式的瞬变函数可以容易地进 行精确的数值计算,但为了深入理解 TEM 响应在整 个过程中的表现特性,本文首先通过 TEM 的早期表 达式和晚期表达式进行讨论,然后介绍如何得到一 条完整的全程曲线.

3.1 核函数的数值表达式

核函数的数值表达式可由误差函数 eff(*Z*)的级数展开式得到. eff(*Z*)有两种展开形式,一种为晚期表达式(对应小 *Z*),另一种为早期表达式(对应大 *Z*). 由(3)式可知,对一个确定的装置系统,发射框的半径是固定的,因而变量 *Z* 是乘积(*T*)的函数. 3.1.1 晚期表达式

当 Z 较小(即乘积(T)较大)时,误差函数可 展开为

erf (Z) =
$$\frac{2}{\sqrt{2}} e^{-z^2} \frac{2^k Z^{2k+1}}{(2k+1)!!}$$
. (9)

把(9)式代入(7)和(8)式,核函数 Y(Z)和 Y(Z)可 分别表示为

$$Y_{\rm L}(Z) = \frac{6}{\sqrt{-}} e^{-Z^2} \frac{2^k Z^{2k-1}}{(2k+1)!!} , |Z| <$$
(10)

$$Y_{\rm L}(Z) = \frac{2Z^3}{\sqrt{2}} e^{-Z^2} \left[\frac{2}{3} + \left(Z^2 - \frac{3}{2} \right) \times \frac{2^k Z^{2k-4}}{(2k+1)!!} \right] \cdot |Z| < (11)$$

虽然 (9) 式是在小变量条件下展开的,但方程 (10)和(11)对任何 |z| < 都是收敛的.从理论上 讲,对于一个已知的观测响应 $Y_L(Z)$ 或 $Y_L(Z)$,只 要(10)和(11)式右边的求和项数足够多,则可以求 出比较精确的 z 值.换言之,在(10)和(11)式中只 要求和数 k 足够大,对一个已知的观测响应 $Y_L(Z)$ 或 $Y_L(Z)$,就可以求得比较精确的 z 值,然后由(4) 式得到精确的全程视电阻率.在这个意义上说,我 们没有必要把 TEM 的核函数分为晚期和早期两个 阶段.但问题是,计算机的计算能力总是有限的,计 算(10)或(11)式时只能取 k 为有限值.例如,对一 个 32 位的计算机,k 值应限制在 120 之内,否则就 会发生溢出错误.另外,当 k 值较大时,计算耗时将 大幅度增加.所以这种计算方法并不可取,但可以 从中体会 TEM 响应在不同阶段的表现特征.

下面考虑当 Z = 0 的极限情况. 在(10)和(11) 式中取 k = 2 并令 Z = 0,有

$$Y_{\rm L}(Z) = \frac{8Z^3}{5\sqrt{}} , \qquad (12)$$

$$Y_{\rm L}(Z) = \frac{8Z^3}{15\sqrt{}}$$
 (13)

由(12),(5)和(4)式可得

$$_{\rm L} = \frac{\mu}{4 T} \left[(2 a^2 \mu I) \left/ \left(5 T \frac{\partial B_z}{\partial T} \right) \right]^{\frac{2}{3}}, \quad (14)$$

由(13),(6)和(4)式得

$$= \frac{\mu}{T} [(Ia^{2}\mu)/(30B_{z})]^{\frac{2}{3}}.$$
 (15)

(14)和(15)式正是由 $\partial B_z / \partial T$ 和 B_z 分别得到的视电 阻率的晚期渐近表达式^[1].

