特别策划

DOI: 10.3724/SP. J. 1123.2010.00449

大流量采样高分辨气相色谱/高分辨质谱法 测定大气中的多氯联苯和多溴联苯醚

李晓敏,王 璞, 李英明, 王亚韡, 张庆华*, 江桂斌 (环境化学与生态毒理学国家重点实验室,中国科学院生态环境研究中心,北京 100085)

摘要:建立了大流量空气采样高分辨气相色谱/高分辨质谱(HRGC/HRMS)同时分析测定大气样品中多氯联苯 (PCBs)和多溴联苯醚(PBDEs)的分析方法。结果表明在采样过程中污染物没有发生穿透。通过添加¹³C同位素 标准物质进行评价,PCBs和PBDEs的加标回收率分别为60.7%~121.4%和69.9%~140.4%,均符合美国环保署 相关方法的要求。PCBs和PBDEs的方法检出限分别低于0.019 pg/m³和0.189 pg/m³;色谱分离效果良好,可以 满足大气样品中 PCBs和PBDEs的监测需要。

关键词 :高分辨气相色谱/高分辨质谱 ;多氯联苯 ;多溴联苯醚 ;大气

中图分类号:0658 文献标识码:A 文章编号:1000-8713(2010)05-0449-07

Determination of polychlorinated biphenyls and polybrominated diphenyl ethers in ambient air using high volume sampling and high resolution gas chromatography/ high resolution mass spectrometry

LI Xiaomin , WANG Pu , LI Yingming , WANG Yawei , ZHANG Qinghua^{*} , JIANG Guibin (State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract : A method for the determination of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in ambient air using high volume sampling and high resolution gas chromatography coupled with high resolution mass spectrometry (HRGC/HRMS) was developed. The results indicated that no breakthrough happened during the sampling procedure. The recoveries of ¹³C labeled compound standards of PCBs and PBDEs were in the ranges of 60. 7% – 121. 4% and 69. 9% – 140. 4% , respectively , which were qualified by the corresponding EPA methods. The limits of detection (LODs) of PCBs and PBDEs in real samples were lower than 0. 019 pg/m³ and 0. 189 pg/m³ , respectively. The chromatograms of PCBs and PBDEs show good performance in the separation. It is demonstrated that the method is suitable for the determination of PCBs and PBDEs in ambient air.

Key words : high resolution gas chromatography/high resolution mass spectrometry (HRGC/ HRMS) ; polychlorinated biphenyls (PCBs) ; polybrominated diphenyl ethers (PBDEs) ; ambient air

多氯联苯(PCBs)和多溴联苯醚(PBDEs)具有 相似的化学结构特征(半挥发性、亲脂性和毒性等) 和环境化学行为(生物累积性、环境持久性和分布 情况等)¹¹,是备受国际社会关注的两类持久性有 机污染物(POPs)。我国在 20 世纪 60 年代生产了 大约 10 000 吨 PCBs, 80 年代又从国外进口了大量 装有 PCBs 的电力电容器。随着废旧电器的废弃和 拆解,其中所含有的 PCBs 排放出来直接进入了土

^{*} 通讯联系人:张庆华,博士,研究员. Tel:(010)62849818, E-mail:qhzhang@rcees.ac.cn. 基金项目:环境保护部"大气污染物对土壤质量的影响研究"项目和国家科技支撑计划课题项目(No. 2007BAC27B01). 收稿日期:2010-01-14

壤、大气和水体中,并通过直接接触和生物链等方式 最终进入人体并对人类健康产生威胁^[2]。1981年, 瑞士学者在狗鱼、鳗鱼和海洋鳟鱼等体内首先检测 到了 PBDEs 的存在^[3]。随后关于 PBDEs 的研究 在全世界范围内逐步开展起来。随着电子类产品的 迅速更新换代,PBDEs 也大量进入环境,分布于各 种环境介质中,并对生态系统造成了危害^[4]。