3.1.2 早期表达式

当 Z 很大(即(T)很小)时,误差函数可展开 为另一种形式

erf (Z) = 1 -
$$\frac{1}{\sqrt{Z}} e^{-Z^2} \left[1 + \frac{1}{k=1} (-1)^k \times \frac{(2k-1)!}{(2Z^2)^k} \right]$$
, $|Z|$ (16)

代入(7)和(8)式得

$$Y_{\rm E}(Z) = \frac{3}{Z^2} \left\{ 1 - \frac{e^{-Z^2}}{\sqrt{2}} \left[\frac{1}{Z} + \frac{1}{Z}_{k=1} (-1)^k \mathbf{x} + \frac{(2k-1)!!}{(2Z^2)^k} + \frac{2}{3} (3Z+2Z^3) \right] \right\}, \quad (17)$$

$$Y_{\rm E}(Z) = \frac{1}{Z^2} \left\{ \left[Z^2 - \frac{3}{2} \right] \left[1 - \frac{1}{\sqrt{2}} e^{-Z^2} \mathbf{x} + \left[1 + \frac{(-1)^k}{(2Z^2)^k} \right] \right] + \frac{3Z}{\sqrt{2}} e^{-Z^2} \right\}. \quad (18)$$

当 *Z*小于某一临界值时(17)和(18)式将出现发散 (或震荡)现象,临界值的大小为 *Z*满足条件(2*k*-1)!!/(2*Z*²)^{*k*}<1.即(17)和(18)式收敛的条件为

$$Z > \left[\frac{(2k-1)!}{2^k} \right]^{\frac{1}{2k}}.$$
 (19)

例如,当k=1时,Z>0.707;当k=2时,Z>0.93. 因此为了保证(17)和(18)式收敛,k越大,Z值也必须随之增大.同样,我们也可以根据(17)和(18)式 得到核函数的早期渐近表达式(k=1,Z):

$$Y_{\rm E}(Z) = \frac{3}{Z^2}$$
, (20)

$$Y_{\rm E}(Z) = \frac{1}{Z^2} \left(Z^2 - \frac{3}{2} \right) .$$
 (21)

由式(20),(5),(4)以及式(21),(6),(4)可分 别得到 $\partial B_z/\partial T \cap B_z$ 对应的视电阻率的早期渐近表 达式^[1]:

$$_{\rm E} = \frac{a^3}{3I} \frac{\partial B_z}{\partial T} , \qquad (22)$$

$$_{\rm E} = \frac{a^2 \mu}{6 T} \left[1 - \frac{2 a}{I \mu} B_z \right] . \tag{23}$$

在(23)式中有一个非常重要的现象值得注意, 即当

$$\left(1 - \frac{2a}{\mu}B_z\right) = 0 \quad \overrightarrow{\mathbf{x}} \quad B_z \quad \frac{\mu}{2a} \quad (24)$$

时早期视电阻率将出现 0 或负值,其中 $\mu/2a$ 是自 由空间中一个半径为 a 的环形电流在其中心产生的 一次场. 所以,方程(24)所表达的含义是当观测的 二次场 B_z 等于或大于相应的一次场时,早期视电阻 率将出现 0 或负值.在这种情况下,不可能由观测 的磁场 B_z 求出正确的视电阻率.实际上不论是对 磁场 B_z 还是其时间变化率 $\partial B_z/\partial T$,当观测的二次 场大于相应的一次场时,视电阻率都是无定义的. 由于时间域 TEM 方法观测的是二次场,除非地下存 在其他的场源,(24)式所反映的情况是不会出现的.

纷主

但有两种情况必须注意:一是当观测信号中存在强 噪音时,可能导致上述情况出现.另一种情况是当 地下结构满足一定条件时, $\partial B_z/\partial T$ 响应会出现 Overshoot(当地下电阻率由高阻突然变为低阻时,在 界面附近出现的一个向高阻震荡的极大值)或 Undershoot(当地下电阻率由低阻突然变为高阻时, 在界面附近出现的一个向低阻震荡的极小值),由 $\partial B_z/\partial T$ 所定义的视电阻率将是无效的^[1].

3.2 参量 Z 的迭代步长

计算核函数(10),(11),(17)和(18)式通常采 用迭代方法. 首先给参数 *Z* 一个初始值,此后每一 步迭代中的 *Z* 值按下式变化

$$Z_i = Z_{i-1} + Z_i$$
, (25)

其中 $Z_i \in Z$ 在第 i 次迭代时的值, $Z_{i-1} \in Z$ 在第 i - 1 次迭代时的值, $Z_i = | Z_i - Z_{i-1} |$,称为迭代步 长. Z_i 是影响计算精度和速度的主要因素. 对于 任意两个相邻的变量 Z_{i-1} 和 Z_i ,由(4)式得其相应 的视电阻率为

 $_{i-1} = \frac{a^2 \mu}{4 T} \frac{1}{Z_{i-1}^2} \quad \text{FD} \quad i = \frac{a^2 \mu}{4 T} \frac{1}{Z_i^2} \,.$

从而,相邻两次迭代中视电阻率的相对变化量为

 $\left| \frac{-i - -i - 1}{i} \right| = \left| \frac{1}{Z_i^2} - \frac{1}{Z_{i-1}^2} \right| Z_i^2 - \frac{2}{Z_i} .$

上式表示变量 *Z* 的一个微小扰动所引起的视电阻 率的相对偏差,如果要求该相对偏差小于 1 %,则 *Z_i* < 0.005 *Z_i*.在实际计算中采用

 $Z_i = 0.005 Z_i$ (26)

就可以满足要求. 与 Raiche 和 Spies 的经验迭代公式^[5]比较,(26)式更为简单. 模型计算表明,在一个相当宽的时间范围内,由(26)式定义的迭代步长

 Z_i 可给出非常满意的结果.表 1 给出一个计算全 程视电阻率的例子,模型是一个 10 m 的均匀半空 间,发射框为 100m ×100m.由表 1 可见,在 1 ~ 10⁶µs 的时间范围内,不管是由 B_z 还是由 $\partial B_z/\partial T$ 计算的 全程视电阻率的相对误差均小于 0.5 %.

表1 根据 B_z 和 $\partial B_z/\partial T$ 计算的全程视电阻率

 Table 1
 All-time apparent resistivities calculated from

magnetic field	B_z and it	s derivative	$\partial B_z / \partial T$
----------------	--------------	--------------	-----------------------------

-			
	全程视电阻率(m)		
<i>T</i> /µs	根据 B _z 计算	根据∂B₂/∂T计算	
1.000000	10.04124	10.00000	
1.584893	9.984426	10.00000	
2.511886	9.963737	10.00000	
3.981072	10.00174	10.00000	

		关13	
	全程视电阻率(m)		
T/µs	根据 B _z 计算	根据∂B _z /∂T计算	
6.309574	10.03803	9.999931	
10.00000	10.04289	9.987502	
15.84893	10.04626	10.02477	
25.11887	10.04676	9.979513	
39.81072	10.02079	10.02297	
63.09573	9.999331	9.955718	
100.0000	9.986280	10.01456	
158.4893	10.03571	10.04978	
251.1886	10.01166	9.976061	
398.1072	10.00804	9.989470	
630.9574	10.04940	9.952987	
1000.000	9.984663	9.975945	
1584.893	9.980070	10.00060	
2511.886	10.01372	9.989838	
3981.072	9.971942	10.01979	
6309.574	10.04534	9.975712	
10000.00	10.02859	10.04772	
15848.93	10.01804	10.03008	
25118.86	10.01138	10.01897	
39810.72	10.00718	10.01197	
63095.73	10.00453	10.00755	
100000.0	10.00286	10.00476	
158489.3	10.00180	10.00301	
251188.6	10.00114	10.00190	
398107.2	10.00072	10.00120	
630957.3	10.00045	10.00075	
1000000	10.00029	10.00048	

4 核函数的表现特征

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Y(Z) 随参数 Z 的变化曲线,并假设关断时间为 0. 由图1可见.

1) 相实线是由数值方法计算的核函数 Y(Z)的全程精确曲线,它由两部分组成,其中实线表示根 据(17)式计算的早期曲线,虚线表示由(10)式计算 的晚期曲线. 只要求和项 k 足够大,晚期曲线总可 以收敛于全程精确曲线,例如当 k = 100 时,晚期曲 线在 Z < 9 的范围内与全程精确曲线重合. 但这种 算法在实际中并不可行,因为当 k 很大时不但容易 引起计算溢出,而且相当耗时,即使在(17)式中取 级数的第一项(k = 1),其早期曲线在 Z > 1.6 的范 围内也可与全程精确曲线基本重合(见图1中k=1的曲线).这就是说,全程精确曲线可以分为两段来 计算,在Z < 1.6的范围采用晚期表达式(10)进行 计算,在 Z>1.6 的范围采用早期表达式 (17) 进行 计算. Z=1.6 是早期和晚期的一个公共点,若定义 早期: Z>1.6,晚期: Z<1.6,转折点: Z=1.6,那 么构制全程视电阻率曲线的问题就变得相当简单, 只要以转折点为界,两边分别取早期部分和晚期部 分就可以构成一条连续的全程曲线.