近年来,针对大气中持久性有机污染物的分析 研究工作受到世界各国的重视,相关的文献报道也 较多^[5-8]。我国针对 POPs 在大气中分布特征的研 究起步相对较晚,且对 PBDEs 的研究相对较少。 大气样品的采集、前处理、净化以及检测等过程比较 繁琐,目前 PBDEs 的采样技术主要建立在 PCBs 研 究(EPA TO-9A 方法)⁹的基础上,样品前处理技 术主要有传统的索氏提取法和近年来发展较快的加 速溶剂萃取(ASE)技术^[10];净化技术通常采用硅胶 纯化柱、凝胶渗透色谱(GPC)、氧化铝柱或弗罗里 土柱等;而常用的检测方法则有气相色谱-质谱联用 法(GC-MS)、 气相色谱-电子捕获检测器法(GC-ECD)¹¹¹以及高分辨气相色谱/高分辨质谱联用法 (HRGC/HRMS)。由于 ECD 对有机溴化合物的响 应较低,所以其应用范围有限。因此,建立针对 PCBs 和 PBDEs 的快速高效的分析方法是研究其 在大气中分布特征的重要基础。

本文应用大流量空气采样技术和 HRGC/ HRMS 方法,建立了同时采集和监测大气中 PCBs 和 PBDEs 的方法,并对该方法进行了评价。

1 实验部分

1.1 仪器、试剂与材料

大流量主动采样器(high volume air sampler) (ECHO HiVol, TCR TECORA 公司,意大利);气相 色谱仪(Agilent 6890N,安捷伦公司,美国),配有 CTC PAL 自动进样器;质谱仪(AutoSpec Ultima, Waters Micromass 公司,英国)。

正己烷、二氯甲烷、丙酮、甲苯均为农残级,购自 美国 Fisher 公司;壬烷为色谱纯,购自美国 Sigma 公司;浓硫酸、氢氧化钠、无水硫酸钠均为优纯级,购 自北京化学试剂公司;无水硫酸钠使用前在马弗炉 中于 660 ℃下烘烤过夜后置于干燥器中密封保存; 硅胶(0.063~0.100 mm)购自德国 Merck 公司。 各种硅胶包括酸性硅胶、碱性硅胶的预处理及制备 参照文献[12]的方法。

所用的 PCBs 的¹³ C 同位素添加内标(68A-LCS)和 PBDEs 的¹³ C 同位素添加内标(¹³C₁₂-BDE- 47,99,153)及 PCBs 和 PBDEs 的¹³C 同位素标记 进样内标(68A-IS)均购自加拿大 Wellington 公司。

石英纤维膜(直径 10.2 cm,孔径 0.1 μm, Whatman 公司)在 450 ℃下烘烤 12 h 以除去其中 的有机杂质,并用铝箔包裹密封保存,采样前后对其 进行称重记录。聚氨酯泡沫(PUF,直径 6.3 cm,长 度 7.5 cm,密度 0.016 g/cm³,深圳顺兴达包装材料 有限 公 司)用加速溶剂萃取仪(Dionex 公司 ASE300,美国)提取两遍(先用丙酮提取,再用正己 烷提取),然后在真空干燥器中干燥,并用铝箔包裹 避光保存。

实验所用玻璃器皿均用有机溶剂清洗后,置于洗瓶机中(Renggli公司,瑞士)清洗,并置于烘箱中50℃烘干,使用前再用二氯甲烷清洗。

1.2 实验步骤

1.2.1 样品采集和保存

大流量主动采样器采样前按照校正程序对流量 进行校正。大流量主动采样器的采样头装有石英纤 维膜,用来过滤和收集颗粒物相;PUF 装在玻璃提 取筒中用以吸附气相中 PCBs 和 PBDEs 等目标检 测物。采样体积根据采样器显示的实际采样体积确 定,实际采样体积不少于 300 m³。

穿透实验:在一块完整的 PUF(A)上添加 PCBs和 PBDEs的¹³C 同位素添加内标各 2 ng。在 PUF(A)下再放置半块空白 PUF(B)(直径 6.3 cm,长度 3.7 cm)进行采样,采样时间为 24 h,使用 2 台采样器同时进行实验。