2) 核函数 Y(Z)曲线在转折点 Z=1.6 处有一 个极大点,极大值约为0.7.因此当观测的Y(Z) >0.7(即相当于观测的二次场大于一次场)时,核函数 沿 Z 轴将无解;当 Y(Z) < 0.7 时, 核函数沿 Z 轴 将有两个解,一个是早期解 $(Z_E > 1.6)$,另一个是晚 期解 $(Z_L < 1.6)$. 把 Z_E 和 Z_L 分别代入(4) 式可得 到一个早期视电阻率和一个晚期视电阻率,所以由 $\partial B_z / \partial T$ 得到的视电阻率是双解的.

这一点也可以从(5)式清楚地看出来,把(5)式 写成如下形式

$$Y(Z) = \frac{4a}{\mu I} \left(T \frac{\partial B_z}{\partial T} \right) , \qquad (27)$$

上式表明,对于圆形框中心方式,4 a/µI 是确定值, 所以核函数 Y(Z)是时间 T和磁场变化率 $\partial B_z/\partial T$ 乘积的函数, $\partial B_z/\partial T$ 随着时间 T的增大而减小,因 而二者的乘积在 T=0~ 的区间内必定存在至少 一个极大值点.

3) 在实际观测中,由于仪器或观测时间范围的 限制,不一定在所有情况下都能够观测到转折点 (Z=1.6),特别对于那些记录晚期信号的仪器,如 GEONICS PROTEM EM系列,很少能从观测信号中看 到转折点.例如,对于一个100m的均匀半空间, 当发射框边长为 100m ×100m 时,根据(3)式,转折 点(Z = 1.6)对应的时间约为 3.9 μ s,如果采用 PROTEM EM-67 仪器进行正常观测(即按照仪器缺 省设定时间观测),转折点不存在. 由于 EM-67 的最 早采样时间为 6.8µs,这个时间已经位于转折点(3. 9µs) 之后. 但对于同样的 100 m 均匀半空间.如果 发射框边长为 1000m ×1000m, 那么根据 (3) 式,转 折点对应时间约为 390.64s,这时用 EM-67 就可以观 测到转折点.

4) 对于早期表达式(17), k < 3 的曲线在 Z > 1.6的区间就已经和精确值很好地重合.而对于 晚期表达式(10), k > 10才能和早期曲线具有汇合 点. 如果在晚期表达式(10)中取 k < 6.那么早期和晚 期曲线将不会存在重合点,因而不可能构成一条全程 曲线. 由图 1 还可见,早期渐近线(对应(17)式中 k=1) 和晚期渐近线(对应(10) 式中 k=2) 之间不存 在交汇点,所以不可能由它们构成一条全程曲线.

5) 图1还指出了一种判断 Z 值有效范围的方 法,这一点对于实际计算非常重要.在实际计算中, 我们不可能对 Z=0~ 的整个范围进行搜索,而只 能在 Z 的某些可能的范围内搜索. 从图 1 可以看 出,对于相同的 Z 值,全程曲线的值总是大于晚期 渐近线的值,这一点可以通过(10)式减去(12)式进 行证明. 对于相同的 Z值,全程曲线的值总是小于 早期渐近线的值,对此也可以通过(17)式减去(20) 式予以证明.

对于晚期阶段(Z<1.6),根据晚期渐近式(14) 估算一个近似的晚期视电阻率 工,工总是大于精确 值 exact, 所以由(3)式可计算出 Z 的最小值 Zmin. 那 么晚期精确解 Z_{exact} 就可以在 $Z = Z_{min} \sim 1.6$ 之间按 照(26)式定义的步长进行搜索.