大气样品采集(包括前处理过程回收率的检验):按照实验室已验证的方法^[13]进行操作,使用2 台采样器同时进行实验。

采样后将石英纤维膜和 PUF 分别用干净的铝 箔包裹,密封避光保存。样品送回实验室后置于 -20 ℃冰箱中保存备用。

1.2.2 样品提取和净化

样品在提取前对玻璃纤维膜进行称重,结合采 样体积计算大气中总悬浮颗粒物(TSP)的浓度。

穿透实验:將石英纤维膜与 PUF(A)合并后进 行加速溶剂萃取,PUF(B)单独进行提取和分析。 提取前添加 PCBs 和 PBDEs 的¹³C 同位素标记进样 内标(68A-IS)各1 ng。提取溶剂均为二氯甲烷-正 己烷(体积比为1:1),提取温度为100 ℃;其他操作 条件为:压力10.3 MPa(1500 psi),温度100 ℃,加 热时间7 min,静态萃取时间8 min,循环两次,吹扫 时间2 min。

大气样品采集:将石英纤维膜与 PUF 合并进行

谱

加速溶剂萃取,提取前添加 PCBs 和 PBDEs 的 13 C 同位素添加内标各 1 ng,其他操作同上。

提取液采用旋转蒸发浓缩并用正己烷进行溶剂 置换,浓缩至1~2 mL并上样至复合硅胶柱中净 化。复合硅胶柱采用干法装柱(自下而上分别为1 g活化硅胶、4 g碱性硅胶、1 g活化硅胶、8 g酸性硅 胶、2 g活化硅胶和1 cm 厚无水硫酸钠),并已用70 mL正己烷预淋洗。提取液上柱后用100 mL正己 烷洗脱。将洗脱液浓缩至约2~3 mL,转移到 K-D 管中继续用氮气浓缩至0.2~0.3 mL,再转移至进 样小瓶中进行氮吹,最终将其浓缩至约20 μL壬烷 中。对于穿透实验样品,浓缩液可直接准备上机检 测;对于大气样品则添加 PCBs 和 PBDEs 的¹³C 同 位素标记进样内标(68A-IS)1 ng 后,涡轮混匀,供 上机检测。

1.3 色谱与质谱条件

样品分析采用同位素稀释 HRGC/HRMS 技术^[14,15]。质谱电离方式为正离子电子轰击(EI⁺), 采集方式为电压选择离子检测模式(VSIR);质谱调 谐参数:分辨率≥10000,电子能量为35 eV,捕集 (Trap)电流为500 mA,光电倍增器电压为350 V; 测定 PCBs 和 PBDEs 时的源温度分别为270℃和 280℃。

PCBs 分析的色谱条件:色谱柱为 DB-5MS(60 m×250 μ m×0.25 μ m);进样口温度为 290 °C,无 分流进样,进样量 1 μ L;传输线温度为 270 °C;载气 (氦气)流速为 1 mL/min;升温程序为初始温度 80 °C,保持 3 min,15 °C/min 升到 150 °C,然后以 2.5 °C/min 速率升至 270 °C 并保持 3 min,再以 15 °C/min 速率升至 330 °C 并保持 3 min,可以 15 °C/min 速率升至 330 °C 并保持 13 min。PCBs 分 析的质谱采集质量碎片类型:三氯代联苯和四氯代 联苯为[M]/[M+2];五氯代联苯、六氯代联苯、七 氯代联苯和八氯代联苯为[M+2]/[M+4]。

PBDEs 分析的色谱条件:色谱柱为 DB-5MS (30 m×250 µm×0.1 µm),进样口温度为 290 ℃, 无分流进样,进样量 1 µL;传输线温度为 270 ℃;载 气(氦气)流速为 1 mL/min;程序升温程序为初始 温度 90 ℃保持 2 min,以 25 ℃/min 速率升至 210 ℃并保持 1 min,以 10 ℃/min 速率升至 275 ℃并保 持 10 min,再以 25 ℃/min 速率升至 330 ℃并保持 10 min。PBDEs 分析的质谱采集质量碎片类型:三 溴代联苯醚和四溴代联苯醚为[M+2]/[M+4];五 溴代联苯醚、六溴代联苯醚为[M-2Br+2]/[M-2Br+4]; ; 决溴代联苯醚为[M-2Br+4]/[M-2Br+ 6]; ; 计溴代联苯醚为[M-2Br+6]/[M-2Br+8]。

2 结果与讨论

2.1 质量控制/质量保证(QC/QA)