对于早期阶段(Z>1.6),由(22)式估算一个近 似的早期视电阻率 E, E 总是小于精确值 exact,由 (3) 式可得到 Z 的最大值 Z_{max}, 在 Z = 1.6~ Z_{max}之 间按照(26)式的步长可搜索到精确解 Z^E_{exact}.

晚期表达式(10)在 Z < 1.6的区间是单值的, 早期表达式(17)在 Z > 1.6的区间是单值的,因此 在搜索过程中只要观测的核函数和计算值之间的误 差达到最小即可停止计算,不存在局部解的问题.

4.2 核函数 Y(Z)的表现特征

图 2 是由 (11) 和 (18) 式计算的磁场垂直分量 B_z 的核函数 Y(Z) 随参数 Z 的变化曲线. 计算中设 关断时间为 0. 很显然, Y(Z) 与 Y(Z) 相比要简单 得多. 二者最重要的区别在于 Y(Z)是双值函数, 而 Y(Z) 是单值函数,这就是说,由磁场垂直分量

图 2 *B*_z 的核函数 *Y*(*Z*) 随参数 *Z* 的变化特征 早期曲线(实线) 和晚期曲线(虚线) 分别由早期表达式(18) 和晚期表达式(11) 计算,早期渐近线和晚期渐近线分别根据(21) 和(13) 式得到, *k* 表示每条曲线对应的求和的项数. 全程曲线由 精确的数值计算得到.

Fig. 2 Kernel function curves for B_z

*B*_z 可以求得单值的全程视电阻率.上边已经提到, 当观测的二次场大于自由空间的一次场时,全程视电 阻率是无定义的,这一点在图 2 中相当于 *Y*(*Z*) 1 的情况.

从图 2 可见, *Y*(*Z*)的早期和晚期渐近线不存在 交点,所以由早期视电阻率和晚期视电阻率的渐近 线不可能构成光滑连续的全程视电阻率.因此,虽 然 *B*₂的核函数是单值的,我们仍然可以把 *Z* = 1.6 定义为一个转折点,在 *Z* < 1.6 的区间采用晚期解, 在 *Z* > 1.6 的区间采用早期解.

图 2 还给出了 Z 的有效范围. 由图 2 看出核函

数 *Y*(*Z*)的全程精确曲线的值总是大于晚期渐近 值.这就意味着对于同一个观测值 *Y*(*Z*),由晚期近 似式(13)将给出 *Z* 的最小值 *Z*_{min},当搜索从晚期开 始时,该最小值即可作为迭代变量 *Z* 的初始值.同 理,由早期渐近式(21)可估算 *Z* 的最大值 *Z*_{max},如果 搜索从早期开始,则该最大值可作为迭代变量 *Z* 的 初始值.

5 理论模型验证

最可靠的模型是均匀半空间,因为这种模型的 视电阻率是精确值.表1给出了对一个10 m的均 匀半空间计算的全程视电阻率.计算分别采用以 $\partial B_z/\partial T$ 为观测量的表达式(10)、(17)和以 B_z 为观 测量的表达式(11)、(18),迭代步长采用(26)式.结 果表明,在1~10⁶µs的时间范围内,所有计算的全 程视电阻率与精确值之间的相对误差<0.5%.计 算耗时对一个 PIII - 500型的计算机亦很小.

在上述条件下,由(3)式可以近似估算出转折点 位于 39µs 左右. 图 3a 是由 $\partial B_z/\partial T$ 计算的视电阻 率,其中晚期渐近线在晚期(T > 1000µs)趋于真实值 10 m(图 3a 中的水平实线),在中期和早期(T < 1000µs)偏离真实值. 早期渐近线在早期(T < 20µs) 趋于真实值 10 m,在中期和晚期(T > 20µs)偏离真 实值. 这两种曲线分别反映了晚期和早期视电阻率 的近似值,都不能正确描述中期(转折点 T 39µs 附 近)的情况. 而由数值计算的晚期精确曲线在转折 点之后(T > 39µs)与真实曲线重合,在转折点之前 (T < 39µs)偏离真实曲线. 与之相反,由数值计算的