图 1 和图 2 是对实际样品中 PCBs 和 PBDEs 分别进行分析的色谱图。从图 1 和图 2 可以看出, PCBs 和 PBDEs 均得到良好的分离。PCBs 和 PB-DEs 单体的定性要求是样品化合物与标记内标对 应的化合物的色谱保留时间在 ±2 ms 范围内,且选 择离子质量碎片的同位素丰度比在理论丰度比的 ± 15% 以内;PCBs 和 PBDEs 的¹³ C 标记内标回收率 须符合 EPA 1668A 和 EPA1614 检测方法的 25% ~ 150% 的要求,方法的检出限定义为 3 倍的信噪比 (*S/N*);样品净化处理过程中平行做实验空白,以对 定量结果进行分析校正。

实验基质空白中 PCBs 和 PBDEs 的检测结果 见表 1。PCBs 和 PBDEs 单体的加标回收率分别为 47.3%~107.4% 和 77.5%~104.9%;分析结果显示 除 CB-77,105,118,123 和 BDE-17,28,47,99, 100,183 有检出外,其他 PCBs 和 PBDEs 的含量均 低于检出限。对检出单体进行体积校正后与实际样 品含量比较显示:其含量均低于样品含量的5%

表 1 基质空白中 PCBs 和 PBDEs 的含量及其加标回收率 Table 1 Contents and recoveries of PCBs and PBDEs in a field blank

Analyta	Filter + PUF		
Analyte —	Content/pg	¹³ C recovery/%	
CB-77	16.2	103	
CB-81	N. D. *	102	
CB-105	11.1	107	
CB-114	N. D.	77	
CB-118	24.5	99	
CB-123	3.7	97	
CB-126	N. D.	105	
CB-156	N. D.	106	
CB-157	N. D.	81	
CB-167	N. D.	80	
CB-169	N. D.	76	
CB-189	N. D.	47	
BDE-17	29.2	-	
BDE-28	42.5	-	
BDE-47	48.6	84	
BDE-66	N. D.	-	
BDE-71	N. D.	-	
BDE-85	N. D.	-	
BDE-99	23.6	105	
BDE-100	45.4	-	
BDE-138	N. D.	-	
BDE-153	N. D.	78	
BDE-154	N. D.	-	
BDE-183	26.4	-	
BDE-190	N. D.	-	

* N. D. : not detected.

图 1 样品中 PCBs 的分析色谱图 Fig. 1 Chromatograms of PCBs in an air sample

图 2 样品中 PBDEs 的分析色谱图 Fig. 2 Chromatograms of PBDEs in an air sample

谱

(1.5%~4.0%)

2.2 穿透实验

自然界中基本不存在全部以¹³C为骨架的污染物,因此,在本实验中¹³C标记的同位素PCBs和PBDEs可作为穿透实验的验证物质。利用¹³C标记的同位素物质,我们可以对PCBs和PBDEs在PUF上的保留行为进行评价。通过基质空白实验,发现内标在通过ASE提取时具有良好的回收率,因此在穿透实验中,我们选取了与样品测定相同的的两套同位素内标,即¹³C添加内标和¹³C标记进样内标, 但其加标时间与实际样品前处理过程不同(见1.2节)。在穿透实验中,若PUF(A)能对¹³C添加内标 具有良好的保留,且PUF(B)中¹³C添加内标检出 值低于PUF(A)中的5%,则认为未穿透。穿透实验 的评价以回收率表示。

大流量主动采样器编号为 1 和 2 ,目标化合物 各同族物质在 PUF(A-1)、PUF(A-2)、PUF(B-1)、 PUF(B-2)上的回收率见表 2。PUF(A)上 PCBs 和 PBDEs 的¹³ C 加标回收率分别为 73.5% ~ 131.2% 和 46.4% ~ 115.7%, PUF(B)上 PCBs 和 PBDEs 的 回收率分别低于 0.7% 和 0.5%。这说明 PUF 在大 流量空气采样过程中,能够对气相中 PCBs 和 PB-DEs 进行有效吸附,并且 PCBs 和 PBDEs 在采样过 程中并未穿透。因而 1 块完整 PUF 在 24 h 采样过 程中能满足采样的要求。

表 2 穿透实验中 PCBs 和 PBDEs 的¹³C 加标回收率 Table 2 ¹³C recoveries of PCBs and PBDEs

in breakthrough experiments			%	
Analyte	A-1	A-2	B-1	B-2
${}^{13}\mathrm{C_{12}}$ -CB-77	74	95	0.6	0.5
$^{13} m C_{12}$ -CB-81	111	131	0.7	0.5
$^{13} m C_{12}$ -CB-126	112	122	0.4	0.2
$^{13} m C_{12}$ -CB-169	130	115	0.3	0.2
$^{13} m C_{12}$ -CB-105	98	106	0.5	0.3
${}^{13}\mathrm{C}_{12}$ -CB-114	110	108	0.4	0.3
$^{13} m C_{12}$ -CB-118	100	112	0.5	0.3
$^{13} m C_{12}$ -CB-123	103	114	0.3	0.3
$^{13} m C_{12}$ -CB-156	121	113	0.4	0.2
$^{13}\mathrm{C}_{12}$ -CB-157	119	113	0.3	0.2
$^{13}C_{12}$ -CB-167	107	102	0.4	0.2
13 C ₁₂ -CB-189	94	90	0.2	0.1
${}^{13}\mathrm{C}_{12}$ -BDE-47	50	46	0.5	0.3
¹³ C ₁₂ -BDE-99	86	50	0.4	0.2
$^{13} m C_{12}$ -BDE-153	116	56	0.4	0.2

2.3 大气采样

完成对实验方法的验证以后,我们分析了中国 科学院生态环境研究中心的实际大气样品。实际大 气样品中 12 种共平面 PCBs 和 PBDEs 的检测结果 见表 3 和表 4。本方法检测的 18 种 PCB 单体检出 限均低于 0.019 pg/m³, 13 种 PBDEs 单体的检出 限均低于 0.189 pg/m³。PCBs 和 PBDEs 的加标回 收率分别为 60.7% ~ 121.4% 和 69.9% ~ 140.4%,满 足美国 EPA 1668A 和 EPA 1614 方法对 PCBs 和 PBDEs 分析质量控制的要求。

表 3 大气样品中 dioxin-like PCBs 和 PBDEs 的检测结果(采样器 1)

Table 3	Results of dioxin-like PCBs and PBDEs in the
	ambient air (Sampler 1)

	Particle + Gas		
Analyte	Content/	¹³ C recovery/	LOD/
	(pg/m^3)	%	(pg/m^3)
CB-77	N. D.	76	0.012
CB-81	N. D.	114	0.008
CB-105	1.11	98	0.007
CB-114	0.12	121	0.004
CB-118	2.51	61	0.005
CB-123	0.22	99	0.005
CB-126	0.06	98	0.003
CB-156	N. D.	94	0.001
CB-157	N. D.	118	0.001
CB-167	N. D.	114	0.001
CB-169	N. D.	102	0.001
CB-189	0.03	78	0.003
BDE-17	3.94	-	0.035
BDE-28	6.88	-	0.035
BDE-47	7.49	70	0.036
BDE-66	3.26	-	0.060
BDE-71	5.79	-	0.053
BDE-85	0.24	-	0.016
BDE-99	3.21	108	0.013
BDE-100	0.52	-	0.013
BDE-138	0.80	-	0.154
BDE-153	3.97	139	0.082
BDE-154	1.79	-	0.077
BDE-183	0.62	-	0.070
BDE-190	0.15	-	0.189

1 号、2 号采样器采集的样品分析结果显示, Σ_{18} PCBs(18种 PCBs单体:CB-77,81,105,114, 118,123,126,156,157,167,169,189,28,52, 101,138,153,180)含量分别为369.86 pg/m³和 502.54 pg/m³,其中二恶英类 PCBs含量分别为 4.05 pg/m³和3.77 pg/m³,可见不同采样器间具有 良好的重现性。我们的研究结果与Batterman 等^[16]对南非地区大气 PCBs 污染水平处于同一水 平。对单体分布规律进行研究发现,低氯代水平的 PCBs是其主要贡献者。 Σ_{13} PBDEs(13种 PBDEs 单体:BDE-17,28,47,66,71,85,99,100,138, 153,154,183,190)含量为38.66 pg/m³和27.10 pg/m³,略高于Li等^[17]对北京大气中 PBDEs含量 为 2.3~18 pg/m³的报道,但与其污染水平处于同 一数量级。检测到大气中 PBDEs 主要单体为 BDE-47,28,71,99和153,约占总量的60%,与 Mariani等^[18]对意大利北部地区大气的研究结果相 一致。