Fig. 3 Apparent resistivities from $\partial B_z/\partial T$ (a) and from B_z (b) for a 10 m half space

早期精确曲线在转折点之前(*T* < 39µs) 与真实曲线 重合,转折点之后(*T* > 39µs) 偏离真实曲线. 由此可 见,以转折点为界,转折点之后取晚期精确曲线,转 折点之前取早期精确曲线,这样就可以构成一条连 续的全程视电阻率曲线,虽然它与真实的精确值有 一定的误差,但这种误差(<0.5%)是可以接受的, 所以我们称它为精确全程视电阻率曲线.

图 3b 是由 B₂ 计算的视电阻率. 同样,早期渐 近线和晚期渐近线在中期(T 39µs 附近)均偏离真 实曲线,因而无法构成一条正确的全程视电阻率曲 线. 而由数值计算可以得到一条连续精确的全程视 电阻率曲线. 这里需要再次强调的是,虽然 B₂ 是单 值函数,不存在早期精确曲线和晚期精确曲线,但在 计算中仍然可以转折点(T 39µs)为界,转折点之后 (T>39µs)采用晚期表达式(11),转折点之前(T < 39µs)采用早期表达式(18). 所以 B₂ 的全程视电阻 率曲线仍可看作是由早期和晚期精确值构成的.

6 应用实例

试验在一个水井附近进行.水文及井孔资料显示试验地是一个简单的三层结构.最上层是一个由沙砾岩构成的盖层,厚度约14m,地面电阻率大于

仪器设备: Geonics PROTEM EM-67;发射框大 小:100m ×100m;装置方式:中心方式;发射电流: 21A;关断时间(T_{of}): 53µs.

图 4a 给出了由观测的∂B_z/∂T 根据本文的方法 求得的视电阻率曲线. 正如上文所述, EM-67 观测 的是晚期信号,转折点未能观测到. 但由于∂B_z/∂T 是双值函数,对于同一个观测值∂B_z/∂T 可得到两个 解,一个是早期解,另一个是晚期解,二者未能通过 转折点,因而没有交汇点,所以在图 4a 中只给出了 晚期渐近曲线和晚期精确曲线(在这种情况下即为 精确全程曲线),精确全程视电阻率曲线清楚地反映 出在 30µs 左右存在一个低阻层,这一点在晚期渐近 线上反映不够理想.

另一个计算全程视电阻率的途径是根据磁场的 垂直分量 B_z . 由于 EM-67 仪器观测的是 $\partial B_z/\partial T$,所 以 B_z 将通过 $\partial B_z/\partial T$ 对时间的数值积分得到,计算 结果见图 4b. 由于 B_z 的单值性,因而得到了惟一的 全程视电阻率曲线. 比较图 4(a,b)中的全程视电阻 率曲线,可以发现二者除了一些细小的差别外,在形 态和量值上基本是一致的(见图 5). 这种小差别是 由于 $\partial B_z/\partial T$ 对时间的数值积分造成的.

图 4 根据观测的 $\partial B_z/\partial T(a)$ 和 $B_z(b)$ 计算的视电阻率

Fig. 4 Apparent resistivities from measured $\partial B_z / \partial T(a)$ and B_z (b)

Fig. 5 Comparison of all-time apparent resistivities from $\partial B_z / \partial T$ and B_z

需要指出的是,上面在计算全程视电阻率时已 经对关断时间进行了校正^[9~11].由图 4(a,b)可以清 楚地看出,与晚期近似值比较,全程视电阻率曲线的 精度和分辨率得到了大幅度提高.最后要强调的 是,如果根据 $\partial B_{z}/\partial T$ 计算全程视电阻率,选择哪条 曲线作为解释曲线需要慎重,最好通过解释结果与 实际情况的比较进行检验.为此,本文对图 4a 中的 全程视电阻率曲线进行简单的一维反演,得到图 6 所示的曲线.在图 6 中含水层被显示为一个位于地 下 15m 左右深处的低阻层,符合实际情况,说明计 算方法是正确的.

图 6 根据图 4a 中的全程视电阻率得到的一维 反演结果

Fig. 6 1D image of the all-time apparent resistivity from Fig. 4a

7 结 论

对于时间域瞬变电磁法的中心方式,本文给出 了一种用数值计算获得全程视电阻率的方法. 该方 法的核心是分析中心方式的核函数在早期和晚期的 表现特征,通过数值计算分别得到早期和晚期的精 确视电阻率曲线,然后通过转折点构成一条连续精 确的全程视电阻率曲线. 理论模型和观测试验证明 该方法不但精度高,而且计算容易.

7.1 TEM 响应(包括 B_z 和 $\partial B_z/\partial T$)可以根据参数 *Z* 的大小分为早期阶段、转折点和晚期阶段:早期: *Z* > 1.6;转折点: *Z* = 1.6;晚期: *Z* < 1.6.

上述转折点 Z = 1.6 是对关断时间为 0 的情况 而言的,如果关断时间不为 0 时,转折点的位置将由 $\partial B_z / \partial T$ 的核函数 Y(Z)的极大值点所对应的 Z 值 来定义. 7.2 对于磁场的时间变化率 $\partial B_z / \partial T$,其核函数的精确值总是大于晚期渐近值而小于早期渐近值,这一特点给出了由 $\partial B_z / \partial T$ 计算全程视电阻率时参数 *Z*的有效范围.对于磁场 B_z ,其核函数的精确值总是大于晚期近似值,这一特点给我们提供了根据 B_z 计算全程视电阻率时参数 *Z* 的初始值.

7.3 理论模型计算表明,当迭代步长 $Z_i < 0.005 Z_i$ 时,全程视电阻率的相对误差将小于0.5 %. **7.4** 不论对于 $\partial B_z / \partial T$ 还是 B_z ,其早期和晚期渐近 线都不通过转折点,所以不可能由早期和晚期渐近 值构成全程曲线.

新疆水利厅田园同志为试验提供了帮助,深表 谢意.

参考文献

- [1] Spies B R, Eggers D E. The use and misuse of apparent resistivity in electromagnetic methods. *Geophysics*, 1986, 51(7): 1462 ~ 1471
- [2] Ward S H, Hohmann G W. Electromagnetic theory for geophysical applications. In: Misac N Nabighian ed. Electromagnetic Methods in Applied Geophysics —Theory. SEG, 1987. 221
- [3] Spies B R, Raiche A P. Calculation of apparent conductivity for the transient electromagnetic (coincident loop) method using an HP-67 calculator. *Geophysics*, 1980, 45(7): 1197 ~ 1204
- [4] 朴化荣. 电磁测深法原理. 北京:地质出版社,1990. 149~151
 PIAO Huarong. Principles of Geoelectromagnetic Methods. Beijing: Geological Publishing House, 1990. 149~151
- [5] Raiche A P, Spies B R. Coincident loop transient electromagnetic master curves for interpretation of two-layer earths. *Geophysics*, 1981, 46(1): 53~64
- [6] YANG Sheng. A single apparent resistivity expression for long-offset transient electromagnetics. *Geophysics*, 1986, 51(6): 1291 ~ 1297
- [7] HE Jishan, REN Baolin. TEM image technique. Transactions of NFsoc, 1993, 3(2): 1~9
- [8] Christensen N B. 1D imaging of central loop transient electromagnetic soundings. *JEEG*, 1995, 2(1): 53 ~ 66
- [9] Fitterman D V, Anderson WL. Effect of transmitter turn-off time on transient soundings. Geoexploration, 1987, 24: 131 ~ 146
- [10] BAI Denghai, Meju M A. All-time apparent resistivity for transient electromagnetic method. Proceedings of the 15th Workshop on Electromagnetic Induction in the Earth, Cabo Frio, Brazil, 2000. 33
- [11] 白登海, Meju M A. 瞬变电磁法中两种关断电流对响应函数的影响及其应对策略. 地震地质, 2001, 23(2): 245~251
 BAI Denghai, Meju M A. The effect of two types of turn-off current on TEM responses and the correction techniques. *Seismology and Geology*, 2001, 23(2): 245~251