表 4 大气样品中 dioxin-like PCBs 和 PBDEs 的检测结果(采样器 2) Table 4 Results of dioxin-like PCBs and PBDEs in the ambient air (Sampler 2)

	Particle + Gas		
Analyte	Content/	¹³ C recovery/	LOD/
	(pg/m ³)	%	(pg/m^3)
CB-77	N. D.	68	0.005
CB-81	N. D.	104	0.003
CB-105	0.86	93	0.002
CB-114	0.12	86	0.002
CB-118	2.40	78	0.002
CB-123	0.29	84	0.002
CB-126	0.07	85	0.002
CB-156	N. D.	88	0.001
CB-157	N. D.	85	0.001
CB-167	N. D.	83	0.001
CB-169	N. D.	77	0.001
CB-189	0.02	66	0.002
BDE-17	1.54	-	0.002
BDE-28	5.04	-	0.002
BDE-47	6.07	77	0.007
BDE-66	2.18	-	0.012
BDE-71	3.67	-	0.010
BDE-85	0.22	-	0.008
BDE-99	2.62	101	0.006
BDE-100	0.46	-	0.006
BDE-138	0.60	-	0.012
BDE-153	2.71	81	0.006
BDE-154	1.56	-	0.006
BDE-183	0.43	-	0.028
BDE-190	N. D.	-	0.076

N. D. : not detected.

3 结论

本文建立了以大流量样品采集、高分辨气相色 谱/高分辨质谱联用检测大气样品中PCBs和PB- DEs 的分析方法。同位素标记物质添加和实际样 品分析实验结果表明,该方法具有良好的回收率和 较低的检出限,且基质空白低,色谱分离效果良好, 可满足大气中 PCBs 和 PBDEs 检测的要求。

参考文献:

- [1] Wei A X, Wang X T, Xu X B. Chemistry Progress (魏爰雪, 王学彤,徐晓白. 化学进展), 2006, 18(9):1227
- [2] Parnell J J, Park J, Denef V, et al. Appl Environ Microbiol, 2006, 72(10):6607
- [3] Andersson O, Blomkvist G. Chemosphere, 1981, 10(9): 1051
- [4] Tanabe S. Mar Pollut Bull, 2004, 49(5): 369
- [5] Jaward F M, Farrar N J, Harner T, et al. Environ Sci Technol, 2004, 38(1): 34
- [6] Hayakawa K, Takatsuki H, Watanabe I, et al. Chemosphere, 2004, 57(5):343
- [7] Shen L, Wania F, Lei Y D, et al. Environ Pollut, 2006, 144 (2):434
- [8] Cleverly D, Ferrario J, Byrne C, et al. Environ Sci Technol , 2007, 41(5):1537
- [9] U.S. Environmental Protection Agency. Compendium Method TO-9A, 1999
- [10] Abrha Y, Raghavan D. J Hazard Mater, 2000, 80:147
- [11] Cetin B , Odabasi M. Environ Sci Technol , 2007 , 41(3): 785
- [12] Wang Y W, Zhang Q H, Liu H X, et al. Chinese Journal of Chromatography (王亚伟,张庆华,刘汉霞,等. 色谱), 2005,23(5):492
- [13] Li Y M , Jiang G B , Wang Y W , et al. Chinese Science Bulletin , 2008 , 53(4):521
- [14] U.S. Environmental Protection Agency. Method 1668, 1999
- [15] U.S. Environmental Protection Agency. Draft Method 1614, 2003
- [16] Batterman S, Chernyak S, Gouden Y, et al. Environ Pollut, 2009, 157(2):654
- [17] Li Y M , Zhang Q H , Ji D S , et al. Environ Sci Technol , 2009 , 43(4):1030
- [18] Mariani G , Canuti E , Castro-Jimenez J , et al. Chemosphere , 2008 , 73(1): S114